CA2617351C - Diltiazem controlled release formulation and method of manufacture - Google Patents

Diltiazem controlled release formulation and method of manufacture Download PDF

Info

Publication number
CA2617351C
CA2617351C CA2617351A CA2617351A CA2617351C CA 2617351 C CA2617351 C CA 2617351C CA 2617351 A CA2617351 A CA 2617351A CA 2617351 A CA2617351 A CA 2617351A CA 2617351 C CA2617351 C CA 2617351C
Authority
CA
Canada
Prior art keywords
diltiazem
hours
released
extended release
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2617351A
Other languages
French (fr)
Other versions
CA2617351A1 (en
Inventor
Xui Xui Cheng
Xiaohong Qi
Guohua Zhang
Manesh Dixit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actavis Holdco US Inc
Original Assignee
Watson Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Watson Pharmaceuticals Inc filed Critical Watson Pharmaceuticals Inc
Publication of CA2617351A1 publication Critical patent/CA2617351A1/en
Application granted granted Critical
Publication of CA2617351C publication Critical patent/CA2617351C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5073Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
    • A61K9/5078Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings with drug-free core
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/554Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having at least one nitrogen and one sulfur as ring hetero atoms, e.g. clothiapine, diltiazem
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyethylene oxide, poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2077Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
    • A61K9/2081Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets with microcapsules or coated microparticles according to A61K9/50
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5026Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5084Mixtures of one or more drugs in different galenical forms, at least one of which being granules, microcapsules or (coated) microparticles according to A61K9/16 or A61K9/50, e.g. for obtaining a specific release pattern or for combining different drugs

Abstract

A controlled release diltiazem dosage formulation comprising a plurality of diltiazem pellets and a gel-forming material where the time of maximum diltiazem blood plasma levels occurs more than 8 hours after administration and preferably more than 10 hours after administration.

Description

DILTIAZEM CONTROLLED RELEASE FORMULATION AND METHOD OF
MANUFACTURE

BACKGROUND OF THE INVENTION
The present invention relates to a controlled release formulation for the drug diltiazem or its pharmaceutically acceptable salts thereof and a method for manufacturing a controlled release dosage formulation containing diltiazem or a pharmaceutically acceptable salt thereof as the active ingredient. More specifically, the present invention relates to a modified controlled release formulation of diltiazem that.is designed to be administered to patients before bedtime and to release the diltiazem in a controlled release manner so that the time of maximum concentration of diltiazem in the patients blood stream occurs in the morning hours when the patient is waking, i.e. more than 8 hours after administration, preferably more than 9 hours after administration, and most preferably between 10 and 15 hours after administration.

Such modified controlled release systems that are designed to release the active ingredient at a time when the patient is most in need of the drug has been referred to a "chronotherapy" or "chronotherapeutics" in the art.

Diltiazem hydrochloride, commonly referred to as diltiazem, is a benzothiazine derivative that blocks the influx of calcium ions in smooth and cardiac muscle and has few side effects. Diltiazem has been shown to be useful in alleviating symptoms of chronic heart disease, particularly angina pectoris, myocardial ischemia and hypertension. Diltiazem also has been shown to have activity against arrythmia and may be useful in treating congestive cardiac insufficiency, Raynaud's syndrome and peripheral and cerebral circulatory insufficiency.

Recent publications relating to once a day diltiazem treatments have indicated that the time of the day (i.e. morning or evening) at which a patient takes the medication can affect the patients response to the medication. See generally Administration-Time Dependent Effects of Diltiazem on the 24-Hour Blood Pressure Profile of Essential Hypertension Patients, by Kohno et al., Chronobiology International, Vol. 14, No. 1, pp. 71-84 (1997) and The Influence of Time of Administration on the Pharrnacokinetics of Once-A-Day Diltiazem Formulation:
Morning Against Bedtime, by Thiffault et al., Biopharmaceutics & Drug Disposition, Vol. 17, pp. 107-115 (1996). These publications suggest that an administration schedule that allows the maximum amount of diltiazem in the patients blood stream to occur in the morning hours, i. e. between 7:00 AM and 11:00 AM is the optimum dosing schedule.

Diltiazem is sold commercially in extended release pharmaceutical dosage forms that attempt to maintain a therapeutic serum level of diltiazem and minimize the effects of missed doses of the drug caused by lack of patient compliance.
Some of the commercial forms currently available are CARDIZEM CDO, CARTIAO, CARDIZEM LAO, TIAZACO, TAZTIAO, and DILACOR XRO. The FDA's Approved Drug Products with Therapeutic Equivalents publication, commonly known as the "Orange Book" lists the following patents for some of the aforementioned extended release dosage forms of diltiazem: 4,894,240; 5,470,584; 5,439,689;
5,286,497; 5,364,620; 5,002,776; 5,529,791; 5,288,505; 4,839,177 and 5,422,123.
Other patents that describe extended release forms of diltiazem and that are owned by the assignee of the present application are 5,508,040; 5,419,917; 5,567,441;
6,524,620
2 and 6,270,805. These products typically release the drug so the maximum blood concentration occurs about eight to eleven hours after administration.

CARDIZEM LA is a commercially available form of chronotherapeutic diltiazem which has recently become available. It is believed that this product is described in WO 01/41744. The formulations described in the CARDIZEM LA
labeling and in WO 01/41744 appear to employ free diltiazem (not coated) and diltiazem beads (extended release coated diltiazem pellets) that are mixed with a hydrophobic or wax material to control the release of the diltiazem from the dosage form. This dosage form is complicated and difficult to manufacturer.

It is an object of the present invention to provide a novel once-a-day chronotherapeutic form of diltiazem formulation that is easy to manufacture and provides a maximum concentration of diltiazem in the patients blood system at a time greater than 8 hours, preferably greater than 9 hours, most preferably between 10 and hours, after administration.

SUMMARY OF THE INVENTION

The foregoing objectives are met by the present invention that is directed to a modified controlled release or chronotherapeutic pharmaceutical dosage formulation comprising a plurality of diltiazem pellets that are mixed with a gel-forming material.

The diltiazem pellets and gel-forming material are compressed into a tablet or placed into a gelatin capsule.

The pellets can be any type of conventionally known pellets that are described in the art such as the pellets described in Examples 1-3 of United States Patent No.
5,470,584, Examples I and II of United States Patent No. 5,508,040, Example 1 of
3 United States Patent No. 5,567,441; Examples 1-21 of United States Patent No.
5,002,776; Example 1 and 2 of United States Patent No. 6,270,805; Examples 1-4 of United States Patent No. 5,529,791 and Examples 1 and 2 of United States Patent No. 6,524,620. In a preferred embodiment, the diltiazem pellets comprise a combination of pellets such as those described in Example 2 of United States Patent No. 5,470,584, Examples 1 and 2 of United States Patent No. 6,270,805 and most preferably as described in Examples 1 and 2 of United States Patent No.
6,524,620.

The gelling material can be any type of material such as those described in Col. 10, line 44 to Col. 11, line 50 of United States Patent No. 4,915,949 and Col. 16, line 14 to Col. 17, line 20 of United States Patent No. 6,419,954.
The dosage formulation of the present invention may contain a homogeneous population of diltiazem wherein each pellet comprises approximately the same amount or thickness of extended release coating. The dosage form of the present invention may also contain a heterogeneous population of diltiazem pellets wherein the population comprises a blend or mixture of diltiazem pellets with different amounts or thicknesses of extended release coating on some of the pellets while some of the pellets may have no controlled release coating. The pellets without a controlled release coating are sometimes referred to herein as active pellets.

A heterogeneous population of diltiazem pellets of the present invention can be obtained in a single batch intermittent coating process and thereby eliminate the need for several separate coating batches and a separate and distinct blending step. The unique process comprises adding a first allotment of active pellets to a coating
4 apparatus; coating the first allotment of active pellets with a first amount of extended release coating; adding a second allotment of active pellets to the coating apparatus after the coating of the first allotment of active pellets with the first amount of extended release coating; and coating the first and second allotment of active pellets with a second amount of extended release coating. Additional allotments, i.e.
a third allotment or a fourth allotment, of active pellets may also be added to the coating apparatus at subsequent time periods during the coating process and coating all the allotments of active pellets with additional amounts of extended release coating.
Once the coating process is completed a heterogeneous population of pellets is obtained wherein the first allotment of active pellets has the greatest amount of (or thickest) extended release coating, the second allotment of active pellets are coated with less extended release coating than the first allotment, and the third allotment of active pellets, if employed, are coated with less extended release coating than the first and second allotments of active pellets.

Once the diltiazem pellets are prepared, they are mixed with a gel-forming material and pressed into a tablet or filled into a gelation capsule using conventional methods known in the art. The combination of the extended release coating material on the active diltiazem pellets and the amount of gel-forming material should control the release of the diltiazem from the dosage formulation so that the time (Tmax) of the peak blood plasma level (Cmax) of the diltiazem is obtained more than 8 hours after administration, preferably more than 9 hours after administration and most preferably about 10 to about 15 hours after administration.
5 In a broad aspect, the present invention relates to a controlled release oral pharmaceutical dosage formulation consisting of a mixture of: A) a heterogeneous population of extended release diltiazem pellets wherein the extended release diltiazem pellets comprise: i) a core comprising diltiazem and ii) an extended release coating applied to the core wherein the extended release coating controls the release of the drug from the core; B) a polymer that can retain a fraction of imbibed fluid and exhibit a 2 to 50 fold volume increase, and C) convention processing excipients selected from fillers, lubricants, glidants, pigments, polishing agents and combinations of the foregoing wherein the combination of the extended release coating on the extended release pellets and polymer controls the release of the diltiazem from the dosage formulation so the time of maximum blood plasma diltiazem concentration occurs about 10 to about 15 hours after administration of the dosage formulation and the dosage formulation is free of flux enhancers.

In another broad aspect, the present invention relates to a controlled release oral pharmaceutical tablet consisting of a mixture of: A) a heterogeneous population of extended release diltiazem pellets wherein the extended release diltiazem pellets comprise: i) a core comprising diltiazem and ii) an extended release coating applied to the core wherein the extended release coating controls the release of the drug from the core so that the heterogeneous population of pellets exhibits the following dissolution profile when tested in a USP Type 2 5a apparatus at 75 rpms, and 900 ml of simulated intestinal fluid (pH 7.5 phosphate buffer) at 37 C: 0-30% of the diltiazem is released after 2 hours; 10-50% of the diltiazem is released after 4 hours; 30-85% of the diltiazem is released after hours; 45-90% of the diltiazem is released after 12 hours; not less than 60%
of the diltiazem is released after 16 hours; and not less than 70% of the diltiazem released after 20 hours; B) a gel-forming polymer that can retain a fraction of imbibed fluid and exhibit a 2 to 50 fold volume increase; C) conventional processing excipients selected from filler, lubricants, glidants, pigments, polishing agents and combinations of the foregoing wherein the combination of the extended release coating on the extended release pellets and gel-forming material controls the release of the diltiazem from the tablet so the time of maximum blood plasma diltiazem concentration occurs about 10 to 15 hours after administration of the tablet, the tablet is free of flux enhancers, and the tablet exhibits the following dissolution profile when tested in a USP Type 1 apparatus at 100 rpms, and 900 ml of simulated intestinal fluid (pH 7.5 phosphate buffer) at 37 C: 0-30% of the diltiazem is released after 1 hour; 0-40%
of the diltiazem is released after 4 hours; not less than 30% of the diltiazem is released after 12 hours; and not less than 60% of the diltiazem is released after 24 hours.

5b BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a graph depicting the dissolution profile in simulated intestinal fluid (pH 7.5 phosphate buffer) of the formulation described in Example 1 as tested according to the procedure described in United States Pharmacopoeia 25, Apparatus 1 @ 100 rpm.

FIG. 2 is a graph depicting the dissolution profile in simulated intestinal fluid (pH 7.5 phosphate buffer), of the formulation described in Example 2 as tested according to the procedure described in United States Pharmacopoeia 25, Apparatus 1 @ 100 rpm.

FIG. 3 is a graph depicting the linear plot of the mean plasma diltiazem concentration verses time of the formulation described in Examples 1 and 2 under fasting conditions and the linear plot of the mean plasma diltiazem concentration verses time of the commercially available diltiazem product CARDIZEM La under fasting conditions with N=l 1.

FIG. 4 is a graph depicting the dissolution profile in simulated intestinal fluid (pH 5.8 phosphate buffer), of Example 3 as tested in Apparatus II (paddle) @
100 rpm in 900 ml dissolution volume.

FIG. 5 is a graph depicting the linear plot of the mean plasma diltiazem concentration verses time of the formulation described in Example 3 under fasting conditions and the linear plot of the mean plasma diltiazem concentration verses time of the commercially available diltiazem product CARDIZEM La under fasting conditions with 41 patients (Al and A2 and B 1 and B2 refer to the two-treatment, two-sequence, nature of the clinical trials).
6 FIG. 6 is a graph depicting the linear plot of the mean plasma diltiazem concentration verses time of the formulation described in Example 3 under non-fasting conditions and the linear plot of the mean plasma diltiazem concentration verses time of the commercially available diltiazem product CARDIZEM La under non-fasting conditions with 38 patients (Al and A2 and B 1 and B2 refer to the two-treatment, two-sequence, nature of the clinical trials).

DETAILED DESCRIPTION OF THE INVENTION

The present invention is a modified controlled release once a day oral diltiazem formulation that is suitable for night time administration. The formulation comprises a plurality of diltiazem pellets that are mixed with a gel-forming material so that the time (Tmax) of the peak blood plasma level (Cmax) of the diltiazem is more than 8 hours after administration, preferably more than 9 hours after administration and most preferably about 10 to about 15 hours after administration of the dosage formulation. The diltiazem pellets can be a homogeneous population of diltiazem pellets, or a heterogeneous population of pellets.

If the diltiazem pellets are a homogeneous population of pellets, the final dosage form can be coated with a layer of diltiazem to provide an immediate release amount of diltiazem upon ingestion by the patient. If the diltiazem pellets are a heterogeneous population of pellets, the final dosage form can be also be coated with diltiazem to provide an immediate release amount of diltiazem or a population of active or non-coated diltiazem pellets can be employed to provide an immediate release amount of diltiazem.

If a heterogeneous population of diltiazem pellets are employed the heterogeneous population can consist of. (a) a combination of active (i.e.
immediate
7 release or non-coated) pellets and extended release coated pellets as disclosed in United States Patent No.'5,002,776; (b) a combination of two types of extended release coated diltiazem pellets, i.e., a "fast" or "enteric" release coated diltiazem pellet and a "slow" or "delayed" release coated pellet as described in Example 2 of United States Patent No. 5,470,584 or Examples 1 and 2 of United States Patent No.
6,270,805, or (c) a combination of three types of extended release coated diltiazem pellets as disclosed in Examples 1 and 2 of United States Patent No.
6,524,620.

The gel-forming material is a material that exhibits the ability to retain a significant fraction of imbibed fluid in the molecular structure. In a preferred embodiment the gel-forming material is a polymer that can swell or expand to a very high degree, usually exhibiting a 2 to 50 fold volume increase. The swellable polymers are also known as osmopolymers or hydrogels and can be non-cross-linked or lightly cross-linked. The cross-links can be covalent or ionic bonds with the polymer possessing the ability to swell in the presence of fluid, and when cross-linked it will not be dissolved in the fluid. The polymer can be of plant, animal or synthetic origin. Polymeric materials useful for the present purpose include polyhydroalkylcellulose having a molecular weight greater than 50,000 poly(hydroxyalkylmethacrylate) having a molecular weight of from 5,000 to 5,000,000; poly(vinylpyrrolidone) having a molecular weight of from 10,000 to 360,000; anionic and cationic hydrogels; poly(electrolyte) complexes;
poly(vinylalcohol) having a low acetate residual; a swellable mixture of agar and carboxymethyl cellulose; a swellable composition comprising methyl cellulose mixed with a sparingly cross-linked agar; a polyether having a molecular weight of from 10,000 to 6,000,000; water swellable copolymer produced by a dispersion of finely
8 divided copolymer of maleic anhydride with styrene, ethylene, propylene, or isobutylene; water swellable polymer of N-vinyl lactams; and the like.

Other gellable, fluid imbibing and retaining polymers useful in the present invention include pectin having a molecular weight ranging from 30,000 to 300,000; polysaccharides such as agar, acacia, karaya, tragacanth, algins and guar;
CARBOPOL , an acrylic acid polymer, a carboxyvinyl polymer, sometimes referred to as carboxypolymethylene, a polymer of acrylic acid cross-linked with a polyally? ether of sucrose, as described in U.S. Pat. Nos. 2,798,053 and 2,909,462 and available as CARBOPOLS 934, 940 and 941, and its salt derivatives;
polyacrylamides; water- swellable indene maleic anhydride polymers;

GOOD-RITE polyacrylic acid having a molecular weight of 80,000 to 200,000;
POLYOX polyethylene oxide polymers having a molecular weight of 100,000 to 5,000,000; starch graft copolymers; AQUA- KEEP acrylate polymers with water absorbability of about 400 times its original weight; diesters of polyglucan;
a mixture of cross-linked polyvinyl alcohol and poly(N-vinyl-2-pyrrolidone);
zein available as prolamine; poly(ethylene glycol) having a molecular weight of 4,000 to 100,000; hydroxpropylcellulose such as METHOCELTM KJOOM and the like.
Representative polymers possessing gelling properties are known in U.S. Pat.
Nos.
6,419,954; 4,915,949; 4,327,725; 4,207,893 and in Handbook of Common Polymers, by Scott and Ro ff, published by Cleveland Rubber Company, Cleveland, OH.
The present invention may also employ a flux enhancer. A flux enhancer is an inorganic or organic compound that exhibits an osmotic pressure gradient against an external fluid, preferably water or gastric fluid, and across a semipermeable membrane. Flux enhancers useful for the present invention include inorganic and
9 organic salts, polysaccharides, carbohydrates, and the like. Representative flux enhancers include magnesium sulfate, magnesium chloride, sodium chloride, potassium chloride, lithium chloride, potassium sulfate, sodium carbonate, sodium sulfate, lithium sulfate, sodium sulfate, potassium acid phosphate, calcium lactate, tartaric acid, lactose, fructose, sucrose, mannitol, sorbitol, and mixtures thereof.
If a flux enhancer is employed it should be blended with the gel-forming material and the diltiazem pellets prior to compressing the material into a tablet or filling the material into a gelatin capsule.

In addition to the diltiazem pellets, gel forming agent and optional. flux enhancer, the dosage form of the present invention may further comprise conventional pharmaceutical excipients of processing aids such as fillers, lubricants, glidants, pigments, polishing agents and combinations of the foregoing.

DETAILED DESCRIPTION OF AN EMBODIMENT OF THE INVENTION
The following is a description of an embodiment of the present invention.

Although the following description relates to the preparation of a tablet that contains a three pellet heterogeneous population of diltiazem pellets, the use of a homogeneous population and/or heterogeneous population of diltiazem pellets as described above are also within the scope of the present invention. The. preparation of the diltiazem pellets are described in the above referenced patents which are incorporated herein by reference.

The diltiazem or a pharmaceutically acceptable salt thereof used in the present invention should be micronized and preferably have a particle size of less than 20 microns. The micronized diltiazem is used to prepare pellets or beads.

Various methods for preparing diltiazem pellets are known in the art such as extrusion spheronization and coating of inert starting seed. If inert starting seeds are employed the seed can be any type of commonly known starting material such as microcrystalline cellulose (CELLSPHERE ), glass, polypropylene, starch or sugar sphere having a diameter ranging from about 15-50 mesh and more preferably about 30-35 mesh.

The diltiazem is applied to the starting seed by spraying a solution or suspension containing the diltiazem and a binding agent. The binder employed in the active pellets can be any type of binding agent commonly known in the art such as polyvinyl pyrrolidone, hydroxyethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, polyacrylate, ethylcellulose or mixtures of the foregoing. In the preferred embodiment of the present invention, the binder for the active pellets is a combination of a water soluble binder, such as polyvinyl pyrrolidone or hydroxyethylcellulose and a water insoluble binder such as ethylcellulose or a polyarcylate. The ratio of water soluble binder to water insoluble binder should be about 1:1 to about 1:3 with the most preferred ratio being 1:2. These ratios are based upon the weight of the water soluble binder to the weight of the water insoluble binder in the active pellets.

The active pellets of the present invention will comprise the following ingredients:

INGREDIENT PREFERRED MOST PREFERRED
diltiazem HCl 50-85 % 65-80 %
inert seed 10-30 % 15-25 %
binder 1-15% 4-10%.

In a preferred embodiment of the present invention the active pellets will comprise the following ingredients:

INGREDIENT PREFERRED MOST PREFERRED
diltiazem HC1 50-85 % 65-80 %

inert seed 10-30 % 15-25 %
water soluble binder 0.25-5 % 1-3.4 %
water insoluble binder 0.75-10 % 3-6.6 %

All the percentages in the above tables are based on the total weight of the active pellets.

The active pellets of the present invention which comprise the diltiazem HCl is prepared by forming a suspension of the binder and drug, and then layering the suspension onto the inert seed using any of the layering techniques commonly known in the industry such as fluidized bed coating, rotary granulation or pan coating.

Once the active pellets are prepared, the active pellets can be coated with an extended release coating. The extended release coating is applied to the active pellets to control the release of the drug from the dosage form and preferably comprises a water insoluble water permeable polymer, a water or acid soluble channeling agent, a lubricating or dusting agent and optionally a surfactant.
Suitable water insoluble water permeable polymers are ethylcellulose, cellulose acetate and polyacrylates or mixtures thereof. In the preferred embodiment of the present invention, the water insoluble water permeable polymer is a polymethacrylate ester copolymer, such as a poly(ethylarcylate methylmethacrylate) copolymer which is commercially available from Rohm Pharma under the tradename EUDRAGITTM NE 30D.

The channeling agent employed in the extended release coating can be any type of water or acid soluble pharmaceutically acceptable substance commonly known in the art such as polyvinyl pyrrolidone, hydroxyethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, polyacrylate, sucrose, drug itself or any combination of the foregoing. The preferred channeling agent is a water or acid soluble polymer such as hydroxypropyl methylcellulose.

Suitable lubricants or dusting agents that can be used in the present invention are talc, magnesium stearate, silicon dioxide, kaolin or a mixture of the foregoing.

The lubricant or dusting agent prevents the pellets from sticking to one another during processing. The lubricant may be dusted onto the active pellets during the coating process or it may be incorporated into a coating suspension and applied to the core with the coating suspension. In a preferred embodiment of the present invention, the lubricant is a mixture of talc and magnesium stearate. The preferred ratio of talc to magnesium stearate should be about 1:2 to about 2:1. These ratios are based upon the weight of the talc to the weight of the magnesium stearate.

Suitable surfactants that may optionally be used in the present invention are sodium lauryl sulfate, sodium taurocholate or a polysorbate. The preferred surfactant is polysorbate 80.

The extended release coating can be applied to the active pellets by any means commonly known in the industry such as a rotary granulator, pan coater or a fluidized bed coater.

The extended release coating of the present invention will have the following composition:

Preferred Most Preferred COATING:
water insoluble polymer 60-85 % 65-80 %
channeling agent 0.5-5 % 0.75-2 %
lubricant 10-40 % 15-30 %
surfactant (optionally) less than 1 % less than 0.5 %

In a preferred embodiment of the present invention the extended release coating will comprise the following ingredients:

Preferred Most Preferred COATING:
water insoluble polymer 60-85 % 65-80 %
channeling agent 0.5-5 % 0.75-2 %
talc 5-20% 7.5-15%
magnesium stearate 5-20 % 7.5-15 %
surfactant (optionally) less than 1 % less than 0.5 %

The percentages listed in the above tables are based on the total weight of the extended release coating.

Generally, the extended release coating will comprise from about 1% to about 20%, preferably about 1.5% to about 15%, based on the total weight of the active pellet and extended release coating.

As mentioned above, the dosage form of the present invention may comprise a heterogeneous population of pellets wherein the dosage form comprises pellets with varying amounts or thicknesses of extended release coating applied to the active pellets. For example the heterogeneous population may comprise a mixture of homogeneous pellets as defined above and uncoated active pellets that provide an immediate release amount of the diltiazem. The heterogeneous population may also be formed by blending extended release pellets that are prepared with different amounts or thicknesses of extended release coating. The extended release pellets with varying thicknesses may be prepared in separate and distinct batches or by the single batch intermittent process of the present invention wherein multiple allotments of active pellets are added to a coating equipment at periodic time intervals during the coating process.

In a preferred embodiment of the present invention a heterogeneous population of extended release pellets are prepared in a single batch intermittent process using fluidized bed coating equipment wherein the population is prepared by adding three separate allotments of active pellets to the coating equipment during the coating process. The process comprises the steps of:

1) adding a first allotment of active pellets to the coating equipment;
2) coating the first allotment of active pellets with a first amount of extended release coating;

3) adding a second allotment of active pellets to the coating equipment;
4) coating the first and second allotment of active pellets with a second amount of extended release coating;

5) adding a third allotment of active pellets to the coating equipment; and 6) coating the first, second and third allotments of active pellets with a third amount of extended release coating.

A suitable heterogeneous population of diltiazem pellets useful in the present invention can be prepared wherein the amounts of the first, second and third allotments of active pellets added to the coating equipment are equal, however it is preferred that the active pellets be added to the coating equipment in the following proportions:

Allotment Preferred % Most Preferred %
first 34-90 % 65-85 %
second 5-33 % 5-15 %
third 5-43 % 10-25 %

All the percentages in the above table are based on the total weight of the active pellets in the dosage formulation.

A suitable heterogeneous population of diltiazem pellets for use in the present invention can also be prepared according to the above described-process wherein the quantity of the first, second and third amounts of extended release coating are equal,
10, however, it is preferred that the quantities of the first, second and third amounts of extended release coating be as follows:

Coating Preferred % Most Preferred %
first 10-33 % 15-25 %
second 34-80 % 50-75 %
third 10-40 % 15-30 %

All the percentages in the above table are based on the total weight of the extended release coating to be applied to the active pellets in the dosage formulation.
In the most preferred embodiment of the present invention, the extended release coating is applied to the active pellets with an atomization pressure of 2-5 bars, product temperature of 20-30 C, and a spray rate of. 100-600 g/min for the first amount of extended release coating; 200-1100 g/min for the second amount of extended release coating and 500-1100 g/min for the third amount of the extended release coating.

The diltiazem pellets of the present invention, either homogeneous or heterogeneous population of pellets, prior to mixing with the gel-forming material should exhibit the following dissolution profile when tested in a USP type 2 apparatus at 75 rpm in 900 ml of simulated intestinal fluid (pH 7.5 phosphate buffer) and at 37 C:

Time (hours) Preferred Most Preferred 2 0-30% 5-25%
4 10-50% 15-45%
8 30-85 % 45-80 %
12 45-90 % 60-85 %
16 NLT60% NLT70%
20 NLT70% NLT75%
NLT = NOT LESS THAN

The diltiazem pellets of the present invention, either homogeneous or heterogeneous population of pellets, prior to mixing with the gel-forming material should exhibit the following dissolution profile when tested in a USP type 2 apparatus at 75 rpms in 900 ml of simulated gastric fluid (SGF) and at 37 C:
Time (hours) Preferred Most Preferred 2 0-30% 5-25%
4 10-50% 15-45%
8 25-80 % 40-75 %
12 50-90% 55-85%
16 NLT 55 % NLT 65 %
20 NLT65% NLT70%
NLT = NOT LESS THAN

The diltiazem pellets of the present invention, either homogeneous or heterogeneous population of pellets, prior to mixing with the gel-forming material should exhibit the following dissolution profile when tested in a USP type 2 apparatus at 100 rpm in 900 ml of 0.1 N HCl and at 37 C:

Time (hours) Preferred Most Preferred 2 0-30 % 5-25 %
4 5-45 % 10-35 %
8 20-70 % 35-65 %
12 NLT 45 % NLT 50 %
18 NLT55% NLT60%
20 NLT65% NLT70%
NLT = NOT LESS THAN

Once the diltiazem pellets are prepared, they are mixed with a gel-forming material, a lubricant and optionally other conventional excipients such as a flux enhancer, filler, a disintegrant, a flow aid, or combinations of the foregoing so that the Tmax of the final dosage form is achieved 8 hours or more after administration, preferably 10 hours or more after administration, more preferably between 10 and 15 hours after administration and most preferably between 10 and 13 hours after administration. It will be understood that one excipient may exhibit more than one function in the formulation. For example, microcrystalline cellulose may act as a disintegrant, flow aid and filler depending upon the amount and manner in which the material is employed. These dual and multi function excipients are well known to those skilled in the art.

The final dosage form of the present invention will preferably have the following composition:

Preferred Most Preferred Diltiazem Pellets 35-85% 45-75 %
Gel-Forming Material 1.0-40 % 5.0-25 %
Lubricant 0.1-10% 0.5-5.0%
Flux Enhancer 0.0-25 % 0.0-15 %
Flow Aid 0.0-20 % 0.0-15 %
Filler 0.0-40 % 10-35 %
Disintegrant 0.0-40 % 10-35 %

The diltiazem pellets, gel-forming material and conventional processing excipients can be mixed together using conventional techniques known in the art.
Once the diltiazem pellets, gel-forming material, and other conventional processing excipients are mixed together, the mixture can be tableted using conventional tableting techniques such as a rotary tablet press or. filled into gelatin capsules. The final dosage form, especially in tablet form, can be further coated with a water soluble seal coat, aesthetic or color coat and polished with a wax coating. In addition as mentioned above, if desired, a coating of diltiazem can be applied to the outer surface of the final dosage form to provide an immediate release amount of diltiazem.

The final dosage form of the present invention should exhibit the following dissolution profile when tested in a USP type 1 apparatus at 100 rpm in 900 ml of simulated intestinal fluid (pH 7.5 phosphate buffer) and at 37 C:

Time (hours) Preferred Most Preferred 1 0-30% 0-20%
4 0-40% 0-30%
12 NLT30% NLT40%
24 NLT60% NLT70%
NLT = NOT LESS THAN

The following examples illustrate the present invention and are not intended to limit the scope of the present invention.

A dosage form containing a heterogeneous population of pellets was prepared by forming active pellets having the following composition:

STEP I: ACTIVE PELLET
Ingredient Weight %
diltiazem HCI, USP (micronized)1 75.00 %
sugar sphere, NF2 18.18 %
ethylcellulose, NF (ETHOCELTM 10 cps) 4.56 %

p vicinna T TSP (K-10) 7 77 0/
' average particle size of less than 20 microns.
2 30/35 mesh.
The active core was prepared by adding 25.08 kg of the ethylcellulose to 836.0 kg of isopropyl alcohol while mixing with a tri-blender and homogenizing for about 30 minutes. Once the ethylcellulose was dissolved, 12.49 kg of povidone was added to the ethylcellulose solution and homogenized for an additional 10 minutes. After the ethylcellulose and povidone were dissolved, 412.6 kg of diltiazem was added scoopwise to the ethylcellulose/ povidone solution while mixing until a uniform suspension was obtained. The diltiazem suspension was then applied to 100.0 kg of the sugar spheres in a fluidized bed coater (GLATT
GPCG 200) under the following conditions: product temperature: 25-30 C (target of 27 C); atomization pressure: 2-3.5 bars; air volume of 800-3200 CFM and a pump rate as follows:

Time (min.) Target Spray Rate (g/min) 256-end 2796-3060 Once the diltiazem suspension was consumed, the inlet temperature was increased to 70 C and the active pellets were dried in the fluidized bed coater for approximately 10 minutes or until the LOD (loss on drying) was less than 2%.
Once the drying stage was completed, the dried diltiazem active pellets are sieved and placed in a clean, properly labeled double polyethylene bag lined container.
The active pellets sized between 14 and 24 mesh were coated with an extended release coating in a single batch intermittent coating process to form a heterogeneous population of pellets wherein the extended release coating had the following composition:

STEP II: Extended Release Coating Ingredient Weight %
Eudragit NE 30D1, EP 73.67%
hydroxypropyl methylcellulose, USP (Methocel E5) 1.00 %
talc, USP(I) 12.58 %

magnesium stearate, NF 12.58 %
polysorbate 80, NF 0.17 %
1 30% aqueous dispersion The controlled release coating was prepared by adding 0.256 kg of the Methocel E5 Premium to 32.24 kg of purified water, USP, and mixing with a mechanical stirrer for approximately 60 minutes. After mixing, the solution was allowed to sit for about 20 minutes to defoam. 3.227 kg of talc was added to the Methocel E5/water mixture while mixing.

In a separate container, 0.0436 kg of polysorbate 80 was added to 9.54 kg of isopropyl alcohol and mixed with a mechanical mixer for approximately 2 minutes.

3.227 kg of magnesium stearate was added to the polysorbate 80/isopropyl alcohol mixture and the mixing continued for approximately 5 minutes.

Once the magnesium stearate had been mixed, the Methocel E5 and talc mixture was added to the magnesium stearate/polysorbate 80 mixture. The resulting composition was mixed for about 3 minutes.

After gently shaking, 62.97 kg of Eudragit NE 30D was weighed and filtered through an 80 mesh stainless steel screen. The mixture of Methocel E5, talc, magnesium stearate, polysorbate 80 was added to the Eudragit NE 30D and mixed with a mechanical mixer for at least ten minutes before applying the resulting extended release coating suspension to the active pellets using a fluidized bed coater (GLATT GPCG-60). Stirring of the extended release coating continued throughout the coating process.

The extended release coating suspension with the above composition was applied to the active pellets by adding 164.53 kg of a first allotment of active pellets to the fluidized bed coater and preheating the first allotment of active pellets for two minutes with an inlet temperature 40 C. The extended release coating suspension is applied to the first allotment of active pellets under the following conditions: product temperature: 25-27 C (target 25 C); atomization pressure: 3 bars; and a pump rate of 450 g/min (range 400-500). After approximately 18.58 kg 0.1 kg of extended release coating suspension was applied to the first allotment of active pellets, the coated active pellets were cooled in the coater until the air inlet temperature reached approximately 25 C.

Once the first allotment of active pellets were cooled, approximately 21.37 kg of a second allotment of active pellets were added to the coater. The first and second allotment of active pellets were then coated with approximately 65.02 kg 0.1 kg of extended release coating suspension under the following conditions: product temperature: 25-27 C (target 25 C); atomization pressure: 3 bars; and a pump rate of 550 g/min (range 500-600). After the 65.02 kg of extended release coating suspension was applied to the first and second allotment of active pellets, the coated first and second allotment of active pellets were cooled in the coater until the air inlet temperature reached approximately 25 C.

After the coated first and second allotment of active pellets were cooled, approximately 38.46 kg of a third allotment of active pellets were added to the coater.
The first, second and third allotment of active pellets were then coated with the remaining amount of the extended release coating suspension under the following conditions: product temperature: 25-27 C (target 25 C); atomization pressure:
3 bars;
and a pump rate of 950 g/min (range 900-1000) product temperature. After all the extended release coating suspension was consumed, the air inlet temperature was increased to 35 C the first, second and third coated allotments of active pellets were dried in the fluidized bed coater to a product temperature of 32 C. Drying continued until the LOD was less than 2%. Thereafter the coated pellets were dusted with 5.00 kg of talc, dried in an oven for 40 hours at 60 C and sieved using a sieve equipped with 12 mesh and 24 mesh screens. The heterogeneous populations of extended release diltiazem pellets was then compressed into tablets with the following composition:

STEP III: Extended Release Tablets Ingredient Weight %
Extended Release Pellets (Step II) 52.25 %
Confectioner's Sugar 6.50 %
Polyethylene Oxide 20.00 %

Magnesium Stearate, NF 1.00 %
Microcrystalline Cellulose, NF 20.25 %

The extended release tablets were prepared by screening and mixing 1.625 kg of confectioner's sugar, NF (6X micronized), 5.0 kg of polyethylene oxide, NF, (10- 20 mesh tablet grade POLYOXTM WSR N-80) and 5.063 kg of microcrystalline cellulose (AvicelTM PH 101) in a V-blender for about 10 minutes. After blending for about 10 minutes, 13.06 kg of the heterogeneous population of extended release diltiazem pellets prepared in Step II above were added to the V-blender and blended for about 15 minutes. 0.25 kg of magnesium stearate was then added to the V-blender and blended for an additional 5 minutes.

The mixture was then compressed into tablets containing approximately 420 mg of diltiazem using a Fette tablet press. The resulting tablets were standard concave capsule shape with a target weight of 1,200 mg and a hardness of 8-20 kp (target 14 kp). 19.20 kg of the tablets were then coated with a seal coat of 0.4867 kg-of OPADRY II WHITETM Y-30-18037 and polished with 0.0096 kg of candelilla wax using a pan coater.

The resulting tablets were tested in simulated intestinal fluid (pH 7.5 phosphate buffer), according to the procedure described in United States Pharmacopoeia 25, using Apparatus 1, basket @ 100 rpm. The results of the in vitro tests were as follows:

TIME % RELEASED

The release profile of the extended release tablet prepared in this Example is shown in Figure 1.

Table 1 is a summary of the bioavailability comparison data under fasting conditions, test/reference ratio, shown in Figure 3 wherein the test product was ' prepared according to Example 1 and the CARDIZEM LA product is the reference product in a two way crossover biostudy with n = 11.

Test Mean Ref Mean Test/Ref Ratio Cmax(ng/ml) 289.69 253.88 114.10 AUC;,,f{ng=hr/ml) 5503.47 5166.66 106.52 Tmax(hr) 9.05 12.41 72.93 Test G. Mean Ref. G. Mean G Mean Ratio Cmax(ng/ml) 258.09 226.99 113.70 AUC;,,f{ng=hr/ml) 4758.77 4617.46 103.06 An extended release tablet containing a heterogeneous population of diltiazem pellets was prepared as described in Example 1 except the tablet comprises the following ingredients:

STEP III: Extended Release Tablets Ingredient Wei-ht % Amount (kg) Extended Release Pellets (Step II) 52.25 % 13.060 kg Confectioner's Sugar 5.00 % 1.250 kg Compressible sugars 6.50 % 1.625 kg Polyethylene Oxide 10.00 % 2.500 kg Magnesium stearate, NF 1.00 % 0.250 kg Microcrystalline Cellulose, NF 25.25 % 6.313 kg 19.20 kg of the tablets were then coated with a seal coat of 0.4867 kg of OPADRY II WHITE Y-30-18037 and polished with 0.0096 kg of candelilla wax using a pan coater.

The resulting tablets were tested in simulated intestinal fluid (pH 7.5 phosphate buffer), according to the procedure described in United States Pharmacopoeia 25, using Apparatus 1, basket @ 100 rpm. The results of the in vitro tests were as follows:

TIME % RELEASED

The release profile of the extended release tablet prepared in this Example is shown in Figure 2.

Table 2 is a summary of the bioavailability comparison data under fasting conditions, test/reference ratio, shown in Figure 3 wherein the test product was prepared according to Example 2 and the CARDIZEM LA product is the reference product in a two way crossover biostudy with n = 11.

Test Mean Ref Mean Test/Ref Ratio Cmax(ng/ml) 410.34 253.88 161.63 AUCiõ t(ng=hr/ml) 6032.37 5166.66 116.76 Tmax(hr) 5.82 12.41 46.87 Test G. Mean Ref. G. Mean G Mean Ratio Cmax(ng/ml) 345.35 226.99 152.14 AUC;,,i(ng=hr/ml) 4966.84 4617.46 107.57 An extended release tablet containing a heterogeneous population of diltiazem pellets was prepared as described in Example 1 except the tablet comprises the following ingredients:

STEP III: Extended Release Tablets Ingredient Weight % Amount (ka) Extended Release Pellets (Step II) 52.25 % 73.15 kg Polyethylene Oxide 24.75 % 34.65 kg Microcrystalline Cellulose, NF 21.75 % 30.45 kg Magnesium stearate, NF 1.00 % 1.40 kg Colloidal Silicon Dioxide 0.25 % 0.35 kg 129.12 kg of the tablets were then coated with a seal coat of 3.529 kg of OPADRY II WHITE Y-30-18037 and polished with 0.00696 kg of candelilla wax using a pan coater.

The resulting tablets were tested in simulated intestinal fluid (pH 5.8 phosphate buffer), Apparatus II, (paddles) @ 100 rpm in 900 ml dissolution volume.
The results of the in vitro tests were as follows:

TIME % RELEASED

The release profile of the extended release tablet prepared in this Example is shown in Figure 4.

A bioavailability study of the test diltiazem hydrochloride extended release tablets 420 mg prepared according to Example 3 was compared to the reference CARDIZEM La Tablets 420 mg in forty eight healthy subjects (22 males, 26 females) under fasting conditions using a randomized, single-dose, two-treatment, two-sequence, four-period, replicate design.

Table 4 is a summary of the bioavailability comparison data under fasting conditions, test/reference ratio, shown in Figure 5, wherein the test product was prepared according to Example 3 and the CARDIZEM LA product is the reference product in a two way crossover biostudy with n = 41.

Test Mean Ref Mean Test/Ref Ratio Cmax(ng/ml) 181.38 190.57 95.18 AUC1,,Kng=hr/ml) 3761.38 3711.10 101.35 Tmax(hl) 11.93 11.93 100.02 Test G. Mean Ref. G. Mean G Mean Ratio Cmax(ng/ml) 167.24 169.68 98.56 AUC;,,Kng=hr/ml) 3493.65 3409.92 102.46 Table 6 is a summary of the bioavailability comparison data under non-fasting conditions, test/reference ratio, as shown in Figure 6 wherein the test product was prepared according to Example 3 and CARDIZEM LA product is the reference product in a two way crossover biostudy with n = 38.

Test Mean Ref Mean Test/Ref Ratio Cmax(ng/ml) 302.46 257.50 117.46 AUC171t(ng=hr/ml) 4691.30 4629.85 101:63 Tmax(hr) 9.60 10.84 88.50 Test G. Mean Ref. G. Mean G Mean Ratio Cmax(ng/ml) 289.96 243.17 119.24 AUC1ni{ng=hr/ml) 4487.96 4372.85 102.63 While certain preferred and alternative embodiments of the invention have been set forth for purposes of disclosing the invention, modifications to the disclosed embodiments may occur to those who are skilled in the art. Accordingly, the appended claims are intended to cover all embodiments of the invention and modifications thereof which do not depart from the spirit and scope of the invention.

Claims (16)

1. A controlled release oral pharmaceutical dosage formulation consisting of a mixture of:

A) a heterogeneous population of extended release diltiazem pellets wherein the extended release diltiazem pellets comprise:

i) a core comprising diltiazem and ii) an extended release coating applied to the core wherein the extended release coating controls the release of the drug from the core;

B) a polymer that can retain a fraction of imbibed fluid and exhibit a 2 to 50 fold volume increase, and C) convention processing excipients selected from fillers, lubricants, glidants, pigments, polishing agents and combinations of the foregoing wherein the combination of the extended release coating on the extended release pellets and polymer controls the release of the diltiazem from the dosage formulation so the time of maximum blood plasma diltiazem concentration occurs about 10 to about 15 hours after administration of the dosage formulation and the dosage formulation is free of flux enhancers.
2. The dosage formulation as defined in claim 1 wherein the time of maximum blood plasma diltiazem concentration occurs between 10 and 13 hours after administration of the dosage formulation.
3. The dosage formulation as described in claim 1 wherein the polymer is of plant, animal or synthetic origin.
4. The dosage formulation as described in claim 1 wherein the dosage formulation is a tablet.
5. The dosage formulation as described in claim 1 wherein the heterogeneous population of extended release pellets comprises 35-85% of the formulation and the polymer will comprise 1-40% of the formulation.
6. The dosage formulation as described in claim 5 wherein the heterogeneous population of extended release pellets comprises 45-75% of the formulation and the polymer will comprise 5-25% of the formulation.
7. The dosage formulation of claim 1 wherein the heterogeneous population of extended release pellets prior to mixing with the polymer and conventional processing excipients exhibits the following dissolution profile when tested in a USP Type 2 apparatus at 75 rpms, and 900 ml of simulated intestinal fluid (pH 7.5 phosphate buffer) at 37°C:

0-30% of the diltiazem is released after 2 hours;
10-50% of the diltiazem is released after 4 hours;
30-85% of the diltiazem is released after 8 hours;

45-90% of the diltiazem is released after 12 hours;

not less than 60% of the diltiazem is released after 16 hours; and not less than 70% of the diltiazem released after 20 hours and the dosage formulation exhibits the following dissolution profile tested in a USP Type 1 apparatus at 100 rpms, and 900 ml of simulated intestinal fluid (pH 7.5 phosphate buffer) at 37°C:

0-30% of the diltiazem is released after 1 hour;
0-40% of the diltiazem is released after 4 hours;

not less than 30% of the diltiazem is released after 12 hours; and not less than 60% of the diltiazem is released after 24 hours.
8. The dosage formulation of claim 1 wherein the heterogeneous population of extended release pellets prior to mixing with the polymer and conventional processing excipients exhibits the following dissolution profile when tested in a USP Type 2 apparatus at 75 rpms, and 900 ml of simulated intestinal fluid (pH 7.5 phosphate buffer) at 37°C:

5-25% of the diltiazem is released after 2 hours;
15-45% of the diltiazem is released after 4 hours;
45-80% of the diltiazem is released after 8 hours;
60-85% of the diltiazem is released after 12 hours;

not less than 70% of the diltiazem is released after 16 hours; and not less than 75% of the diltiazem released after 20 hours, and the dosage formulation exhibits the following dissolution profile tested in a USP Type 1 apparatus at 100 rpms, and 900 ml of simulated intestinal fluid (pH 7.5 phosphate buffer) at 37°C:

0-20% of the diltiazem is released after 1 hour;
0-30% of the diltiazem is released after 4 hours;

not less than 40% of the diltiazem is released after 12 hours; and not less than 70% of the diltiazem is released after 24 hours.
9. A controlled release oral pharmaceutical tablet consisting of a mixture of:

A) a heterogeneous population of extended release diltiazem pellets wherein the extended release diltiazem pellets comprise:

i) a core comprising diltiazem and ii) an extended release coating applied to the core wherein the extended release coating controls the release of the drug from the core so that the heterogeneous population of pellets exhibits the following dissolution profile when tested in a USP Type 2 apparatus at 75 rpms, and 900 ml of simulated intestinal fluid (pH 7.5 phosphate buffer) at 37°C:

0-30% of the diltiazem is released after 2 hours;
10-50% of the diltiazem is released after 4 hours;
30-85% of the diltiazem is released after 8 hours;
45-90% of the diltiazem is released after 12 hours;

not less than 60% of the diltiazem is released after 16 hours; and not less than 70% of the diltiazem released after 20 hours;

B) a gel-forming polymer that can retain a fraction of imbibed fluid and exhibit a 2 to 50 fold volume increase;

C) conventional processing excipients selected from filler, lubricants, glidants, pigments, polishing agents and combinations of the foregoing wherein the combination of the extended release coating on the extended release pellets and gel-forming material controls the release of the diltiazem from the tablet so the time of maximum blood plasma diltiazem concentration occurs about 10 to 15 hours after administration of the tablet, the tablet is free of flux enhancers, and the tablet exhibits the following dissolution profile when tested in a USP Type 1 apparatus at 100 rpms, and 900 ml of simulated intestinal fluid (pH 7.5 phosphate buffer) at 37°C:

0-30% of the diltiazem is released after 1 hour;
0-40% of the diltiazem is released after 4 hours;

not less than 30% of the diltiazem is released after 12 hours; and not less than 60% of the diltiazem is released after 24 hours.
10. The tablet as defined in claim 9 wherein the time of maximum blood plasma diltiazem concentration occurs between 10 and 13 hours after administration of the tablet.
11. The tablet as described in claim 9 wherein the gel-forming polymer is of plant, animal or synthetic origin.
12. The tablet as described in claim 9 wherein the heterogeneous population of extended release pellets comprises 35-85% of the tablet and the gel-forming polymer will comprise 1-40% of the tablet.
13. The tablet as described in claim 12 wherein the heterogeneous population of extended release pellets comprises 45-75% of the tablet and the gel-forming polymer will comprise 5-25% of the tablet.
14. The tablet of claim 9 wherein the heterogeneous population of extended release pellets prior to mixing with the gel-forming polymer exhibits the following dissolution profile when tested in a USP Type 2 apparatus at 75 rpms, and 900 ml of simulated intestinal fluid (pH 7.5 phosphate buffer) at 37°C:

5-25% of the diltiazem is released after 2 hours;
15-45% of the diltiazem is released after 4 hours;
45-80% of the diltiazem is released after 8 hours;
60-85% of the diltiazem is released after 12 hours;

not less than 70% of the diltiazem is released after 16 hours; and not less than 75% of the diltiazem released after 20 hours, and the tablet exhibits the following dissolution profile tested in a USP Type 1 apparatus at 100 rpms, and 900 ml of simulated intestinal fluid (pH 7.5 phosphate buffer) at 37°C:
0-20% of the diltiazem is released after 1 hour;

0-30% of the diltiazem is released after 4 hours;

not less than 40% of the diltiazem is released after 12 hours; and not less than 70% of the diltiazem is released after 24 hours.
15. The tablet as described in claim 4 that is coated with a water soluble seal coat, aesthetic coat, color coat or polishing coat.
16. The tablet as described in claim 9 that is coated with a water soluble seal coat, aesthetic coat, color coat or polishing coat.
CA2617351A 2005-08-11 2006-08-10 Diltiazem controlled release formulation and method of manufacture Expired - Fee Related CA2617351C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/201,747 US8778395B2 (en) 2005-08-11 2005-08-11 Diltiazem controlled release formulation and method of manufacture
US11/201,747 2005-08-11
PCT/US2006/031052 WO2007021754A2 (en) 2005-08-11 2006-08-10 Diltiazem controlled release formulation and method of manufacture

Publications (2)

Publication Number Publication Date
CA2617351A1 CA2617351A1 (en) 2007-02-22
CA2617351C true CA2617351C (en) 2011-05-03

Family

ID=37742806

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2617351A Expired - Fee Related CA2617351C (en) 2005-08-11 2006-08-10 Diltiazem controlled release formulation and method of manufacture

Country Status (4)

Country Link
US (1) US8778395B2 (en)
EP (1) EP1912631A4 (en)
CA (1) CA2617351C (en)
WO (1) WO2007021754A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515765A (en) * 2009-01-22 2012-07-12 アボット ヘルスケア プライベート リミテッド Pharmaceutical composition for time treatment
CN114129541B (en) * 2022-01-05 2023-05-30 南通联亚药业股份有限公司 Diltiazem hydrochloride sustained-release capsule and preparation method and application thereof

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US606339A (en) * 1898-06-28 Railroad-crossing
US2798053A (en) 1952-09-03 1957-07-02 Goodrich Co B F Carboxylic polymers
US2909462A (en) 1955-12-08 1959-10-20 Bristol Myers Co Acrylic acid polymer laxative compositions
US4207893A (en) 1977-08-29 1980-06-17 Alza Corporation Device using hydrophilic polymer for delivering drug to biological environment
CA1146866A (en) 1979-07-05 1983-05-24 Yamanouchi Pharmaceutical Co. Ltd. Process for the production of sustained release pharmaceutical composition of solid medical material
US4327725A (en) 1980-11-25 1982-05-04 Alza Corporation Osmotic device with hydrogel driving member
US4434153A (en) 1982-03-22 1984-02-28 Alza Corporation Drug delivery system comprising a reservoir containing a plurality of tiny pills
US5082668A (en) 1983-05-11 1992-01-21 Alza Corporation Controlled-release system with constant pushing source
US4894240A (en) 1983-12-22 1990-01-16 Elan Corporation Plc Controlled absorption diltiazem formulation for once-daily administration
US5364620A (en) * 1983-12-22 1994-11-15 Elan Corporation, Plc Controlled absorption diltiazem formulation for once daily administration
US5002776A (en) 1983-12-22 1991-03-26 Elan Corporation, Plc Controlled absorption diltiazem formulations
IT1188212B (en) 1985-12-20 1988-01-07 Paolo Colombo SYSTEM FOR THE RELEASE SPEED OF ACTIVE SUBSTANCES
DE3868077D1 (en) 1987-01-14 1992-03-12 Ciba Geigy Ag THERAPEUTIC SYSTEM FOR HEAVY-SOLUBLE ACTIVE SUBSTANCES.
US4851232A (en) * 1987-02-13 1989-07-25 Alza Corporation Drug delivery system with means for obtaining desirable in vivo release rate pattern
US4940465A (en) 1987-05-27 1990-07-10 Felix Theeuwes Dispenser comprising displaceable matrix with solid state properties
US4892778A (en) 1987-05-27 1990-01-09 Alza Corporation Juxtaposed laminated arrangement
US4876093A (en) 1987-07-02 1989-10-24 Alza Corporation Dispenser with dispersing member for delivering beneficial agent
US4915949A (en) 1987-07-13 1990-04-10 Alza Corporation Dispenser with movable matrix comprising a plurality of tiny pills
US4824675A (en) 1987-07-13 1989-04-25 Alza Corporation Dispenser with movable matrix comprising a plurality of tiny pills
EP0332392B1 (en) 1988-03-09 1994-12-07 Showa Shell Sekiyu Kabushiki Kaisha Dioxane liquid crystal compounds
US5472710A (en) * 1988-04-16 1995-12-05 Schwarz Pharma Ag Pharmaceutical preparation to be administered orally with controlled release of active substance and method for its manufacture
US5344657A (en) * 1988-04-27 1994-09-06 Elf Sanofi Microbeads of diltiazem, a process for their manufacture and a substained-release pharmaceutical composition containing them
US5007790A (en) 1989-04-11 1991-04-16 Depomed Systems, Inc. Sustained-release oral drug dosage form
US5417985A (en) * 1989-07-20 1995-05-23 Farmalyoc Solid and porous single dosage form comprising particles in the form of beads and its preparation
US5035897A (en) 1989-09-05 1991-07-30 Alza Corporation Dosage form for delivering soluble or insoluble drugs
US5120548A (en) * 1989-11-07 1992-06-09 Merck & Co., Inc. Swelling modulated polymeric drug delivery device
IT1237904B (en) * 1989-12-14 1993-06-18 Ubaldo Conte CONTROLLED SPEED RELEASE TABS OF ACTIVE SUBSTANCES
IE82916B1 (en) * 1990-11-02 2003-06-11 Elan Corp Plc Formulations and their use in the treatment of neurological diseases
US5075114A (en) 1990-05-23 1991-12-24 Mcneil-Ppc, Inc. Taste masking and sustained release coatings for pharmaceuticals
US5156850A (en) * 1990-08-31 1992-10-20 Alza Corporation Dosage form for time-varying patterns of drug delivery
US5232705A (en) * 1990-08-31 1993-08-03 Alza Corporation Dosage form for time-varying patterns of drug delivery
IT1243390B (en) * 1990-11-22 1994-06-10 Vectorpharma Int PHARMACEUTICAL COMPOSITIONS IN THE FORM OF PARTICLES SUITABLE FOR THE CONTROLLED RELEASE OF PHARMACOLOGICALLY ACTIVE SUBSTANCES AND PROCEDURE FOR THEIR PREPARATION.
US5273758A (en) * 1991-03-18 1993-12-28 Sandoz Ltd. Directly compressible polyethylene oxide vehicle for preparing therapeutic dosage forms
US5286497A (en) * 1991-05-20 1994-02-15 Carderm Capital L.P. Diltiazem formulation
US5288505A (en) * 1991-06-26 1994-02-22 Galephar P.R., Inc., Ltd. Extended release form of diltiazem
US5252338A (en) * 1991-06-27 1993-10-12 Alza Corporation Therapy delayed
US5190765A (en) * 1991-06-27 1993-03-02 Alza Corporation Therapy delayed
US5545423A (en) * 1991-11-25 1996-08-13 Vivorx, Inc. Cytoprotective, biocompatible, retrievable macrocapsule containment systems for biologically active materials
DE4140192C2 (en) * 1991-12-05 1996-02-29 Alfatec Pharma Gmbh Sol-controlled gelatin-based thermocolloid matrix for peroral sustained release forms
US5254349A (en) * 1991-12-06 1993-10-19 Alza Corporation Process for lessening irritation caused by drug
CA2132012C (en) 1992-03-25 2003-04-22 John W. Shell Alkyl-substituted cellulose-based sustained-release oral drug dosage forms
US5260068A (en) * 1992-05-04 1993-11-09 Anda Sr Pharmaceuticals Inc. Multiparticulate pulsatile drug delivery system
US5886026A (en) * 1993-07-19 1999-03-23 Angiotech Pharmaceuticals Inc. Anti-angiogenic compositions and methods of use
US5500227A (en) * 1993-11-23 1996-03-19 Euro-Celtique, S.A. Immediate release tablet cores of insoluble drugs having sustained-release coating
US5419917A (en) * 1994-02-14 1995-05-30 Andrx Pharmaceuticals, Inc. Controlled release hydrogel formulation
US5962477A (en) * 1994-04-12 1999-10-05 Adolor Corporation Screening methods for cytokine inhibitors
EP0759745A4 (en) 1994-05-13 1997-11-19 Smithkline Beecham Corp Method and composition for increasing calcium uptake
US5582838A (en) * 1994-12-22 1996-12-10 Merck & Co., Inc. Controlled release drug suspension delivery device
US5834024A (en) * 1995-01-05 1998-11-10 Fh Faulding & Co. Limited Controlled absorption diltiazem pharmaceutical formulation
US5676972A (en) * 1995-02-16 1997-10-14 The University Of Akron Time-release delivery matrix composition and corresponding controlled-release compositions
US5945125A (en) * 1995-02-28 1999-08-31 Temple University Controlled release tablet
US5567441A (en) * 1995-03-24 1996-10-22 Andrx Pharmaceuticals Inc. Diltiazem controlled release formulation
US6117453A (en) * 1995-04-14 2000-09-12 Pharma Pass Solid compositions containing polyethylene oxide and an active ingredient
WO1997004752A1 (en) * 1995-07-26 1997-02-13 Duramed Pharmaceuticals, Inc. Pharmaceutical compositions of conjugated estrogens and methods for their use
FR2742660B1 (en) 1995-12-22 1998-04-03 Ethypharm Lab Prod Ethiques NOVEL FORMS OF EXTENDED RELEASE MICROGRANULES CONTAINING DILTIAZEM AS ACTIVE INGREDIENT
US5840332A (en) * 1996-01-18 1998-11-24 Perio Products Ltd. Gastrointestinal drug delivery system
US5766623A (en) * 1996-03-25 1998-06-16 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Compactable self-sealing drug delivery agents
US6096339A (en) 1997-04-04 2000-08-01 Alza Corporation Dosage form, process of making and using same
US6048547A (en) * 1996-04-15 2000-04-11 Seth; Pawan Process for manufacturing solid compositions containing polyethylene oxide and an active ingredient
US5830503A (en) * 1996-06-21 1998-11-03 Andrx Pharmaceuticals, Inc. Enteric coated diltiazem once-a-day formulation
US5972389A (en) 1996-09-19 1999-10-26 Depomed, Inc. Gastric-retentive, oral drug dosage forms for the controlled-release of sparingly soluble drugs and insoluble matter
US5922352A (en) * 1997-01-31 1999-07-13 Andrx Pharmaceuticals, Inc. Once daily calcium channel blocker tablet having a delayed release core
US6046177A (en) * 1997-05-05 2000-04-04 Cydex, Inc. Sulfoalkyl ether cyclodextrin based controlled release solid pharmaceutical formulations
US5840329A (en) * 1997-05-15 1998-11-24 Bioadvances Llc Pulsatile drug delivery system
ATE302597T1 (en) * 1997-06-06 2005-09-15 Depomed Inc STOMACH-RESIDENT ORAL DOSAGE FORMS OF WATER-SOLUBLE DRUGS WITH CONTROLLED RELEASE
US6635280B2 (en) * 1997-06-06 2003-10-21 Depomed, Inc. Extending the duration of drug release within the stomach during the fed mode
WO1999007342A1 (en) * 1997-08-11 1999-02-18 Alza Corporation Prolonged release active agent dosage form adapted for gastric retention
US6342250B1 (en) * 1997-09-25 2002-01-29 Gel-Del Technologies, Inc. Drug delivery devices comprising biodegradable protein for the controlled release of pharmacologically active agents and method of making the drug delivery devices
US6337091B1 (en) * 1997-10-27 2002-01-08 Temple University - Of The Commonwealth System Of Higher Education Matrix for controlled delivery of highly soluble pharmaceutical agents
US6524620B2 (en) * 1998-07-20 2003-02-25 Andrx Pharmaceuticals, Inc. Diltiazem controlled release formulation and method of manufacture
US6531152B1 (en) * 1998-09-30 2003-03-11 Dexcel Pharma Technologies Ltd. Immediate release gastrointestinal drug delivery system
NZ511442A (en) * 1998-11-02 2003-02-28 Elan Corp Plc Multiparticulate modified release composition for multiple dosing of ADD patients with methylphenidate HCl
US6270805B1 (en) * 1998-11-06 2001-08-07 Andrx Pharmaceuticals, Inc. Two pellet controlled release formulation for water soluble drugs which contains an alkaline metal stearate
US6632451B2 (en) * 1999-06-04 2003-10-14 Dexcel Pharma Technologies Ltd. Delayed total release two pulse gastrointestinal drug delivery system
GB9921933D0 (en) * 1999-09-17 1999-11-17 Univ Gent Solid shaped articles comprising biologically active substances and a method for their production
US7108866B1 (en) 1999-12-10 2006-09-19 Biovall Laboratories International Srl Chronotherapeutic diltiazem formulations and the administration thereof
US6753011B2 (en) * 2000-01-14 2004-06-22 Osmotica Corp Combined diffusion/osmotic pumping drug delivery system
US6761895B2 (en) * 2000-04-17 2004-07-13 Yamanouchi Pharmaceutical Co., Ltd. Drug delivery system for averting pharmacokinetic drug interaction and method thereof
US6419954B1 (en) * 2000-05-19 2002-07-16 Yamanouchi Pharmaceutical Co., Ltd. Tablets and methods for modified release of hydrophilic and other active agents
US6368628B1 (en) * 2000-05-26 2002-04-09 Pharma Pass Llc Sustained release pharmaceutical composition free of food effect
US6488962B1 (en) * 2000-06-20 2002-12-03 Depomed, Inc. Tablet shapes to enhance gastric retention of swellable controlled-release oral dosage forms
US6620439B1 (en) * 2000-10-03 2003-09-16 Atul M. Mehta Chrono delivery formulations and method of use thereof
US6984402B2 (en) 2000-10-03 2006-01-10 Elite Laboratories, Inc. Chrono delivery formulations and method of treating atrial fibrillation
US6287599B1 (en) * 2000-12-20 2001-09-11 Shire Laboratories, Inc. Sustained release pharmaceutical dosage forms with minimized pH dependent dissolution profiles
WO2003017981A1 (en) * 2001-08-29 2003-03-06 Ranbaxy Laboratories Limited Controlled release formulation of clarithromycin or tinidazol
MXPA04008164A (en) * 2002-02-21 2005-05-17 Biovail Lab Inc Controlled release dosage forms.
AU2003236947A1 (en) * 2002-06-07 2003-12-22 Ranbaxy Laboratories Limited Modified release, multiple unit drug delivery systems
CA2496837A1 (en) * 2002-09-09 2004-03-18 Biovail Laboratories Inc. Chronotherapeutic diltiazem formulations and the administration thereof
US20040132826A1 (en) * 2002-10-25 2004-07-08 Collegium Pharmaceutical, Inc. Modified release compositions of milnacipran
EP1595535A2 (en) * 2002-12-23 2005-11-16 Osmotica Costa Rica Sociedad Anonima Delivery device containing venlafaxine and memantine and use method thereof
WO2005016317A1 (en) 2003-08-19 2005-02-24 Themis Laboratories Private Limited Process for manufacture of extended release pellets containing diltiazem hci

Also Published As

Publication number Publication date
EP1912631A4 (en) 2010-11-10
CA2617351A1 (en) 2007-02-22
WO2007021754A2 (en) 2007-02-22
WO2007021754A3 (en) 2007-08-09
US20070036856A1 (en) 2007-02-15
US8778395B2 (en) 2014-07-15
EP1912631A2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
US11007156B2 (en) Prolonged release pharmaceutical composition containing 3-(3-dimethylamino-1-ethyl-2-methyl-propyl)phenol
CA2338070C (en) Diltiazem controlled release formulation and method of manufacture
US5902632A (en) Method of preparation of controlled release nifedipine formulations
US7988993B2 (en) Oral controlled release dosage form
AU2019284060A1 (en) Muco-adhesive, controlled release formulations of levodopa and/or esters of levodopa and uses thereof
KR20040044992A (en) Dosage form for treatment of diabetes mellitus
JPH061716A (en) Medical prescription having long-term releasability of active ingredient
CA2555295C (en) Extended release coated mini-tablets of venlafaxine hydrochloride
AU2013302359A1 (en) Pharmaceutical compositions of Memantine
US20030099710A1 (en) Granule modulating hydrogel system
US6238703B1 (en) Controlled release oral dosage form of ketoprofen
CZ298851B6 (en) Controlled-release tablet for oral administration of active substances
US20090220593A1 (en) Extended release dosage forms of quetiapine
CA2617351C (en) Diltiazem controlled release formulation and method of manufacture
JP2003267889A (en) Sustainable pharmaceutical preparation
WO2003013480A1 (en) Improved enteric formulation of fluoxetin
CA2739611C (en) Pharmaceutical containing 3-(3-dimethylamino-1-ethyl-2-methyl-propyl)phenol and providing delayed release of the active ingredient
US20040228918A1 (en) Granule modulating hydrogel system
TW201609196A (en) Controlled release formulations and preparation method thereof
WO2006136927A1 (en) Extended release formulations comprising venlafaxine
NZ718686B2 (en) Muco-adhesive, controlled release formulations of levodopa and/or esters of levodopa and uses thereof

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20220301

MKLA Lapsed

Effective date: 20200831