EP0150184A1 - Polypeptide biodegradable et son utilisation pour le relargage progressif de medicaments - Google Patents

Polypeptide biodegradable et son utilisation pour le relargage progressif de medicaments

Info

Publication number
EP0150184A1
EP0150184A1 EP84901314A EP84901314A EP0150184A1 EP 0150184 A1 EP0150184 A1 EP 0150184A1 EP 84901314 A EP84901314 A EP 84901314A EP 84901314 A EP84901314 A EP 84901314A EP 0150184 A1 EP0150184 A1 EP 0150184A1
Authority
EP
European Patent Office
Prior art keywords
copolymer
polymer
acid
chosen
polypeptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP84901314A
Other languages
German (de)
English (en)
Inventor
Daniel Bichon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Battelle Memorial Institute Inc
Original Assignee
Battelle Memorial Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Battelle Memorial Institute Inc filed Critical Battelle Memorial Institute Inc
Publication of EP0150184A1 publication Critical patent/EP0150184A1/fr
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7007Drug-containing films, membranes or sheets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/10Alpha-amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1092Polysuccinimides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • A61L2300/604Biodegradation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S930/00Peptide or protein sequence
    • Y10S930/01Peptide or protein sequence
    • Y10S930/29Polyamino acid or polypeptide with an uninterrupted series of peptide repeating units

Definitions

  • the subject of the present invention is a novel biodegradable esterified polypeptide in which it is possible to incorporate medicaments, these being then gradually released progressively as the biochemical degradation of the polymer takes place.
  • non-toxic biodegradable polymers have been known which can serve as a reservoir of drugs and which allow the controlled gradual release of these into the body during the degradation of the carrier polymer.
  • General information on such products can be found in the book: "Fundamental Aspects of Biocompatibility" by D.F. WILLIAMS, CRC Press (1981). See also USP patent 4,093,709.
  • polyamino acids polyamino acids
  • these polypeptides are biocompatible and their degradation products (amino acids) are known to be absorbable by the body.
  • SIDMAN et al J. Mentor. Sci (1980), 7 (3), 277-91 have disclosed a copolymer of glutamic acid and ethyl ⁇ -glutamate, the degradation rate of which is a function of the composition of the copolymer (molar proportions of the esterified segments relative to the non-esterified segments) and which makes it possible to store numerous medicinal products, in particular steroids, peptides, anti-malaria, anti-cancer products and others.
  • Such polymers can be used in the form of rods containing, in a mixture, the desired medicament or in the form of capsules containing the medicament if the latter is not miscible with the polymer.
  • Thermoformability The synthetic polypeptides currently known are in fact generally not miscible with the usual biocompatible plasticizers (polyalkylene glycols) and, therefore, they are not thermoplastic.
  • R 1 and R 2 are alkyl groups or hydrogen with R a substituted or unsubstituted aliphatic or aromatic residue, or else R 2 is hydrogen or an alkyl and R 1 and R linked to one another are substituted or unsubstituted methylene or methenyl groups, n is 1 or 2 and x is such that the molecular mass is at least 5000 D.
  • the polymer of the invention is a polyaspartate or polyglutamate esterified by an acyloxymethanol derivative (HO-CR 1 R 2 -OOCR) in which R is either any organic residue or is linked to R 1 so as to form a cycle.
  • R acyloxymethanol derivative
  • any we mean that the nature and structure of the group R is not critical and that, for the moment, we have not encountered any case where, R being part of common compounds with RCOO- function, the corresponding component of the invention cannot be obtained. It is preferred, however, to use compounds in which R is a substituted or unsubstituted aliphatic or aromatic group, the substituents being chosen from organic functions biocompatible.
  • R groups Among the preferred R groups, mention may be made of methyl, ethyl, precyl, isopropyl, isobutyl, tert-butyl, phenyl, benzyl and other similar groups. Other compounds are naturally possible, but it is obvious that during the limited time available to the inventor he could not consider them all.
  • R and R 1 are linked together so as to produce a carbon-carbon bond, saturated or unsaturated, these carbon atoms may or may not be substituted by aliphatic or aromatic residues.
  • the polymer of the invention can also be in the form of a copolymer with other polyamino acids. In this case, there will be a copolymer of formula:
  • R is an amino acid esterified residue or not any
  • R ' is identical to the group - (CH 2 ) -COO-CR 1 R 2 -OOC-R, the n being however different (one of them being worth 1 and the other 2), one will have an esterified copolymer of glutamic acid and aspartic.
  • R ′ it is preferable for R ′ to have different groups, such as, for example methyl (alanine), iscprcpyle (valine), isobutyl (leucine and isoleucine), benzyl (phenylalaline), etc.
  • R 'can also denote a residue of glutamic or aspartic acid which is not esterified, or partially esterified by any alcohol, for example MeOH or EtOH, that is to say, for example - (CH 2 ) - n -COOH or - (CH 2 ) n -COOMe.
  • amino acids of the L or D series can also have, independently, amino acids of the L or D series.
  • the amino acids of the L (or natural) series is the most interesting because the polypeptides containing them are degradable by enzymes (proteases) of the human body, so that the polypeptides made up of D units are not. This difference can be exploited thanks to copolymers comprising amino acids D and L, this in order to have polymers whose degradation rate is modified.
  • the molar proportion, in copolymer II, of the other free or partially esterified polyamino acid also makes it possible, to a considerable extent, to regulate the rate of biodegradation of the copolymer as a function of the agents present in the organism at the site of destination of the mixture of copolymer and of the drug to be administered, (that is to say in the organ where the drug must act).
  • the copolymer is a copolymer of polyglutamate I and of leucine
  • the relative molar preparation of the two constituents will be chosen as a function of the relative rate of degradation, at the place considered, of the polyglutamate and of the polyleucine.
  • the z / y ratio can vary from 1 to 30, but these limits can be exceeded if necessary.
  • the group R ′ does not denote a group of unique nature in the chain of the copolymer, that is to say, for example, when one of the R ′ denotes an amino acid residue free and that another R 'denotes an esterified amino acid residue, it will be possible, for more convenience, to designate the variants of R' by the signs R '', R "', etc.
  • the general formula of such a copolymer can then be diagrammed as follows:
  • R can also influence the rate of degradation of the polymer I.
  • R is a bulky or hindered group (for example tert-butyl)
  • the degradation will be slower than with a methyl or ethyl group .
  • the polymers of the invention can comprise elements of configuration L or D or racemic mixtures or, again, polymers where one of the configurations dominates.
  • the biochemical properties of these various assemblies are, of course, not identical, the polymers in which the natural forms (L) dominate being more accessible to enzymatic degradation. We can therefore control its degradability by proportioning the relative proportions of one and the other form in the copolymer.
  • Polymers I and copolymer II are insoluble in water and generally soluble in one or more of the usual solvents such as acetone, methyl ethyl ketone (MEK), tetrahydrofuran (THF), dioxane, ethyl acetate , monoglyme, diglyme and others, which allows their easy transformation into beads, rods, fibers, filaments, microcapsules, films, etc.
  • Polymers I and II depending on their structure can be insoluble or soluble in chlorinated solvents, for example chloroform. In certain cases of insolubility in chloroform, this can be remedied if a little acetone is added to such a solvent.
  • polymer I is very often perfectly compatible with polyalkylene glycols (polyethylene glycol and polypropylene glycol), which makes it possible to use these polyether glycol as plasticizers for polymer I and thus to provide a homogeneous mixture of low Fusion point.
  • polyalkylene glycols polyethylene glycol and polypropylene glycol
  • thermolabile drugs One can easily incorporate a whole range of thermolabile drugs into such a mixture (melting at temperatures of the order of 40 to 60 ° C) and obtain granules or microcapsules.
  • highly hydrophilic polyalkylene glycols makes it possible to increase the susceptibility of the polymer and of the copolymer to aqueous biological liquids and facilitate their enzymatic degradation in situ.
  • Reaction (2) is consecutive to reaction (1) and, therefore, the biodegradation of the polymer will be all the faster the faster the hydrolysis rate of the lactal or acyloxyalkyl ester.
  • the hydrolysis mechanism of this type of ester is known per se and was highlighted during the study of ampicillin esters (for example pivampicillin), on this subject see the following reference: "Design of biopharmaceutical Properties through Prodrugs and Analogs ", B. Roche, editor, American Pharmaceutical Association (ISBN O-917330-16-1), pages 212 and 354 (1977).
  • the products resulting from the reaction when R and R 1 are linked to each other are also very advantageous because of their negligible toxicity.
  • the association R-R1 corresponds to the ethylene or 1,2-phenylene groups, the degradation products will be, respectively, 3-formyl-propionic and O-fo ⁇ ryl-benzoic acids slowly eliminated by the body without side reactions .
  • Polymer I can be prepared by direct esterification of a salt of the corresponding polyamino acid with an acyloxymethyl halide (X-CR 1 R 2 -COO-R (III)) or X can be chlorine, bromine or iodine .
  • the polyamino acid salt is preferably a tertiary amine salt (for example tributylamine or triethylamine). the such technique is known per se from WV DACHNE; J. Med. chem. 13, 607 - 12, 1971).
  • N-carboxyanhydride N-carboxyanhydride
  • the starting product which will be esterified with the compound XCR 1 R 2 -OCOR will be a copolymer of H 2 N-CH [(CH 2 ) n-COOH] - COOH and ester NH 2 -CH [(CH 2 ) n-COO Alk] -COOH.
  • Polymer I and copolymer II can be used as a drug reservoir in various ways.
  • the present polymers I and copolymers II can be used to make microcapsules containing a drug.
  • microcapsules comprise a polymeric membrane and contain an aqueous or oily solution in which the drug is in suspension or in solution.
  • Microspheres can also be made, that is to say solid particles or beads containing the drug in the dispersed state or in the form of a solid solution in the polymer matrix.
  • micro sponges microporous products
  • solubility of the present polymers in numerous solvents, miscible with water or not is an advantage for their application according to the techniques described in these references. It is also possible to prepare threads made of these polymers by extruding a solution of these in a die and precipitating the thread either by evaporation or by a bath of non-solvent, according to the usual spinning techniques. Filaments prepared in this way can be knitted, knotted or woven to form sutures, ligatures or tabular structures which can serve as artificial arteries, veins, conduits or internal organs temporarily functioning.
  • the polymers of the invention can also be used, either directly or as a mixture with a plasticizer, for the manufacture of films or surgical prostheses used, for example, in the consolidation of fractured bones, such as staples, needles, screws, reinforcement plates, buffers etc ..., these materials can be produced by casting or molding a solution, thermoforming or by machining solid polymer blocks. As such prostheses are absorbable, they are gradually eliminated in the body and it is then no longer necessary to provide, as is currently done, a new operation to remove the reinforcement and consolidation material.
  • composition of the polymer or copolymer used is to be adjusted, depending on the degradation rates and the absorption characteristics in vivo, depending on the nature of the prosthesis envisaged.
  • Example 1 illustrates the invention.
  • TFA trifluoroacetic acid
  • a molecular weight analysis was carried out by GPC (gel permeation chromatography) in DMF on a DUPONT ZORBAX PSM bimodal column (polystyrene calibration); an average molecular weight of Mn (number average molecular weight) of 226,000 was measured; and a dispersion (Mw / Mn) of 1.75.
  • This polymer is insoluble in water, CH 2 Cl 2 , CHCl 3 and ether; it swells without dissolving in methanol and ethanol; it dissolves easily in the following solvents: acetone, methyl ethyl ketone; THF, AcOEt DMF, TFA, dichloroacetic acid (DCA).
  • Thin polymer films can be prepared by spreading layers of these solutions on substrates and allowing them to evaporate.
  • Copolymer of partially methylated glutamic acid and pivaloyloxyethyl glutamate Copolymer of partially methylated glutamic acid and pivaloyloxyethyl glutamate.
  • This product very soluble in CHCI 3 , is insoluble in water, alcohol, polyethylene glycol and pure acetone. It is soluble in a mixture of acetone -CHCL 3 .
  • a dry film of a few ⁇ m of this polymer was prepared by means of a chloroform solution spread on a glass plate and evaporated. This film was placed in a container containing a 0.1N buffer solution at pH 9.5 and a slow degradation of the polymer was observed, which was observed, day after day, by increasing the UV absorption of the solution ( 280 nm) due to the presence of phthalide which gradually forms in the buffer solution.
  • microspheres dissolve in an isotermic medium (pH 7.5) and, over a prolonged period release the drug they contain, the rate of "release” varying according to their average size.
  • pH 7.5 isotermic medium
  • the action of the drug extends far beyond that of a conventional medication based on indomethacin.
  • TFA trifluoroacetic acid
  • the purity of the acid thus obtained was checked by NMR analysis in TFA (absence of the methyl ester band -O-CH 3 at 4.5 ppm.)
  • the polyacid was dissolved in DMF in an amount of 5% by weight and, to 50 ml of this solution, 4 ml of water and 4.04 g (0.04 mole) of triethylamine were added.
  • This polymer is insoluble in water, CH 2 Cl 2 , CHCI 3 and ether; it swells without dissolving in methanol and ethanol; it dissolves easily in the following solvents: acetone, methyl ethyl ketone; THF, AcOEt / DMF, TFA, dichloroacetic acid (DCA). Thin films of polymer can be prepared by spreading on substrates layers of these solutions and allowing them to evaporate. The IR spectrum also confirms the proposed structure (strong band at 1740 cm -1 ).
  • a thin film of the polymer obtained according to Example 6 was prepared by spreading a layer of 10% solution in acetone and allowing it to dry for a few hours at ordinary temperature in air.
  • Example 8 preparation of a pivaloyloxymethylglutamic ester and leucine copolymer.
  • Example 6 The procedure was as in Example 6, but starting from an 85/15 copolymer of polyglutamic acid and leucine and an 85/15 copolymer of pivaloyloxymethyl glutamate / leucine was obtained.
  • the NMR spectrum of the polymer in solution in the TFA shows that 100% of the lateral carboxylic groups of polyglutamic acid are esterified with chloromethylpivalate.
  • the polymer is also soluble in acetone, MEK, DMF, THF. It swells in alcohols, without dissolving.
  • Example 9 preparation of an isobutyloxymethylglutamate ester polymer. The synthesis was carried out starting from polyglutamic acid prepared as described in Example 6; this polymer was dissolved in DMF previously dried over a molecular sieve so as to obtain a 3.2% solution. To 20 g of this solution was added 1.83 g of tributylamine (2 equivalents). Contrary to what has been observed with triethylamine, it is not necessary to add water for the dissolution to take place. Then 1.36 g of isobutyric acid chloromethyl ester (prepared according to (ULICH, JACS 43, 662, (1921) (Eb.
  • the synthesis was carried out as in Example 9, but starting from chloromethylacetate.
  • the polymer obtained is also soluble in acetone. Its RHN spectrum shows the presence of a peak at 3.2 ppm, characteristic of the acetyl group (3 protons).
  • the polymer dissolves in aqueous caustic soda N / 100 by hydrolyzing in a few minutes.
  • Poly-pivaloyloxymethylglutamate the methyl group of which is labeled with 14C
  • chloromethylpivalate was synthesized by reacting pivaloyl chloride on paraformaldehyde labeled with 14C, according to the technique described in J.A.C.S., 89 (21), 5442, (1967).
  • the specific activity of the polymer, measured by combustion, is 3 ⁇ Cie / g.
  • Films of 3 x 3 cm were prepared with this polymer from solutions in acetone or in TFA. The films obtained are soaked either in enzymatic solutions of pig kidney leucineaminopeptidase (Sigma, 3.7 Units / ml, buffer 0.1 tris, 5 mM MgCl 2 , pH 8.4), or liver esterase from pork, (Sigma, 11.6 Units / ml, 0.1M Tris buffer, pH 7.5). The rate of degradation is measured by observing on the one hand the appearance of the polymer and, on the other hand, by counting the degree of radioactivity acquired by the solution. The enzyme solutions were renewed daily. The following results were obtained:
  • Poly-pivaloyloxymethyl glutamate is dissolved in acetone and 10% by weight of the polyethylene glycol 600 polymer is added. The solution is poured onto a Teflon plate and the solvent is allowed to evaporate. The film obtained is translucent and can be thermally welded around 120 ° C.
  • a copolymer of aspartic acid and leucine was prepared by copolymerizing ⁇ -benzylaspartate NCA and leucine NCA (N-carboxyanhydrides) in equimolecular proportions.
  • the benzyl ester groups are transesterified with methanol to obtain the poly- ( ⁇ -methylaspartate / leucine) copolymer.
  • the methylester groups are then saponified with N / 10 sodium hydroxide in methanol to obtain poly- (ASP (OH) / leu) acid.
  • Amino acid analysis shows that we have a proportion of leucine of 56% and 44% for aspartic acid.
  • the molecular weight M n is 35,000 (measured by GPC).
  • the polymer according to the invention (A) was converted into a film of about 0.25 mm by depositing on a glass plate a layer of acetone solution which was then subjected to evaporation in air. The same was done for the control film (B) from a solution in TFA acid. This last film was carefully washed with water to remove all traces of TFA.
  • Films (A) and (B) were immersed in aqueous solutions at pH 9.5 (phosphate buffer) with slow stirring and, at intervals, the radioactivity of the products dissolved in these solutions was measured, from which we calculated the hydrolysis rates of the polymers subjected to the test.
  • pH 9.5 phosphate buffer
  • the hydrolysis time can be varied, in the direction of an increase by increasing said rate and a decrease by reducing said rate.

Abstract

Polyaspartate et polyglutamate d'acyloxyméthyle biodégradable utilisable comme porteur de médicaments à l'état encapsulé ou incorporés dans la matrice du polymère. Le polypeptide ainsi chargé se dégrade enzymatiquement dans l'organe où il a été placé et, ainsi, relâche progressivement le médicament qu'il contient.

Description

POLYPEPTIDE BIODEGRADABLE ET SON UTILISATION POUR
LE RETLAEGftGE PROGRESSIF DE MEDICAMENTS
La présente invention a pour objet un polypeptide estérifié biodégradable nouveau dans lequel on peut incorporer des médicaments, ceux-ci étant, ensuite, libérés progressivement au fur et à mesure de la dégradation biochimique du polymère. Depuis plusieurs années, on connaît des polymères biodégradables non-toxiques pouvant servir de réservoir de médicaments et permettant la libération progressive contrôlée de ceux-ci dans l'organisme lors de la dégradation du polymère porteur. On trouve des informations générales sur de tels produits dans l'ouvrage: "Fundamental Aspects of Biocompatibility" par D.F. WILLIAMS, CRC Press (1981). Voir aussi brevet USP 4,093,709.
Parmi ces polymères, on cite plus particulièrement les polypeptides synthétiques (polyaminoacides) dont la structure est voisine de celle des protéines. Ces polypeptides sont biocompatibles et leurs produits de dégradation (acides aminés) sait résorbables par l'organisme. Ainsi SIDMAN et al (J. Mentor. Sci (1980), 7(3), 277-91) ont divulgué un copolymère d'acide glutamique et de Υ -glutamate d'éthyle dont la vitesse de dégradation est fonction de la composition du copolymère (proportions molaires des segments estérifiés par rapport aux segments non estérifiés) et qui permet d'emmagasiner de nombreux produits médicamenteux, notamment des stéroïdes, des peptides, des produits anti-malaria, anti-cancer et autres. De tels polymères peuvent être utilisés sous forme de baguettes contenant, en mélange, le médicament désiré ou sous forme de capsules renfermant le médicament si celui-ci n'est pas miscible avec le polymère.
Malgré l'intérêt que présente le produit ci-dessus, on a continué à cherché un produit de qualités améliorées et présentant notamment les propriétés suivantes: 1. Excellente solubilité dans la plupart des solvants inoffensifs courants convenant aux médicaments (en effet, les dérivés connus de polyaminoacides ne sont, en général, solubles que dans cer tains solvants spéciaux (DMF, pyridine, F3CCOOH) dont l'emploi est incommode pour les produits pharmaceutiques).
2. Thermoformabilité. Les polypeptides de synthèse actuellement connus ne sont en effet généralement pas miscibles avec les plastifiants biocompatibles usuels (polyalcoylène glycols) et, de ce fait, ils ne sont pas thermoplastiques.
3. Contrôle amélioré du processus de dégradation. En effet, la vitesse de dégradation des polypeptides synthétiques connus est liée de façon difficilement reproductible à leur structure chimique et notamment au taux d'estérification. Ainsi, dans un cas donné (voir SIDMAN K.R., et al., PB 81-132136 NTIS (1980), p. 42) une variation du taux d'estérification de l'ordre de 10% fait passer la vitesse de dégradation de 1 au centuple (voir également la référence: SIDMAN citée plus haut) Le polymère de l'invention a permis de réaliser ces améliorations. Il s'agit d'un polypeptide esterifié de formule:
-(NH-CH-CO)x- (I) (CH2)n-COO-CR1R2-OOC-R
dans laquelle R1 et R2 sont des groupes alcoyles ou l'hydrogène avec R un reste aliphatique ou aromatique substitué ou non, ou bien R2 est l'hydrogène ou un alcoyle et R1 et R liés l'un à l'autre sont des groupes méthylène ou méthényle substitués ou non, n vaut 1 ou 2 et x est tel que la masse moléculaire soit d'au moins 5000 D.
Comme on le voit de par la formule I, le polymère de l'invention est un polyaspartate ou polyglutamate esterifié par un dérivé d'acyloxyméthanol (HO-CR1R2-OOCR) dans lequel R est soit un reste organique quelconque, soit relié à R1 de manière à former un cycle. Par "quelconque" on veut dire que la nature et la structure du groupe R n'est pas critique et que, pour l'instant, on n'a pas rencontré de cas où, R faisant partie de composés courants à fonction RCOO-, le composant correspondant de l'invention ne puisse être obtenu. On préfère, cependant, utiliser des composés dans lequel R est un groupe aliphatique ou aromatique substitué ou non substitué, les substituants étant choisis parmi les fonctions organiques biocompatibles. Parmi les groupes R préférés, on peut citer les groupes méthyle, éthyle, prcpyle, isopropyle, isobutyle, tert-butyle, phényle, benzyle et autres groupes similaires. D'autres composés sont naturellement possibles, mais il est évident que pendant le temps limité dont a disposé l'inventeur il n'a pu les envisager tous. Lorsque R et R1 sont reliés ensemble de façon à réaliser une liaison carbone-carbone saturée ou non, ces atomes de carbone peuvent être, ou non, substitués par des restes aliphatiques ou aromatiques. On donne ci-dessous quelques exemples non limitatifs de tels groupes ester-lactal substitués ou non correspondant à la définition susmentionnée: groupe diméthylène -CH2-CH2-; groupe diméthyléthylè -CH(CH3)-CH(CH3)-; groupe lène -CH=CH-; groupe 1,2-ρh ne ; cyclohexénylène ; groupe cyclopenténylène ; cyclopentadiénylène et autres. Le polymère de l'invention peut également se présenter sous la forme de copolymère avec d'autres polyaminoacides. Dans ce cas, on aura un copolymère de formule:
(II) où R est un reste d'acide aminé esterifié ou non quelconque, les groupes R' des unités -(NH-CHR'-CO)- pouvant être identiques ou différents dans la chaîne du copolymère, avec y + z = x, la valeur de x étant toujours choisie pour que le copolymère ait une masse moléculaire moyenne d'au moins 5000 D. Bien entendu, si R' est identique au groupe -(CH2)-COO-CR1R2-OOC-R, les n étant cependant différents (l'un d'entre eux valant 1 et l'autre 2), on aura un copolymère esterifié d'acide glutamique et aspartique. Cependant, en règle générale, on préfère pour R' avoir des groupements différents, tels que, par exemple méthyle (alanine), iscprcpyle (valine), isobutyle (leucine et isoleucine), benzyle (phénylalaline), etc.. En principe, tous les autres acides aminés, sont également possibles. quoique, pour des raisons évidentes, on n'ait pu les essayer tous. R' peut également désigner un reste d'acide glutamique ou aspartique non estérifié, ou estérifié partiellement par un alcool quelconque, par exemple MeOH ou EtOH, c'est-à-dire, par exemple, -(CH2)-n -COOH ou -(CH2)n-COOMe.
On pourra également avoir, indiféremment, des acides aminés de la série L ou D. Les acides aminés de la série L (ou naturels) soit les plus intéressant car les polypeptides les contenant sont dégradables par les enzymes (protéases) du corps humain, alors que les polypeptides constitués d'unités D ne le soit pas. On peut mettre à profit cette différence grâce à des copolymères comprenant des aminoacides D et L, ceci afin de disposer de polymères dont la vitesse de dégradation est modifiée.
Revenant à des considérations plus générales, il faut noter que la proportion molaire, dans le copolymère II, de l'autre polyaminoacide libre ou partiellement estérifié permet également dans une notable mesure de régler la vitesse de biodégradation du copolymère en fonction des agents présents dans l'organisme au site de destination du mélange de copolymère et du médicament à administrer, (c'est-à-dire dans l'organe où le médicament doit agir). Ainsi, par exemple, si le copolymère est un copolymère de polyglutamate I et de leucine, on choisira la préparation molaire relative des deux constituants en fonction de la vitesse relative de dégradation, au lieu considéré, du polyglutamate et de la polyleucine. En règle générale, le rapport z/y peut varier de 1 à 30, mais ces limites peuvent être dépassées si besoin est. Bien entendu, dans le cas où le groupe R' ne désigne pas un groupe de nature unique dans la chaîne du copolymère, c'est-à-dire, par exemple, lorsque l'un des R' désigne un reste d'acide aminé libre et qu'un autre R' désigne un reste d'amino-acide esterifié, on pourra, pour plus de commodité désigner les variantes de R' par les signes R' ', R"', etc.. La formule générale d'un tel copolymère peut alors être schématisée comme suit:
ou la somme des y, z, u, v, ..., etc est égale à x; u, v, etσ peuvent être bien entendu nuls si le reste désigné par R' est de nature unique. Un cas typique où le copolymère présente des R' et R" distincts est celui où ces groupes désignent des restes d'acide glutamique et/ou aspartique estérifiés et non estérifiés, la formule schématique d'un tel polymère (dans le cas d'espèce, partiellement méthyle) se présentant comme suit:
La nature du groupe R peut également influencer la vitesse de dégradation du polymère I. Ainsi, par exemple, si R est un groupe volumineux ou encombré (par exemple tert-butyle), la dégradation sera plus lente qu'avec un groupe méthyle ou éthyle.
Il est bien entendu que, du point de vue isomérie optique, les polymères de l'invention peuvent comprendre des éléments de configuration L ou D ou des mélanges racémiques ou, encore, des polymères où une des configurations domine. Les propriétés biochimiques de ces divers assemblages ne sont, bien évidemment, pas identiques, les polymères où dominent les formes naturelles (L) étant plus accessibles à la dégradation enzymatique. On peut donc en contrôler la dégradabilité en dosant, dans le copolymère les proportions relatives de l'une et l'autre forme.
Les polymères I et copolymère II sont insolubles dans l'eau et généralement solubles dans un ou plusieurs des solvants usuels tels que l'acétone, la méthyléthyl cétone (MEK), le tetrahydrofurane (THF), le dioxanne, l'acétate d'éthyle, le monoglyme, le diglyme et autres, ce qui permet leur transformation aisée en billes, bâtonnets, fibres, filaments, microcapsules, films, etc.. Les polymères I et II suivant leur structure peuvent être insolubles ou solubles dans les solvants chlorés, par exemple le chloroforme. Dans certains cas d'insolubilité dans le chloroforme, on peut y remédier si on ajoute à un tel solvant un peu d'acétone. Cette faculté de dissolution dans de nombreux solvants miscibles ou non miscibles à l'eau les rend également compatibles sans autre avec de nombreux médicaments liquides ou solubles dans les mêmes solvants. Ainsi, par exemple, on peut, pour encapsuler un produit hydrosoluble dans des microbilles de polymère, utiliser la technique connue consistant a disperser une solution aqueuse du médicament dans une solution de polymère, celle-ci comprenant un solvant non miscible à l'eau, puis à évaporer ce solvant de manière que se forment les capsules solides de polymère.
Par ailleurs, suivant sa structure, le polymère I est très souvent parfaitement compatible avec les polyalcoylène glycols (polyéthylène glycol et polypropylène glycol), ce qui permet d'utiliser ces polyéthers glycol comme plastifiants du polymère I et de fournir ainsi un mélange homogène de bas point de fusion. On peut facilement incorporer toute une gamme de médicaments thermolabiles à un tel mélange (fusion à des températures de l'ordre de 40 à 60°C) et en obtenir des granulés ou des microcapsules. De plus, la présence de polyalcoylène glycols très hydrophiles permet d'augmenter la susceptibilité du polymère et du copolymère aux liquides aqueux biologiques et faciliter leur dégradation enzymatique in situ. Il est à remarquer que les polypeptides de synthèse connus ne possèdent pas ces propriétés favorables de solubilité et de compatibilité avec les PEG. Ainsi, par exemple, pour former des films d'acide polyglutamique présentant une résistance mécanique appréciable et une certaine insolubilité dans l'eau, on doit utiliser des solutions dans des solvants relativement malaisés à manipuler et peu appréciés en pharmacie tels que diméthyl formamide (DMF) et acides dichloracétique (DCA) et trifluoroacétique (TFA). Les films d'acide polyglutamique obtenus à partir de solutions aqueuses, (à pH 7,4, c'est-à-dire où l'acide est au moins en partir sous forme salifiée) n'ont aucune résistance mécanique et sont rapidement dissous dans l'eau, ce qui rend le polymère entièrement imprcpre en tant que support de médicament retard au sens de la présente invention. Il en est d'ailleurs de même des mélanges acide polyglutamique-polyethylène glycol qui sont instantanément solubles dans l'eau. La biodégradation du polymère I peut être .schématisée cemme suit:
La réaction (2) est consécutive à la réaction (1) et, de ce fait, la biodégradation du polymère sera d'autant plus rapide que la vitesse d'hydrolyse de l'ester lactal ou acyloxyalcoylique est plus grande. Le mécanisme d'hydrolyse de ce type d'esters est connu en soi et a été mis en évidence lors de l'étude d'esters de l'ampicilline (par exemple la pivampicilline), voir à ce sujet la référence suivante: "Design of biopharmaceutical Properties through Prodrugs and Analogs", B. Roche, éditeur, American Pharmaceutical Association (ISBN O-917330-16-1), page 212 et 354 (1977). Il est à noter que lorsque R2 est l'hydrogène et R1 un alcoyle (par exemple méthyle), le composé résultant de la réaction est un aldéhyde R1-CHO (par exemple l'acétaldéhyde), de tels aldéhydes étant biologiquement plus avantageux que le métaldéhyde obtenu lorsque R1 = R2 = H pour des raisons de toxicité. En ce qui concerne cet aspect de l'invention, les produits résultant de la réaction lorsque R et R1 sont reliés l'un à l'autre (des céto-acides ou acide-aldéhydes) sont également très avantageux en raison de leur toxicité négligeable. Ainsi, si l'association R-R1 correspond aux groupes éthylène ou 1,2-phénylène, les produits de dégradation seront, respectivement, les acides 3-formyl-propionique et O-foπryl-benzoïque lentement éliminés par l'organisme sans réactions secondaires.
On peut préparer le polymère I par estérification directe d'un sel du polyaminoacide correspondant avec un halogénure d'acyloxyméthyle (X-CR1R2-COO-R (III)) ou X peut être le chlore, le brome ou l'iode. Le sel de polyaminoacide est, de préférence, un sel d'amine tertiaire (par exemple de tributylamine ou de triéthylamine). the telle technique est connue en soi de par W.V. DACHNE; J. Med. chem. 13, 607 - 12, 1971). Par ailleurs, la synthèse des composés III (X = C1) est connue (voir Z.H. ULICH, J.A.C. S.43, 662 (1921)) et consiste à faire réagir le chlorure d'acide RCOCl avec le formaldéhyde en présence d'une quantité catalytique de ZnCL2 anhydre. Le polyaminoacide ou co-polyaminoacide dont l'estérification fournit le polymère I ou le copolymère II s'obtient facilement par les moyens habituels comprenant l'estérification par un alcool inférieur du carboxyle latéral d'un acide de formule
H2N-CH-COOH
(CH2)n-COOH,
la transformation de l'ester en N-carboxyanhydride correspondant (NCA) par le phosgène en milieu dioxane ou THF, la polymérisation du NCA en polyaminoacide estérifié et l'hydrolyse du groupe ester protecteur en milieu alcalin ou par l'acide trifluoroacétique. De telles méthodes sont connues en soi (voir par exemple Ehcyclopedia of Polymer Science and Technology; N-carboxyanhydrides, vol II, page 837) . Lorsqu'on désire parvenir à un copolymère ou R' désigne un carboxyle latéral partiellement esterifié (R' = -(CH2)n-COOH et R" = -(CH2) -COOAlk) on prendra soin que l'hydrolyse du groupe ester protecteur ne soit que partielle. Ainsi, par exemple, le produit de départ qu'on esterifiera avec le composé XCR1R2-OCOR sera un copolymère d'acide H2N-CH [(CH2)n-COOH]-COOH et d'ester NH2-CH [(CH2)n-COO Alk]-COOH.
Le polymère I et le copolymère II sont utilisables comme réservoir de médicaments de diverses manières. Ainsi, par exemple, on peut employer les présents polymers I et copolymères II pour fabriquer des microcapsules contenant un médicament. De telles microcapsules comprennent une membrane polymerique et contiennent une solution aqueuse ou huileuse dans laquelle le médicament est en suspension ou en solution. On peut également fabriquer des microsphères, c'est-à-dire des particules solides ou billes contenant le médicament à l'état dispersé ou à l'état de solution solide dans la matrice de polymère. On peut également fabriquer des produits microporeux dénommés microéponges. En général, on pourra mettre en oeuvre, au moyen des présents polymères, toutes les techniques de fabrication de médicaments retard, c'est-à-dire ayant la propriété de relâcher (relarguer) le médicament de manière prolongée au fur et à mesure de la dégradation du support. On trouvera une description de ces techniques dans les ouvrages suivants: "Biodégradables and Delivery Systems for Contraception", Mafez E.S.E., MTP Press limited (1980) ; "Controlled Release Technologies = Methods, Theory and Applications" Vol.l et 11, A.F. Kydonieus, CRC Press (1980) et "Microencapsulation - New Techniques and Applications" paR Tamotsu KONDO, Techno Inc. (1979) Japan. La solubilité des présents polymères dans de nombreux solvants, miscibles à l'eau ou non, est un avantage pour leur application selon les techniques décrites dans ces références. Il est également possible de préparer des fils constitués de ces polymères en extrudant une solution de ceux-ci dans une filière et en précipitant le fil soit par evaporation, soit par un bain de non solvant, selon les techniques habituelles de filage. Des filaments préparés ainsi peuvent être tricotés, noués ou tissés pour former des sutures, des ligatures ou des structures tabulaires pouvant servir d'artères artificielles, de veines, de conduits ou d'organes internes à fonctionnement temporaire. Les polymères de l'invention peuvent également servir, soit directement, soit en mélange avec un plastifiant, à la fabrication de films ou de prothèses chirurgicales servant, par exemple, à la consolidation d'os fracturés, comme des agrafes, des aiguilles, des vis, des plaques de renforcement, des tampons etc..., ces matériaux pouvant être réalisés par coulage ou moulage de solution, thermoformage ou par usinage de blocs de polymère solides. De telles prothèses étant résorbables, elles sont progressivement éliminées dans l'organisme et il n'est alors plus nécessaire de prévoir, comme on le fait actuellement, une nouvelle opération pour enlever le matériau de renforcement et de consolidation.
Bien entendu, la composition exacte du polymère ou copolymère utilisé est à régler, en fonction des vitesses de dégradation et des caractéristiques d'absorption in vivo, suivant la nature de la prothèse envisagée.
Les exemples qui suivent illustrent l'invention. Exemple 1:
Copolymère de polyglutamate de benzoyloxyméthyle, d'acide glutamique et de glutamate de méthyle.
On a préparé de l'acide polyglutamique partiellement méthylé à partir du N-carboxyanhydride de γ -glutamate de méthyle dissous dans le chlorure de méthylène; on a utilisé la triéthylamine comme initiateur de polymérisation (A/1=100). On a ensuite précipité le polymère par adjonction de méthanol, puis on l'a séché sous vide. On a redissous le solide dans de l'acide trifluoracétique (TFA) de manière à réaliser une solution à 5% en poids et on a ajouté goutte à goutte en agitant vigoureusement un volume d'eau distillée suffisant pour que la solution finale contienne des volumes égaux d'eau et de TFA. On a maintenu encore 12-15 h. en agitation à température ambiante (solution visqueuse) après quoi on a versé le tout sur de l'eau distillée en grand excès, ce qui conduit à la précipitation d'un copolymère de glutamate de méthyle et d'acide polyglutamique, l'hydrolyse de l'ester méthylique ayant atteint environ 60- 70%. On a filtré ce copolymère et on l'a séché. On a controlé les proportions relatives de groupes COOH libres et estérifiées du copolymère ainsi obtenu par analyse RMN dans le TFA (intégration de la bande ester méthylique -O-CH3 à 3,95 ppm) . On a effectué une analyse de poids moléculaire par GPC (chromatographie par perméation de gel) dans le DMF sur colonne DUPONT ZORBAX PSM bimodale (étalonnage au polystyrène); on a mesuré un poids moléculaire moyen de Mn (number average molecular weight) de 226.000; et une dispersion (Mw/Mn) de 1.75.
On a dissous 1,22 g de copolymère dans 45 ml de DMF et on a ajouté 3,5 g de tributylamine. On a ensuite ajouté goutte à goutte 3,25 g de benzoate de chlorométhyle préparé suivant ULICH, J.A.C.S. 43, 662 (1921) et on a continué à agiter 48 heures à température ambiante. On a alors ajouté 50 ml d'eau, ce qui a causé la précipitation d'un solide incolore qu'on a filtré, séché et purifié par successivement, dissolution dans l'acétone et précipitation à l'éther, puis dissolution dans l'acétone et précipitation à l'eau. Par analyse RMN du produit dans le TFA, on a constaté la présente des résonances suivantes: δ = 7,8 ppm (4H, aromatiques); 8,4 ppm (1H, amido) ; 6,5 ppm (2H;
O-CH2-O); 2-3 ppm (complexe, 4H, β -CH2) ; Y-CH2) 5 ppm (1H,α-CH) ; 3,95 ppm (CH3 ester). L'intégration du spectre a montré que l'estérification des fonctions acide libres par le chlorométhylbenzoate était de l'ordre de 60% et que dans la formule du copolymère telle que représentée ci-dessous:
on a, pour les indices, les valeurs suivantes: y = 0,6; z = 0,33 et u = 0,07.
Ce polymère est insoluble dans l'eau, CH2Cl2, CHCl3 et l'éther; il gonfle sans se dissoudre dans le méthanol et l'éthanol; il se dissout facilement dans les solvants suivants: acétone, méthyl-éthyl cétone; THF, AcOEt DMF, TFA, acide dichloracétique (DCA) . On peut préparer des films minces de polymère en étalant sur des substrats des couches de ces solutions et en les laissant évaporer.
Exemple 2:
Copolymere d'acide glutamique partiellement méthyle et de glutamate de pivaloyloxyethyle .
Suivant le processus décrit à l'exemple précédent on a préparé un copolymère d'acide glutamique et de glutamate de méthyle par hydrolyse ménagée du polyglutamate de méthyle dans une solution aqueuse de TFA. Le copolymère obtenu avait la formule
Glu (OMe) 0 ,25-Glu (OH) 0 , 75
On a dissous 2 g de ce copolymère dans 50 ml de DMF sec et on a ajouté goutte à goutte à cette solution 5,74 g (0,031 mole) de tributylamine et 5,09 g (0,031 mole) de pivalate d' α -chloroéthyle (préparé selon la référence citée à l'exemple précédent, par ac tion du chlorure de pivaloyle sur le paraldéhyde). Après 4 jours d'agitation à température ordinaire, on a dilué par un exces d'eau ce qui a eu pour effet de précipiter le polymère sous forme d'une poudre incolore qu'on a redissoute, après séchage, dans de l'acétone et reprécipitée à l'éther de pétrole. On a procédé à encore deux étapes de purification par dissolution dans l'acétone et reprécipitation à l'éther de pétrole, ce qui a finalement fourni 1,8 g de produit. Par analyse RMN, on a pu établir que le copolymère répondait à la formule suivante:
Glu(OOe)0 25-Glu(OH)0,6-Glu(O-CH(CH3)-OOCt.Bu)0,15
Les résultats d'analyse étaient les suivants:
δ = 1,35 ppm (s,tert-butγle) ; =1,7 - 1,8 ppm (d, -CH(CH3)-) δ = 6,8 ppm (-CH(CH3)-) Ce polymère, est soluble dans les solvants mentionnés à l'exemple précédent à l'exception du chloroforme.
Exemple 3:
On a répété les opérations décrites à l'exemple précédent en utilisant, cette fois, un copolymère de formule Glu(QMe)0,5-Glu (OH)0 ,5 obtenu, comme décrit plus haut par hydrolyse ménagée du polyglutamate de méthyle, le temps de celle-ci étant limité à 6 h. On a établi que le copolymère correspondait bien à la formule susmentionnée en comparant les valeurs d'intégration des protons en RMN, le signal à 3,95 ppm (O-CH3) et celui à 5 ppm (α-CH) .
On a fait réagir 1 g de ce copolymère avec 2 équivalents de pivalate d' α-chloroéthyle pendant 3 jours puis précipitation de sa solution dans le EMF avec de l'eau. Après purification comme décrit à l'exemple précédent, on a établi par analyse RMN, comme décrit plus haut, que la formule du copolymère s'établissait ainsi:
Glu(OMe) 0,5-Glu (OH)0 ,33-Glu(OCH(CH3)-OCO-t.Bu) 0,17
Ce copolymère est soluble dans les solvants précités et également dans CHCl3. Il est insoluble dans le polyéthylèneglycol 400. Exemple 4: On a préparé le 3-bromophtalide de formule
(3-bromo-1(3H) isobenzofuranne) par bromination du phtalide d'après le document GB-A- 1,364,672, p.5.
On a dissous 2 g. d'acide polyglutamique et 5,74 g (2 equiv.) de tributylamine dans 35 ml de DMF sec et, à ce mélange, on a ajouté 16,7 g du bromophtalide ci-dessus. Après quelques minutes, on a constaté un épaississement important de la solution (gel) qu'on a redissous par adjonction de 5 ml d'eau. Après 6 jours d'agitation à température ambiante, on a ajouté 500 ml d'éthanol, ce qui a provoqué la précipitation d'un produit pulvérulent incolore qu'on a filtré, essoré, rincé et séché. On a redissous le produit dans 40 ml de CHCI3 et on l'a purifié en le précipitant à l'éther. Rendement 2,77 g (68%) . Par analyse RMN on a obtenu les résultats suivants: δ= 8 ppm (4H, Bz + 1H, peptid.); δ = 7,7 ppm (CH lactonique); δ = 5 ppm (α-CH); δ =2-3 ppm (m, -CH2-CH2-). En comparant, après intégration, le rapport entre le proton (α-CH) et les protons aromatiques on a établi que le rendement de l'estérification était de 90%. La formule du produit s'établit donc ainsi:
Ce produit, très soluble dans CHCI3, est insoluble dans l'eau, l'alcool, le polyéthylène glycol et l'acétone pur. Il est soluble dans un mélange d'acétone -CHCL3.
On a préparé un film sec de quelques um de ce polymère au moyen d'une solution chloroformique étalée sur une plaquette de verre et évaporée. On a placé ce film dans un récipient contenant une solution 0,1N tampon à pH 9,5 et on a constaté une lente dégradation du polymère qu'on a observée, jour après jour, par augmentation de l'absorption UV de la solution (280 nm) due à la présence du phtalide qui se forme progressivement dans la solution tampon.
Exemple 5:
On dissout 10 g d'un copolymère 1/1 de poly( Y -methyl-L-glutamate) et de poly(pivaloylcxymethyl-L-glutamate) préparé selon l'exemple 2 dans 75 ml de chloroforme et on ajoute 5 g d'indométhacine (Sigma). On obtient ainsi une solution visqueuse, de couleur jaune et on verse celle-ci goutte à goutte, sous forte agitation, dans 1 litre d'eau distillée contenant 0,1% de dodecylsulfate de sodium (SDS). On maintient cette solution sous agitation à 40°C jusqu'à évaporation complète du chloroforme, ce qui fournit une dispersion de microsphères. On filtre celles-ci et on les sépare en lots de différentes tailles à l'aide de tamis calibrés. Ces microsphères se dissolvent en milieu isotermique (pH 7,5) et, au cours d'une période prolongée libèrent le médicament qu'elles contiennent, la vitesse de "relargage" variant selon leur taille moyenne. Lorsqu'on injecte une telle suspension dans un tissu présentant une affection inflammatoire, l'action du médicament se prolonge bien au-delà de celle d'un médicament convientionel à base d'indométhacine.¬
Exemple 6: Polyglutamate de pivaloyloxyméthyle
On a préparé de l'acide polyglutamique à partir du N-carboxyanhydride de Y-glutamate de méthyle dissous dans le chlorure de méthylène; on a utilisé la triéthylamine comme initiateur de polymérisation (A/I=100). On a ensuite précipité le polymère par adjonction de méthanol, puis on l'a séché sous vide. On a redissous le solide dans de l'acide trifluoracétique (TFA) de manière à réali ser une solution à 5 % en poids et on a ajouté goutte à goutte en agitant vigoureusement un volume d'eau distillée suffisant pour que la solution finale contienne des volumes égaux d'eau et de TFA. On a maintenu encore 24 h. en agitation à température ambiante (solution visqueuse) après quoi on a versé le tout sur de l'eau distillée en grand excèes, ce qui conduit à la précipitation de l'acide polyglutamique. On a filtré cet acide et on l'a séché. On a controllé la pureté de l'acide ainsi obtenu par analyse RMN dans le TFA (absence de la bande ester méthylique -O-CH3 à 4,5 ppm.) On a effectué une analyse de poids moléculaire par GPC (chromatographie par perméation de gel) dans le DMF sur colonne DUPONT ZORBAX PSM bimodal (étalonnage au polystyrène) et on a mesuré les valeurs sui vantes = 226.000; Mw = 397.000; Mz = 723.000; dispersivité = 1,75. On a dissous le polyacide dans le DMF à raison de 5 % en poids et, à 50 ml de cette solution, on a ajouté 4 ml d'eau et 4,04 g (0,04 mole) de triethylamine. On observe d'abord une précipitation du polyglutamate de triéthylamine, ce sel se redissolvant ensuite par agitation lorsqu'on ajoute l'eau. Lorsque tout a été dissous, on a ajouté goutte à goutte 6,02 g de pivalate de chlorométhyle (Fluka AG) et on a continué à agiter 48 heures à température ambiante. On a alors ajouté 50 ml d'eau, ce qui a causé la précipitation d'unsolide incolore qu'on a filtré, séché et purifié par successivement, dissolution dans l'acétone et précipitation à l'éther, puis dissolution dans l'acétone et précipitation à l'eau. Par analyse RMN du produit dans le TFA, on a constaté la présence d'un pic tertbutyle à 1,35 ppm. L'intégration du spectre a montré que l'estérification de l'acide polyglutamique par le chlorométhylpivalate était totale.
Le poids moléculaire a été déterminé comme ci-dessus et a fourni les résultats suivants: Mn =30.480; Mw = 708.000; Mz = 297.000; dispersivité = 3,54 (viscosité relative n = 1,57, C = 0,2 g/dl dans le DMF) . Rendement final 51 %.
Ce polymère est insoluble dans l'eau, CH2Cl2, CHCI3 et l'éther; il gonfle sans se dissoudre dans le méthanol et l'éthanol; il se dissout facilement dans les solvants suivants: acétone, méthyl-éthyl cétone; THF, AcOEt/DMF, TFA, acide dichloracétique (DCA) . On peut préparer des films minces de polymère en étalant sur des substrats des couches de ces solutions et en les laissant évaporer. Le spectre IR confirme également la structure proposée (forte bande à 1740 cm-1). Exemple 7
On a préparé un film mince du polymère obtenu suivant l'Exemple 6 en étalant une couche de solution à 10 % dans l'acétone et en la laissant sécher quelques heures à température ordinaire à l'air.
On a ensuite immergé plusieurs échantillons de ce film dans une solution à 1 % de pancréatine dans du tampon phosphate 0,1 M (pH 7,5) et on a abandonné ces échantillons à température ambiante pendant 1 à 8 jours. On a constaté, après 1 jour, une perte notable de résistance mécanique (env. 50 %) et après 2 jours, une disparition quasi totale de cette résistance (l'échantillon s'est fragmenté en morceaux). Après 8 jours, l'échantillon s'était entièrement dégradé et n'était plus visible. Des résultats analogues ont été observés en utilisant de l'esterase ou de la leucinaminopeptidase.
Exemple 8: préparation d'un copolymère ester pivaloyloxyméthylglutamique et leucine.
On a opéré comme dans l'exemple 6, mais en partant d'un copolymère 85/15 d'acide polyglutamique et de leucine et on a obtenu un copolymère 85/15 de pivaloyloxymethyl glutamate/leucine. Le spectre RMN du polymère en solution dans le TFA montre que 100 % des groupes carboxyliques latéraux de l'acide polyglutamique sont estérifiés par le chlorométhylpivalate. Le polymère est également soluble dans i'acétone, la MEK, la DMF, le THF. Il gonfle dans les alcools, sans se dissoudre. Spectre RMN: δ = 1,35 ppm, 9 protons tert-butyle; δ = 1,0,6 protons isobutyle. Intégration: rapport des groupements 85:15.
Exemple 9: préparation d'un polymère ester d'isobutyloxyméthylglutamate. On a effectué la synthèse en partant d'acide polyglutamique préparé comme décrit dans l'Exemple 6; on a dissous ce polymère dans du DMF préalablement séché sur tamis moléculaire de manière à obtenir une solution à 3,2 %. A 20 g de cette solution, on a ajouté 1,83 g de tributylamine (2 équivalents). Contrairement à ce qui a été observé avec la triethylamine, il n'est pas nécessaire d'ajouter de l'eau pour que la dissolution s'effectue. On ajoute ensuite goutte à goutte 1,36 g d'ester chlorométhylique de l'acide isobutyrique (préparé suivant (ULICH, J.A.C.S. 43, 662, (1921) (Eb. 65°C/48 Torr) à la solution de polyglutamate de tributylamine et on laisse 3 jours sous agitation à température am biante. Le mélange réactionnel est ensuite précipité par l'eau, redissous dans l'acétone, reprécipité par l'hexane, redissous dans l'acétone et précipité à nouveau dans l'eau. L'analyse RMN du polymère séché montre la présence de pics isobutyle ( δ =1,15 ppm, doublet) caractéristiques du produit recherché et, par intégration, 90 % de substitution (obtenu 1,03 g, 90 %) . Le polymère est également soluble dans l'acétone, la MEK, le THF, le DMF. Le spectre infrarouge d'un film coulé à partir d'une solution de TFA, ainsi que l'analyse élémentaire correspondent à la structure proposée.
Exemple 10: Préparation pharmaceutique à base de polyglutamate de pivaloyloxyméthyle plastifié au PEG:
On dissout 5 g de poly-pivaloyloxymethylglutamate et 5 g de polyethyleneglycol 600 (Fluka, AG) et 2 g d'indomethacine (Sigma) dans 100 ml d'acétone. On coule un film à partir de cette solution sur une plaque de verre et on laisse évaporer le solvant. Le film obtenu, chauffé à 50°C, fond et peut être moulé sous forme de capsules qui, une fois refroidies et plongées dans une solution aqueuse isotonique, laissent diffuser de l'indométhacine dans le milieu.
Exemple 11: Synthèse de poly-acetoxymethylglutamate
On a effectué la synthèse comme dans l'exemple 9, mais en partant de chloromethylacétate. Le polymère obtenu est également soluble dans l'acétone. Son spectre RHN montre la présence d'un pic à 3,2 ppm, caractéristique du groupe acetyle (3 protons) . Le polymère se dissout dans la soude caustique aqeuse N/100 en s'hydrolysant en quelques minutes.
Exemple 12: Biodegradation in vitro du poly-pivaloyloxymethylglutamate
On a préparé, suivant la méthode de l'Exemple 6, du poly-pivaloyloxyméthylglutamate dont le groupement méthyle est marqué au 14C. On a pour cela synthétisé du chloromethylpivalate en faisant réagir du chlorure de pivaloyle sur du paraformaldéhyde marqué au 14C, selon la technique décrite dans J.A.C.S.,89 (21), 5442, (1967).
L'activité spécifique du polymère, mesurée par combustion est de 3 μCie/g. On a préparé avec ce polymère des films de 3 x 3 cm à partir de solutions dans l'acétone ou dans le TFA. Les films obtenus sont trempés soit dans des solutions enzymatiques de Leucineaminopeptidase de rein de porc (Sigma, 3,7 Unités/ml, tampon 0,1 tris, 5 mM MgCl2, pH 8,4), soit d'estérase de foie de porc, (Sigma, 11,6 Unités/ml, tampon 0,1M Tris, pH 7,5). On mesure la vitesse de dégradation en observant d'une part l'aspect du polymère et, d'autre part, en comptant le degré de radioactivité acquise par la solution. On a renouvelé les solutions enzymatiques chaque jour. On a obtenu les résultats suivants:
Exemple 13:
On dissout du poly-pivaloyloxymethyl glutamate dans de l'acétone et on ajoute 10 % en poids du polymère de polyethylèneglycol 600. On coule la solution sur une plaque de Teflon et on laisse évaporer le solvant. Le film obtenu est translucide et peut être soudé thermiquement vers 120°C.
Exemple 14:
On a préparé un copolymère d'acide aspartique et de leucine (voir Polymer 16, 735 (1975) ) en copolymérisant du β -benzylaspartate NCA et de la leucine NCA (N-carboxyanhydrides) en proportions équimoléculaires. On transestérifie les groupes benzyl ester par le methanol pour obtenir le copolymère poly-( β-methylaspartate/leucine). On saponifie ensuite les groupes methylester par la soude N/10 dans le methanol pour obtenir l'acide poly-(ASP(OH)/leu). L'analyse des acides aminés montre qu'on a une proportion de leucine de 56 % et de 44 % pour l'acide aspartique. Le poids moléculaire Mn est de 35.000 (mesuré par GPC) .
On dissout 1 g de poly-(Asp(OH)/leu) dans 20 g de DMF sec. On ajoute 3,25 g de tributylamine (4 équivalents par rapport aux restes Asp(OH)) et 2,64 g de chloromethylpivalate (4 équivalents). On laisse sous agitation 3 jours à température ambiante. On précipite le polymère dans H2O distillée, on le redissout dans l'acétone, on précipite dans l'éther de pétrole, on redissout dans l'acétone, on reprécipite avec H2O. On sèche. L'analyse RMN montre qu'on a bien obtenu du poly-(pivaloyloxymethylaspartate/leucine) le taux d'estérification étant d'environ
20 % ( δ = 7,5, protons benzyliques; δ = 8 ppm, protons NH; δ = 5.4 et 4,8, protons alpha-CH; δ = 3,95, protons -C-CH3 non saponifiés; δ= 3,3 et 2, protons -CH2-, δ = 1,35 ppm, protons t- butyle). Malgré le taux d'estérification relativement faible, le copolymère est soluble dans l'acétone.
Exemple 15:
A titre comparatif, on a étudié les vitesses d'hydrolyse en milieu alcalin d'un copolymère suivant l'invention marqué comme décrit à 1'Exemple 7, (copolymère glutamate de pivaloyloxymethyl-leucine 85-15 suivant 1'Exemple 8) et d'un copolymère de polyglutamate de méthyle-leucine 85-15, de l'art antérieur préparé par les techniques connues habituelles au moyen de methanol marqué au 14C.
Le polymère suivant l'invention (A) a été converti en un film d'environ 0,25 mm par dépôt sur une plaque de verre d'une couche de solution acétonique qu'on a ensuite soumise à évaporation à l'air. Pour le film de contrôle (B) on a procédé de même à partir d'une solution dans l'acide TFA. On a soigneusement lavé ce dernier film à l'eau afin d'éliminer toute trace de TFA.
On a plongé les films (A) et (B) dans des solutions aqueuses à pH 9,5 (tampon phosphate) en lente agitation et, à intervalles, on a mesuré la radioactivité des produits dissous dans ces solutions d'où on a calculé les taux d'hydrolyse des polymères soumis au test.
On a trouvé les résultats suivants exprimés en % en poids de matière hydrolysée après un temps donné (heures). Echantillon (A) Echantillon (B)
temps (h) % en poids temps (h) % en poids
1,5 2,8 18 1,8
2,5 5,0 42 4,2
4,5 13,2 64 5
8 37,25 88 5 ,9
8 dissolution 112 6,8
On voit, d'après les résultats ci-dessus que le copolymère (A) se dégrade à tel point en 8-10 h que le médicament qu'il aurait pu contenir se serait dissous entièrement dans de telles conditions, alors que le copolymère de l'art antérieur n'est que très peu altéré après 112 h dams les mêmes conditions.
En faisant varier le taux de leucine du copolymère (A) , on peut faire varier le temps d'hydrolyse, dans le sens d'une augmentation en augmentant ledit taux et d'une diminution en réduisant ledit taux.

Claims

REVENDICATIONS
1. Polypeptide constitué de polyaspartate ou polyglutamate d'acyloxyméthyle ou d'aroyloxyméthyle biodégradable de formule
(I)
dans laquelle R1 et R2 sont des alcoyles ou l'hydrogène, R étant un reste aliphatique ou aromatique substitué ou non; ou bien R2 est un alcoyle où l'hydrogène et R et R1 sont liés l'un à l'autre sous forme d'un pont éthylène ou vinylène substitué ou non; et ses copolymères avec d'autres acides aminés de formule
(II)
où les groupes R, R1 et R2 ont le sens donné ci-dessus et où R' est un reste d'amino-acide libre ou partiellement ou totalement estérifié; n vaut 1 ou 2 et x qui est égal à y + z est choisi pour que la masse moléculaire du polypeptide ne soit pas inférieure à 5000 D.
2. Polypeptide suivant la revendication 1, caractérisé par le fait que R est choisi parmi les restes méthyle, éthyle, isopropyle, isobutyle, tert-butyle, phényle et benzyle.
3. Polypeptide suivant la revendication 1, caractérisé par le fait que, R et R1 étant liés l'un à l'autre, le maillon formé par ceux-ci est choisi parmi les formules suivantes: -CH2-CH2-; -CH=CH-; -CH(CH3)-CH(CH3); -C(CH3) =C(CH3)-; 1,2-phénylène; cyclohexénylène; cyclopenténylène, cyclopentadiénylène.
4. Polypeptide suivant la revendication 1, caractérisé par le fait que le composé 1 est choisi parmi les glutamate et aspartate d'acyl- et aroyl-oxyméthyle et que le composé II est choisi parmi les copolymères de glutamate ou aspartate d'acyl- et d'aroyl-oxyméthyle avec un ou plusieurs autres acides aminés choisis parmi l'a lanine, la leucine, la valine et la phénylalaline.
5. Polypeptide suivant la revendication 1, caractérisé par le fait que le copolymère II est choisi parmi les copolymères des polyglutamate ou aspartate I avec, respectivement, l'acide glutamique et/ou les glutamates d'alcoyles inférieurs et l'acide aspartique et/ou les aspartates d'alcoyles inférieurs.
6. Polypeptide suivant la revendication 4, caractérisé par le fait que les groupes acyles sont choisis parmi les groupes acétyle, propionyle, butyryle, isobutyryle, pivaloyle, benzoyle et phénylacétyle.
7. Utilisation du polypeptide I et ses copolymères II suivant la revendication 1 comme réservoir de médicament à effet retard dans l'organisme, ce dernier étant progressivement libéré à son lieu de destination consécutivement à la biodégradation du polymère porteur.
8. Utilisation suivant, la revendication 7, caractérisé par. le fait qu'on mélange ledit médicament et ledit polymère de façon homogène et qu'on façonne ce mélange sous une forme pharmaceutiquement acceptable.
9. Utilisation suivant la revendication 8, caractérisée par le fait qu'on mélange au polymère un polyalcoylène glycol de façon à le plastifier, qu'on y ajoute un médicament, puis qu'on moule par la chaleur le produit thermoplastique ainsi obtenu sous forme de granulés, bâtonnets, capsules ou autres particules aptes à être administrées par toutes voies habituelles.
10. Utilisation des polymères I et copolymères II, suivant suivant la revendication 1, pour fabriquer des implants et prothèses biodégradables utilisables en chirurgie.
11. Procédé de préparation du polypeptide formule I, caractérisé par le fait qu'on fait réagir le polyaminoacide correspondant sous forme de son sel avec une aminé tertiaire avec l'ester d'halogénométhyle
X-CR1R2-OCO-R (III) où X = C1, Br ou I et R, R1 et R2 répondent aux définitions précitées, le composé I se formant avec élimination simultanée du sel d'amine de l'acide hydrohalogéné correspondant.
12. Procédé de préparation du copolymère de formule II, carac térisé par le fait qu'on opère comme indiqué à la revendication 11 à partir du copolyaminoacide correspondant.
EP84901314A 1983-07-01 1984-04-02 Polypeptide biodegradable et son utilisation pour le relargage progressif de medicaments Pending EP0150184A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3619/83 1983-07-01
CH361983 1983-07-01

Publications (1)

Publication Number Publication Date
EP0150184A1 true EP0150184A1 (fr) 1985-08-07

Family

ID=4259870

Family Applications (2)

Application Number Title Priority Date Filing Date
EP84901314A Pending EP0150184A1 (fr) 1983-07-01 1984-04-02 Polypeptide biodegradable et son utilisation pour le relargage progressif de medicaments
EP84810156A Expired EP0130935B1 (fr) 1983-07-01 1984-04-02 Polypeptide biodégradable et son utilisation pour le relargage progressif de médicaments

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP84810156A Expired EP0130935B1 (fr) 1983-07-01 1984-04-02 Polypeptide biodégradable et son utilisation pour le relargage progressif de médicaments

Country Status (11)

Country Link
US (1) US4675381A (fr)
EP (2) EP0150184A1 (fr)
JP (1) JPS60501759A (fr)
AT (1) ATE26584T1 (fr)
AU (1) AU2698684A (fr)
CA (1) CA1241322A (fr)
DE (1) DE3463211D1 (fr)
DK (1) DK88385A (fr)
FI (1) FI73448C (fr)
NO (1) NO850771L (fr)
WO (1) WO1985000372A1 (fr)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288498A (en) * 1985-05-01 1994-02-22 University Of Utah Research Foundation Compositions of oral nondissolvable matrixes for transmucosal administration of medicaments
JPS60237015A (ja) * 1984-05-11 1985-11-25 Koken:Kk 医薬徐放剤
US4880635B1 (en) * 1984-08-08 1996-07-02 Liposome Company Dehydrated liposomes
EP0179023B1 (fr) * 1984-10-19 1991-01-23 Battelle Memorial Institute Polypeptide biodégradable et son utilisation pour le relargage progressif de médicaments
US4863735A (en) * 1985-02-19 1989-09-05 Massachusetts Institute Of Technology Biodegradable polymeric drug delivery system with adjuvant activity
CS252559B1 (en) * 1985-03-22 1987-09-17 Frantisek Rypacek Polymer stabilizer of emulsion type water in oil
US4895724A (en) * 1985-06-07 1990-01-23 Pfizer Inc. Chitosan compositions for controlled and prolonged release of macromolecules
CH667874A5 (fr) * 1985-12-19 1988-11-15 Battelle Memorial Institute Polypeptide synthetique biodegradable et son utilisation pour la preparation de medicaments.
IL78826A (en) * 1986-05-19 1991-05-12 Yissum Res Dev Co Precursor composition for the preparation of a biodegradable implant for the sustained release of an active material and such implants prepared therefrom
CA1257199A (fr) * 1986-05-20 1989-07-11 Paul Y. Wang Preparation contenant une substance macromoleculaire ayant des proprietes biologiques liberee pendant plusieurs mois in vivo
DE3700128A1 (de) * 1987-01-03 1988-07-14 Hoechst Ag Biologisch abbaubare poly- (hydroxyalkyl)- aminodicarbonsaeure-derivate, verfahren zu ihrer herstellung und verwendung derselben fuer depotzubereitungen mit kontrollierter wirkstoffabgabe
US4916204A (en) * 1987-07-31 1990-04-10 Massachusetts Institute Of Technology Pure polyanhydride from dicarboxylic acid and coupling agent
US5681543A (en) * 1988-02-29 1997-10-28 Shering Aktiengesellschaft Polymer-bonded complexing agents and pharmaceutical agents containing them for MRI
GB8805286D0 (en) * 1988-03-05 1988-04-07 Schering Agrochemicals Ltd Trypanocides
US5023080A (en) * 1988-06-17 1991-06-11 Basic Bio Systems, Inc. Time release protein
US5700479A (en) * 1988-12-23 1997-12-23 Guidor Ab Surgical element and method for selective tissue regeneration
US4990336A (en) * 1989-02-08 1991-02-05 Biosearch, Inc. Sustained release dosage form
US5126147A (en) * 1990-02-08 1992-06-30 Biosearch, Inc. Sustained release dosage form
US5993805A (en) * 1991-04-10 1999-11-30 Quadrant Healthcare (Uk) Limited Spray-dried microparticles and their use as therapeutic vehicles
GB9107628D0 (en) 1991-04-10 1991-05-29 Moonbrook Limited Preparation of diagnostic agents
GB9204918D0 (en) 1992-03-06 1992-04-22 Nycomed As Chemical compounds
FR2712892B1 (fr) * 1993-11-24 1995-12-22 Rhone Poulenc Chimie Procédé de préparation de polyimides ou de leurs hydrolysats biodégradables.
ATE204015T1 (de) * 1993-11-24 2001-08-15 Rhodia Chimie Sa Verfahren zur herstellung von polyimiden oder ihren biologisch abbaubauren polypeptidischen hydrolysaten
US5904935A (en) * 1995-06-07 1999-05-18 Alza Corporation Peptide/protein suspending formulations
DE19545678A1 (de) * 1995-12-07 1997-06-12 Goldschmidt Ag Th Copolymere Polyaminosäureester
US6231888B1 (en) 1996-01-18 2001-05-15 Perio Products Ltd. Local delivery of non steroidal anti inflammatory drugs (NSAIDS) to the colon as a treatment for colonic polyps
US6441025B2 (en) * 1996-03-12 2002-08-27 Pg-Txl Company, L.P. Water soluble paclitaxel derivatives
CA2277011A1 (fr) * 1997-01-13 1998-07-16 Universite Laval Derives a permeabilite membranaire convertis intracellulairement en peptides actifs
US6517869B1 (en) * 1997-12-12 2003-02-11 Expression Genetics, Inc. Positively charged poly(alpha-(omega-aminoalkyl)lycolic acid) for the delivery of a bioactive agent via tissue and cellular uptake
DE19822600C2 (de) * 1998-05-20 2003-08-21 Goldschmidt Ag Th Copolymere, hydrophob modifizierte Polyasparaginsäureester mit erhöhter Molekularmasse
DE19822599C2 (de) * 1998-05-20 2003-02-06 Goldschmidt Ag Th Copolymere hydrophob modifizierte Polyasparaginsäureesteramide und ihre Verwendung
US6531152B1 (en) 1998-09-30 2003-03-11 Dexcel Pharma Technologies Ltd. Immediate release gastrointestinal drug delivery system
US6632451B2 (en) 1999-06-04 2003-10-14 Dexcel Pharma Technologies Ltd. Delayed total release two pulse gastrointestinal drug delivery system
BR0108962A (pt) * 2000-03-03 2002-12-24 Valentis Inc Formulações de ácido nucléico para distribuição de genes e métodos de uso
CA2410887C (fr) 2000-06-02 2012-07-24 Bracco Research Usa Composes pour le ciblage des cellules endotheliales, compositions les contenant et leurs procedes d'utilisation
US6962071B2 (en) * 2001-04-06 2005-11-08 Bracco Research S.A. Method for improved measurement of local physical parameters in a fluid-filled cavity
AUPR610501A0 (en) * 2001-07-04 2001-07-26 Smart Drug Systems Inc Treatment of parasitic disease
US20030109432A1 (en) * 2001-12-10 2003-06-12 Zuo William W. Anticancer polypeptide-metal complexes and compositions, methods of making, and methods of using same
BRPI0314042B8 (pt) 2002-09-06 2021-05-25 Calando Pharmaceuticals Inc polímeros à base de ciclodextrina para o fornecimento de agentes terapêuticos ligados a eles por covalência
US20070128117A1 (en) * 2003-02-04 2007-06-07 Bracco International B.V. Ultrasound contrast agents and process for the preparation thereof
DE602004029010D1 (de) 2003-02-04 2010-10-21 Bracco Suisse Sa Ultraschall kontrastmittel und verfahren zur erstellung
WO2005063305A1 (fr) * 2003-12-22 2005-07-14 Bracco Research Sa Systeme de microvesicule remplie de gaz pour l'imagerie de contraste
US20060067972A1 (en) * 2004-06-23 2006-03-30 Flowmedica, Inc. Devices for renal-based heart failure treatment
EP1784228B1 (fr) 2004-08-18 2016-10-05 Bracco Suisse SA Composition à base de microvésicules remplis de gaz pour l'imagerie de contraste
EP1714642A1 (fr) 2005-04-18 2006-10-25 Bracco Research S.A. Formulation pharmaceutique comprenant des microcapsules remplies de gaz pour la délibération échographique
EP1946768A4 (fr) 2005-10-28 2009-11-11 Meiji Seika Kaisha Proteine de couche exterieure pa5158 de pseudomonas aeruginosa
EP2206736B1 (fr) 2005-12-05 2012-02-08 Nitto Denko Corporation Conjugués d'acide polyglutamate-aminé et procédés
WO2007114340A1 (fr) 2006-03-30 2007-10-11 Meiji Seika Kaisha, Ltd. Protéine pa0427 de membrane externe de pseudomonas aeruginosa
US20080176958A1 (en) 2007-01-24 2008-07-24 Insert Therapeutics, Inc. Cyclodextrin-based polymers for therapeutics delivery
US20080181852A1 (en) * 2007-01-29 2008-07-31 Nitto Denko Corporation Multi-functional Drug Carriers
CN104800856A (zh) * 2007-04-10 2015-07-29 日东电工株式会社 多功能聚谷氨酸盐药物载体
US20080279782A1 (en) * 2007-05-09 2008-11-13 Nitto Denko Corporation Polymers conjugated with platinum drugs
US20080279778A1 (en) * 2007-05-09 2008-11-13 Nitto Denko Corporation Polyglutamate conjugates and polyglutamate-amino acid conjugates having a plurality of drugs
US8197828B2 (en) * 2007-05-09 2012-06-12 Nitto Denko Corporation Compositions that include a hydrophobic compound and a polyamino acid conjugate
JPWO2009005040A1 (ja) * 2007-06-29 2010-08-26 明治製菓株式会社 緑膿菌の外膜タンパク質pa4710
EP2236515A4 (fr) 2007-12-25 2012-10-31 Meiji Seika Kaisha Protéine composante pa1698 pour le système de sécrétion de type-iii de pseudomonas aeruginosa
CN102083468A (zh) * 2008-03-06 2011-06-01 日东电工株式会社 用于治疗癌症的聚合物紫杉醇结合物和方法
AU2010296994B2 (en) 2009-09-15 2013-09-19 Alomone Preclinical Ltd. Novel peptides isolated from spider venom, and uses thereof
CA2781669A1 (fr) * 2009-11-23 2011-05-26 Cerulean Pharma Inc. Polymeres a base de cyclodextrine pour une administration therapeutique
WO2011119995A2 (fr) 2010-03-26 2011-09-29 Cerulean Pharma Inc. Formulations et procédés d'utilisation
WO2012170097A2 (fr) 2011-03-16 2012-12-13 Regents Of The University Of Minnesota Compositions et procédés pour l'induction de réponses immunitaires contre des bactéries du genre staphylococcus
WO2013168965A2 (fr) 2012-05-07 2013-11-14 목암생명공학연구소 Composition de vaccin pour prévenir une infection par staphylococcus aureus
WO2014055493A1 (fr) 2012-10-02 2014-04-10 Cerulean Pharma Inc. Procédés et systèmes s'appliquant à la précipitation de polymères et à la génération de particules
JP2021521270A (ja) 2018-04-06 2021-08-26 アンマ セラピューティクス インコーポレイテッドAmma Therapeutics, Inc. 治療剤の制御放出用組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3230274A (en) * 1960-12-30 1966-01-18 Merck & Co Inc Preparation of linear polypeptides
US3371069A (en) * 1963-03-20 1968-02-27 Ajinomoto Kk Filaments and surgical sutures of polyl-glutamic acid partly esterified with lower alkanols and process therefor
JPS5031905B1 (fr) * 1971-07-05 1975-10-16
CA1045977A (fr) * 1973-05-17 1979-01-09 Arthur D. Little Implant biodegradable pour la dispensation de medicaments et procede de preparation et d'utilisation
US4351337A (en) * 1973-05-17 1982-09-28 Arthur D. Little, Inc. Biodegradable, implantable drug delivery device, and process for preparing and using the same
US4356166A (en) * 1978-12-08 1982-10-26 University Of Utah Time-release chemical delivery system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8500372A1 *

Also Published As

Publication number Publication date
FI850835L (fi) 1985-02-28
DE3463211D1 (en) 1987-05-21
EP0130935A1 (fr) 1985-01-09
AU2698684A (en) 1985-02-07
JPS60501759A (ja) 1985-10-17
EP0130935B1 (fr) 1987-04-15
NO850771L (no) 1985-02-26
FI850835A0 (fi) 1985-02-28
FI73448B (fi) 1987-06-30
US4675381A (en) 1987-06-23
FI73448C (fi) 1987-10-09
CA1241322A (fr) 1988-08-30
WO1985000372A1 (fr) 1985-01-31
DK88385D0 (da) 1985-02-27
DK88385A (da) 1985-02-27
ATE26584T1 (de) 1987-05-15

Similar Documents

Publication Publication Date Title
EP0130935B1 (fr) Polypeptide biodégradable et son utilisation pour le relargage progressif de médicaments
EP0179023B1 (fr) Polypeptide biodégradable et son utilisation pour le relargage progressif de médicaments
CH667874A5 (fr) Polypeptide synthetique biodegradable et son utilisation pour la preparation de medicaments.
SU905228A1 (ru) Способ получени полимочевины
EP1511790B1 (fr) Polyaminoacides fonctionnalises par de l'alpha-tocopherol et leurs applications notamment therapeutiques
CA2302508C (fr) Polyanhydres avec produits de degradation utilises therapeutiquement
CN102181060B (zh) 聚乙烯醇-聚肽-聚乙二醇接枝共聚物及其制备方法
FR2590262A1 (fr) Nouveaux polyanhydrides, leur preparation et leur utilisation comme matrices de principes pharmacologiquement actifs
FR2551072A1 (fr) Nouveaux esters de polyols, leur preparation et leur utilisation
FR2741628A1 (fr) Nouveaux hydrogels a base de copolymeres trisequences et leur application notamment a la liberation progressive de principes actifs
FR2537980A1 (fr) Derives d'acides hydroxycarboxyliques oligomeres, leur preparation et leur utilisation
FR2843117A1 (fr) Polyaminoacides fonctionnalises par au moins un groupement hydrophobe et leurs applications notamment therapeutiques
JP2003516810A (ja) 分解性ポリ(ビニルアルコール)ヒドロゲル
FR2881140A1 (fr) Copolyhydroxyalkylglutamines fonctionnalises par des groupements hydrophobes et leurs applications notamment therapeutiques
EP1668062B1 (fr) Homopolyaminoacides telecheliques fonctionnalises par des groupements hydrophobes et leurs applications notamment therapeutiques
CA2408870A1 (fr) Materiau a base de polymeres biodegradables et son procede de preparation
EP0710226B1 (fr) Nouveaux produits organiques contenant des fonctions thiols reactives, l'un de leurs procedes de preparation et les biomateriaux les contenant
EP0159293A1 (fr) Matière polymérique filmogène utilisable comme pansement et sa fabrication
EP1771498B1 (fr) Polyaminoacides branches, fonctionnalises par des groupements hydrophobes et leurs applications notamment therapeutiques
CN111410757B (zh) 一种可降解及环境响应性复合物微凝胶的制备方法
BE898430A (fr) Derives d'acides hydroxycarboxyliques oligomeres, leur preparation et leur utilisation.
WO2010135739A2 (fr) Poly(ester amide)s et poly(ester éther amide)s ayant des groupes fonctionnels latéraux réticulables

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19850227

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 19860219

XX Miscellaneous (additional remarks)

Free format text: VERFAHREN ABGESCHLOSSEN INFOLGE VERBINDUNG MIT 84810156.4/0130935 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) VOM 27.08.86.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BICHON, DANIEL