US20030171646A1 - Implant positioning system and method - Google Patents

Implant positioning system and method Download PDF

Info

Publication number
US20030171646A1
US20030171646A1 US10/409,934 US40993403A US2003171646A1 US 20030171646 A1 US20030171646 A1 US 20030171646A1 US 40993403 A US40993403 A US 40993403A US 2003171646 A1 US2003171646 A1 US 2003171646A1
Authority
US
United States
Prior art keywords
treating urinary
urinary incontinence
injector
approximately
implants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/409,934
Inventor
Clyde Pratt
Robert Schindler
Jesse Kramer
Roger Carignan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Biomedical Devices Inc
Original Assignee
Advanced Biomedical Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Biomedical Devices Inc filed Critical Advanced Biomedical Devices Inc
Priority to US10/409,934 priority Critical patent/US20030171646A1/en
Assigned to ADVANCED BIOMEDICAL DEVICES, INC. reassignment ADVANCED BIOMEDICAL DEVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARIGNAN, ROGER, PRATT, CLYDE, KRAMER, JESSE, SCHINDLER, ROBERT
Publication of US20030171646A1 publication Critical patent/US20030171646A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G23/00Forestry
    • A01G23/02Transplanting, uprooting, felling or delimbing trees
    • A01G23/06Uprooting or pulling up trees; Extracting or eliminating stumps
    • A01G23/067Uprooting or pulling up trees; Extracting or eliminating stumps by comminuting the tree stumps

Definitions

  • This invention relates to a method and implant for treating urinary incontinence. It further relates to a positioning and delivery system and method for materials that can be implanted in the human body, particularly for the purpose of treating urinary incontinence.
  • Urinary incontinence is an inability to hold urine in the bladder until it is decided to release it. Millions of people, male and female, young and old, experience incontinence. Women are twice as likely to experience incontinence than men are. This is likely due to pregnancy and childbirth, menopause, and the structure of the female urinary tract. However, both men and women can experience incontinence due to strokes, multiple sclerosis, prostate surgery and old age. Urinary incontinence often occurs because of problems in the muscles that hold or release urine, such as sudden contraction of bladder muscles or sudden relaxation of the muscles surrounding the urethra.
  • urinary incontinence-stress incontinence There are many types of urinary incontinence-stress incontinence, urge incontinence, functional incontinence, overflow incontinence, transient incontinence, and mixed types of incontinence. Each of these is related to particular physical problems, such as weakened muscles, physical changes, physiological changes, neurological problems, and disease. However, all forms of urinary incontinence are treatable through a variety of surgical and non surgical procedures.
  • Kegel exercises are available non-surgical treatments. Some choose to wear absorbent pads or undergarments. Another choice includes restricting certain liquids. However, each treatment has limited effectiveness and often potentially harmful side effects. For instance, Kegel exercises and electrical stimulation can reduce stress and urge incontinence. Biofeedback may relieve stress and urge incontinence. Medications can reduce certain types of leakage by inhibiting contractions or relaxing muscles. However, these treatments do not cure urinary incontinence. They tend only to alleviate the problem. Further, certain medications can have harmful side effects, such as the increased risk of breast and endometrial cancer associated with estrogen therapy.
  • Implants into the tissues around the urethra have a partial success rate, but raise concerns of allergic reactions to the implanted material.
  • a commonly used product, Contigen TM, a bovine collagen injectable can be applied via the perineum, transurethrally or transvaginally. This material provides adequate bulking but only lasts 6-9 months.
  • Teflon (ptfe) paste is currently being explored as a potential bulking agent but has the drawback of consisting of small Teflon particles which may migrate from the position of their original placement in the body.
  • the present invention is directed to the use of implantable materials that provide bulking of the periurethral and sphenteric tissues near the bladder neck.
  • the invention is further directed to methods of positioning and delivering such implantable materials.
  • the materials used, and the methods by which they are delivered and positioned provide a biocompatible implant that directly acts to treat female urinary incontinence.
  • biocompatible materials the body does not reject the implant and the implant provides permanent relocation of tissues in the soft tissue area around the urethra.
  • the implanted material is designed for the avoidance of migration from its original position in the body.
  • the use of the described positioning and delivery system provides ease in accurately positioning the implant, resulting in better placement for treatment of incontinence.
  • the invention provides the ease of use of previous bulking agents, but has the advantage of persistent and more predictable bulking. Additionally, because the material is tubular and non-biodegradable, it is stabilized in soft tissue resulting in less migration.
  • FIG. 1 shows one form of a shaped implantable material according to the present invention
  • FIGS. 2 - 4 show additional embodiments of the implantable material of the invention.
  • FIG. 5 is a perspective view of a positioning and delivery apparatus
  • FIG. 6 shows a surgical system including the positioning and delivery
  • FIGS. 7 A- 7 F show a further embodiment of the positioning and delivery system from various perspectives
  • FIG. 8A shows an embodiment of the expulsion end of the injector in the positioning and 15 delivery system, with a sharpened exit point
  • FIG. 8B shows an embodiment of the expulsion end of the injector in the positioning and delivery system, with a beveled hollow point.
  • FIG. 1 shows a tube embodiment of the implant.
  • FIG. 2 illustrates a segmented tube embodiment of the implant.
  • FIG. 3 shows a string of conjoined spheres and
  • FIG. 4 shows a string of conjoined cylinders, both in a tubular form, although a solid form may also be used.
  • the implant of the invention consists of or comprises a series of tubular segments. See, for example, FIG. 2.
  • This implant embodiment is in the form of a single, relatively long tube in which segments have been created.
  • each segment may measure from about 1 mm to about 20 mm in outside diameter (the outside diameter being selected to obtain the degree of flexibility preferred), and 2 mm to about 30 mm in length.
  • the outside diameter is preferably from 1.5 to 4 mm, with a wall thickness of from about 1 to about 2 mm.
  • the inside diameter of the tubes will preferably be greater than 1 mm.
  • the overall length is between approximately 5 cm and approximately 20 cm.
  • the series of tube segments may be created by radially slitting a longer tube. By slitting the tubes folding points are made and openings are available in the placed implant through which tissue growth can occur. Such growth anchors the tubes to thereby avoid migration, and folding the long tube into implantable segments creates the necessary bulking.
  • FIG. 2 A segmented tube according to the invention is shown in FIG. 2.
  • the implant may be made up of a string of small conjoined spheres, shown in FIG. 3, or a string of small conjoined cylinders, shown in FIG. 4.
  • the string of conjoined spheres or conjoined cylinders may be solid or may have a cavity extending through their length.
  • the implant could be a plurality of small spheres.
  • Materials from which the implants of the invention can be formed may preferably be texturally similar to soft tissue and must be biocompatible and non-biodegradable.
  • the materials should be sterilizable and should be able to be formed into the desired shapes. They preferably are porous, i.e. they have a permeable fluid path between the exterior surface and any interior cavity. Such permeability occurs when pores range from 5 to 70 microns. Such pores allow for fluid permeability but do not allow significant tissue ingrowth to occur through the material of the implant. Tissue ingrowth instead occurs because of the tubular or non-smooth shape of the implant.
  • Currently available materials which may be selected depending on particular circumstances, would include e-PTFE, polyurethane, polyethylene or similar materials.
  • a more preferred form of the implant is a tube, or collection of tubes, a string of small spheres, a string of small cylinders or a collection of spheres each composed of e-PTFE having an internodal distance of from about 10 to about 70 microns.
  • FIG. 5 shows a preferred embodiment of the implant positioning and delivery system which includes a cystoscope or other viewing instrument 81 , an adjustable housing 82 for the cystoscope and injector and an injector 83 which includes a plunger 85 and plunger stop 86 , a luer lock 87 , and a saline solution filled syringe 84 , and holds the implant for delivery 89 . It also includes a camera 88 . In this embodiment, rotatable knob, 80 , adjusts the angle between the viewing instrument 81 , and the injector, 83 .
  • FIG. 6 shows the positioning and delivery system with peripherals for surgical use.
  • the positioning and delivery system includes housing 90 , a viewing instrument 91 an injector 92 and a camera 93 .
  • the peripherals include a light source 95 and VCR 96 , a monitor 94 and a saline solution 97 .
  • FIGS. 7 A- 7 F show various views of one form of a positioning and delivery apparatus. The same number indicating the same element in each view.
  • the positioning and delivery system shown in these figures includes a housing 100 , an injector 101 which is inserted in one of several cavities 103 (providing angle selection), a viewing instrument 102 and control knobs 104 for adjustment of the position of the viewing instrument 102 .
  • FIGS. 8A and 8B show an embodiment of the expulsion end of the injector.
  • FIG. 8A shows the sharpened end 110 of the hollow tubular shaft or cannula.
  • This view and FIG. 8B also show a plunger 111 ; a plunger stop 112 and the material or implant to be injected 113 .
  • the sharpened end of the tubular shaft can be a beveled hollow point, a solid point with a side exit port near the tip, a hollow sharpened point.
  • the tip can also include a retractable tip cover to prevent tissue from entering the hollow tubular shaft prior to injection of the material.
  • the implant is delivered to the tissue to be augmented with a positioning and delivery system.
  • the implant would then stabilize via fibrous tissue in-growth through the lumen and/or tube slits of the tubular segments in soft tissue after the positioning and delivery system is withdrawn.
  • the material will be delivered under cystoscopic observation for periurethral implantation.
  • the incision may be made through the perineum or vaginal wall.
  • Another embodiment comprises the transurethral insertion of the bulking material via injection under cystoscopic control.
  • the injector is essentially parallel to the cystoscope and the injection is made through the wall of the urethra.
  • the incision can also potentially be made transvaginally.
  • the methods of the invention can be practiced so as to position the implant either transurethrally through a cystoscope or by puncture (via the perineum or vagina) and suburethral implantation under cystoscopic control.
  • the positioning and delivery system comprises a viewing instrument such as a cystoscope, an injector which is adapted to hold and deliver the material to be implanted and a housing with a cavity to closely hold the viewing instrument and a plurality of cavities to closely hold the injector in various positions. Therefore the injector is held at an adjustable angle to the viewing instrument, allowing for accurate and repeatable delivery of the implant or other material.
  • the housing in the positioning and delivery system holds the viewing instrument and the injector in such a way that not only the angle between them is adjustable but also the distance between them.
  • the angle is adjustable as the injector can be inserted into different through cavities, each of which specifies a particular angulation. Additionally the entire injector can be rotated relative to the axis of the cystoscope. This can be seen most clearly in FIG. 7B where cavities 103 are available for the injector 101 to be inserted through the housing 100 .
  • the viewing instrument and injector are also moveable in the direction of their length between at least two positions and preferably more. As a result accurate and variable positioning of the injected material is possible while still keeping the injector and viewing instrument steady to enable placement of material.
  • the injector of the positioning and delivery system is a hydraulic injector.
  • a hydraulic injection system increases the amount of pressure that can be applied.
  • the hydraulic injector which is seen in FIG. 5, comprises a relatively narrow tubular shaft or cannula 83 with an expulsion end and an opposite end, which remains outside the body.
  • the tubular shaft 83 is adapted to contain and deliver the bulking or other material to be delivered into the body 89 .
  • the hydraulic injector also comprises a syringe 84 filled with a hydraulic fluid such as saline solution.
  • a luer lock 87 is located between the hydraulic fluid and the tubular shaft 83 to prevent leakage of the fluid into the tubular shaft 83 .
  • a plunger 85 is located in the tubular shaft between the luer lock and the material to be delivered into the body.
  • This plunger 85 and the luer lock 87 reduce the danger of the hydraulic fluid leaking into the anatomy.
  • the plunger 85 forces the material out of the expulsion end of the tubular shaft 83 .
  • a plunger stop 86 is located within the tubular shaft 83 toward the expulsion end of the tubular shaft 83 .
  • the plunger stop 86 is shaped to allow the material to be delivered into the body 89 to pass through to the expulsion end of the tubular shaft 83 while stopping the plunger 85 from passing through to the expulsion end of the tubular shaft.
  • Other forms of injector are available in the art and would be compatible with the positioning and delivery system.
  • the invention can also be embodied as a method of placing a bulking implant for treating urinary incontinence.
  • the method comprises:
  • the method may include the use of a dilator such as a balloon catheter to create a cavity in the expulsion area for better placement of bulking material.
  • a dilator such as a balloon catheter to create a cavity in the expulsion area for better placement of bulking material.
  • Benefits of the novel positioning and delivery system include the ease and accuracy with which placement and delivery can be performed.
  • the various cavities through which the injector can be positioned and the angular adjustment allow for a variable angle.
  • the position of the injector and viewing instrument can also be varied longitudinally while stability is maintained.
  • the method of delivery can be used for other materials or procedures.
  • the positioning and delivery system can be used for the delivery of other already known bulking materials, which are used to treat urinary incontinence.
  • these include non-absorbable pyrolytic carbon coated beads suspended in solution (Durasphere brand Advanced Uroscience, St Paul, Minn.), bovine or human collagen (e.g.
  • Contigen brand Collagen/IMPRA/Bard Contigen brand Collagen/IMPRA/Bard
  • e-PTFE temperature sensitive polymers
  • liquid to hydrogel transition polymers such as from Protein Polymer Technologies, San Diego, Calif.
  • liquid filled balloons Ultra Vive brand from American Medical Systems, Minnetonka, Minn.
  • Another method of inserting such bulking materials into the anatomy involves creating a pocket in the periurethral tissue by firstly making an incision in the periurethral tissue then inserting a balloon catheter into the incision. The balloon catheter would then be filled with a fluid such as saline solution or a gas. When the fluid or gas was removed from the balloon catheter and the balloon catheter was removed from the incision a pocket would exist in the periurethral tissue. The next step would be inserting bulking material into the pocket.
  • a fluid such as saline solution or a gas
  • the same positioning and delivery system described in this specification can be used to deliver other therapeutic and diagnostic materials. Furthermore, it can be used to remove tissue and perform other similar surgeries.

Abstract

The use of implantable bulking materials for the treatment of urinary incontinence and a system for accurate positioning and delivery of bulking materials are described. The implantable materials are biocompatible, non-biodegradable implants which are designed for stabilization in soft tissue through the ingrowth of fibrous tissue after implantation. The positioning and delivery system comprises an injector which is adapted to allow a syringe to be attached and a housing. The housing includes a through cavity adapted to hold a viewing instrument, such as a cystoscope to allow accurate positioning of the injector. The housing also includes one or more injector through cavities, which are adapted to hold the injector at an angle to the viewing instrument. The angle between the viewing instrument and the injector is variably adjustable. The invention embraces the use of the bulking implants with various delivery methods, including the use of the described positioning and delivery system.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a division of co-pending Application Ser. No. 09/546,579, filed on Mar. 1, 2000, which claims the benefit of Provisional Application No. 60/122,125 filed on Mar. 1, 1999, which applications are incorporated herein by reference.[0001]
  • FIELD OF THE INVENTION
  • This invention relates to a method and implant for treating urinary incontinence. It further relates to a positioning and delivery system and method for materials that can be implanted in the human body, particularly for the purpose of treating urinary incontinence. [0002]
  • BACKGROUND OF THE INVENTION
  • Urinary incontinence is an inability to hold urine in the bladder until it is decided to release it. Millions of people, male and female, young and old, experience incontinence. Women are twice as likely to experience incontinence than men are. This is likely due to pregnancy and childbirth, menopause, and the structure of the female urinary tract. However, both men and women can experience incontinence due to strokes, multiple sclerosis, prostate surgery and old age. Urinary incontinence often occurs because of problems in the muscles that hold or release urine, such as sudden contraction of bladder muscles or sudden relaxation of the muscles surrounding the urethra. [0003]
  • There are many types of urinary incontinence-stress incontinence, urge incontinence, functional incontinence, overflow incontinence, transient incontinence, and mixed types of incontinence. Each of these is related to particular physical problems, such as weakened muscles, physical changes, physiological changes, neurological problems, and disease. However, all forms of urinary incontinence are treatable through a variety of surgical and non surgical procedures. [0004]
  • Among the available non-surgical treatments are Kegel exercises, electrical stimulation of pelvic muscles, biofeedback, timed voiding, bladder training, and medications. Some choose to wear absorbent pads or undergarments. Another choice includes restricting certain liquids. However, each treatment has limited effectiveness and often potentially harmful side effects. For instance, Kegel exercises and electrical stimulation can reduce stress and urge incontinence. Biofeedback may relieve stress and urge incontinence. Medications can reduce certain types of leakage by inhibiting contractions or relaxing muscles. However, these treatments do not cure urinary incontinence. They tend only to alleviate the problem. Further, certain medications can have harmful side effects, such as the increased risk of breast and endometrial cancer associated with estrogen therapy. [0005]
  • Many surgical procedures are also available to treat urinary incontinence. Among the available procedures are pessaries, implants, bladder surgery, and catheterization. Surgical options include surgery to pull the bladder up to a more normal position, surgery to secure the bladder with a wide sling, or surgery to insert an artificial sphincter around the urethra. However, again, each has its own effectiveness rate and possible side effects. For example, one serious concern with the use of pessaries or long-term catheters is urinary tract infections. [0006]
  • Implants into the tissues around the urethra have a partial success rate, but raise concerns of allergic reactions to the implanted material. A commonly used product, Contigen TM, a bovine collagen injectable, can be applied via the perineum, transurethrally or transvaginally. This material provides adequate bulking but only lasts 6-9 months. Teflon (ptfe) paste is currently being explored as a potential bulking agent but has the drawback of consisting of small Teflon particles which may migrate from the position of their original placement in the body. [0007]
  • SUMMARY OF THE INVENTION
  • The present invention is directed to the use of implantable materials that provide bulking of the periurethral and sphenteric tissues near the bladder neck. The invention is further directed to methods of positioning and delivering such implantable materials. The materials used, and the methods by which they are delivered and positioned, provide a biocompatible implant that directly acts to treat female urinary incontinence. By using biocompatible materials, the body does not reject the implant and the implant provides permanent relocation of tissues in the soft tissue area around the urethra. By using materials of the specified size and shape, the implanted material is designed for the avoidance of migration from its original position in the body. The use of the described positioning and delivery system provides ease in accurately positioning the implant, resulting in better placement for treatment of incontinence. [0008]
  • Overall, the invention provides the ease of use of previous bulking agents, but has the advantage of persistent and more predictable bulking. Additionally, because the material is tubular and non-biodegradable, it is stabilized in soft tissue resulting in less migration. [0009]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will be better understood by reference to the appended figures in which [0010]
  • FIG. 1 shows one form of a shaped implantable material according to the present invention [0011]
  • FIGS. [0012] 2-4 show additional embodiments of the implantable material of the invention.
  • FIG. 5 is a perspective view of a positioning and delivery apparatus; [0013]
  • FIG. 6 shows a surgical system including the positioning and delivery; [0014]
  • FIGS. [0015] 7A-7F show a further embodiment of the positioning and delivery system from various perspectives;
  • FIG. 8A shows an embodiment of the expulsion end of the injector in the positioning and [0016] 15 delivery system, with a sharpened exit point; and,
  • FIG. 8B shows an embodiment of the expulsion end of the injector in the positioning and delivery system, with a beveled hollow point.[0017]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The materials apparatus and methods of the invention are described with respect to the forms of implantable material in FIGS. [0018] 1-4 and an apparatus as part of a surgical system for positioning the materials.
  • FIG. 1 shows a tube embodiment of the implant. FIG. 2 illustrates a segmented tube embodiment of the implant. FIG. 3 shows a string of conjoined spheres and FIG. 4 shows a string of conjoined cylinders, both in a tubular form, although a solid form may also be used. [0019]
  • In a preferred embodiment the implant of the invention consists of or comprises a series of tubular segments. See, for example, FIG. 2. This implant embodiment is in the form of a single, relatively long tube in which segments have been created. In this preferred form, each segment may measure from about 1 mm to about 20 mm in outside diameter (the outside diameter being selected to obtain the degree of flexibility preferred), and 2 mm to about 30 mm in length. The outside diameter is preferably from 1.5 to 4 mm, with a wall thickness of from about 1 to about 2 mm. The inside diameter of the tubes will preferably be greater than 1 mm. The overall length is between approximately 5 cm and approximately 20 cm. The series of tube segments may be created by radially slitting a longer tube. By slitting the tubes folding points are made and openings are available in the placed implant through which tissue growth can occur. Such growth anchors the tubes to thereby avoid migration, and folding the long tube into implantable segments creates the necessary bulking. [0020]
  • In the case of the single long tube embodiment (see FIG. 1), the basic dimensions would be similar. Slits could still be included to permit tissue in-growth although the implant would not be folded to create latitudinal bulking. Slits are not shown in the embodiment illustrated in FIG. 1 described below. A segmented tube according to the invention is shown in FIG. 2. [0021]
  • Several small, independent tubes could be placed adjacent to one another to provide bulking. In a further embodiment the implant may be made up of a string of small conjoined spheres, shown in FIG. 3, or a string of small conjoined cylinders, shown in FIG. 4. The string of conjoined spheres or conjoined cylinders may be solid or may have a cavity extending through their length. In yet a further embodiment the implant could be a plurality of small spheres. The implant shapes described are exemplary only and are not intended to limit the scope of the invention. [0022]
  • Materials from which the implants of the invention can be formed may preferably be texturally similar to soft tissue and must be biocompatible and non-biodegradable. The materials should be sterilizable and should be able to be formed into the desired shapes. They preferably are porous, i.e. they have a permeable fluid path between the exterior surface and any interior cavity. Such permeability occurs when pores range from 5 to 70 microns. Such pores allow for fluid permeability but do not allow significant tissue ingrowth to occur through the material of the implant. Tissue ingrowth instead occurs because of the tubular or non-smooth shape of the implant. Currently available materials, which may be selected depending on particular circumstances, would include e-PTFE, polyurethane, polyethylene or similar materials. A more preferred form of the implant is a tube, or collection of tubes, a string of small spheres, a string of small cylinders or a collection of spheres each composed of e-PTFE having an internodal distance of from about 10 to about 70 microns. [0023]
  • Methods of bulking using the above-described implants can be implemented using a positioning and delivery system, the elements of which are shown in FIGS. [0024] 5-8.
  • FIG. 5 shows a preferred embodiment of the implant positioning and delivery system which includes a cystoscope or [0025] other viewing instrument 81, an adjustable housing 82 for the cystoscope and injector and an injector 83 which includes a plunger 85 and plunger stop 86, a luer lock 87, and a saline solution filled syringe 84, and holds the implant for delivery 89. It also includes a camera 88. In this embodiment, rotatable knob, 80, adjusts the angle between the viewing instrument 81, and the injector, 83.
  • FIG. 6 shows the positioning and delivery system with peripherals for surgical use. The positioning and delivery system includes [0026] housing 90, a viewing instrument 91 an injector 92 and a camera 93. The peripherals include a light source 95 and VCR 96, a monitor 94 and a saline solution 97.
  • FIGS. [0027] 7A-7F show various views of one form of a positioning and delivery apparatus. The same number indicating the same element in each view. The positioning and delivery system shown in these figures includes a housing 100, an injector 101 which is inserted in one of several cavities 103 (providing angle selection), a viewing instrument 102 and control knobs 104 for adjustment of the position of the viewing instrument 102.
  • FIGS. 8A and 8B show an embodiment of the expulsion end of the injector. FIG. 8A shows the sharpened [0028] end 110 of the hollow tubular shaft or cannula. This view and FIG. 8B also show a plunger 111; a plunger stop 112 and the material or implant to be injected 113. The sharpened end of the tubular shaft can be a beveled hollow point, a solid point with a side exit port near the tip, a hollow sharpened point. The tip can also include a retractable tip cover to prevent tissue from entering the hollow tubular shaft prior to injection of the material.
  • In a method of the invention the implant is delivered to the tissue to be augmented with a positioning and delivery system. The implant would then stabilize via fibrous tissue in-growth through the lumen and/or tube slits of the tubular segments in soft tissue after the positioning and delivery system is withdrawn. In this embodiment the material will be delivered under cystoscopic observation for periurethral implantation. The incision may be made through the perineum or vaginal wall. [0029]
  • Another embodiment comprises the transurethral insertion of the bulking material via injection under cystoscopic control. In this embodiment the injector is essentially parallel to the cystoscope and the injection is made through the wall of the urethra. The incision can also potentially be made transvaginally. [0030]
  • The methods of the invention can be practiced so as to position the implant either transurethrally through a cystoscope or by puncture (via the perineum or vagina) and suburethral implantation under cystoscopic control. [0031]
  • Thus, in its most basic form the positioning and delivery system comprises a viewing instrument such as a cystoscope, an injector which is adapted to hold and deliver the material to be implanted and a housing with a cavity to closely hold the viewing instrument and a plurality of cavities to closely hold the injector in various positions. Therefore the injector is held at an adjustable angle to the viewing instrument, allowing for accurate and repeatable delivery of the implant or other material. [0032]
  • Ideally the housing in the positioning and delivery system holds the viewing instrument and the injector in such a way that not only the angle between them is adjustable but also the distance between them. The angle is adjustable as the injector can be inserted into different through cavities, each of which specifies a particular angulation. Additionally the entire injector can be rotated relative to the axis of the cystoscope. This can be seen most clearly in FIG. 7B where [0033] cavities 103 are available for the injector 101 to be inserted through the housing 100. The viewing instrument and injector are also moveable in the direction of their length between at least two positions and preferably more. As a result accurate and variable positioning of the injected material is possible while still keeping the injector and viewing instrument steady to enable placement of material.
  • In an especially preferred form, the injector of the positioning and delivery system is a hydraulic injector. A hydraulic injection system increases the amount of pressure that can be applied. The hydraulic injector, which is seen in FIG. 5, comprises a relatively narrow tubular shaft or [0034] cannula 83 with an expulsion end and an opposite end, which remains outside the body. The tubular shaft 83 is adapted to contain and deliver the bulking or other material to be delivered into the body 89. The hydraulic injector also comprises a syringe 84 filled with a hydraulic fluid such as saline solution. A luer lock 87 is located between the hydraulic fluid and the tubular shaft 83 to prevent leakage of the fluid into the tubular shaft 83. A plunger 85 is located in the tubular shaft between the luer lock and the material to be delivered into the body.
  • This [0035] plunger 85 and the luer lock 87 reduce the danger of the hydraulic fluid leaking into the anatomy. When pressure is applied to the syringe 84 the plunger 85 forces the material out of the expulsion end of the tubular shaft 83. A plunger stop 86 is located within the tubular shaft 83 toward the expulsion end of the tubular shaft 83. The plunger stop 86 is shaped to allow the material to be delivered into the body 89 to pass through to the expulsion end of the tubular shaft 83 while stopping the plunger 85 from passing through to the expulsion end of the tubular shaft. Other forms of injector are available in the art and would be compatible with the positioning and delivery system.
  • The invention can also be embodied as a method of placing a bulking implant for treating urinary incontinence. In one form the method comprises: [0036]
  • (i) selecting an injector through cavity and angle in the positioning and delivery system through which to insert the injector; [0037]
  • (ii) inserting the viewing instrument into the urethra of the person undergoing treatment; iii) making an incision in the periurethrai tissue, potentially using the expulsion end of the injector; [0038]
  • (iii) accurately positioning the expulsion end of the injector using the viewing instrument; [0039]
  • (iv) applying pressure to the syringe such that the bulking implant is delivered into the periurethral tissue. The expulsion end of the injector and the distal end of the viewing instrument may then be removed from the urethra. The process may be repeated as necessary to provide sufficient hulking by performing multiple injections with the assembly in fixed position or at a new site. [0040]
  • The method may include the use of a dilator such as a balloon catheter to create a cavity in the expulsion area for better placement of bulking material. [0041]
  • Benefits of the novel positioning and delivery system include the ease and accuracy with which placement and delivery can be performed. The various cavities through which the injector can be positioned and the angular adjustment allow for a variable angle. The position of the injector and viewing instrument can also be varied longitudinally while stability is maintained. In addition, with a sharpened tip on the injector there is no need to have a separate cutting implement to make the necessary incisions and therefore no need to remove the cutting implement in order to deliver the bulking material, although this could be performed as well. [0042]
  • While the invention is directed toward cystourethoscopy and even more particularly to injection of hulking implants the method of delivery can be used for other materials or procedures. Specifically the positioning and delivery system can be used for the delivery of other already known bulking materials, which are used to treat urinary incontinence. These include non-absorbable pyrolytic carbon coated beads suspended in solution (Durasphere brand Advanced Uroscience, St Paul, Minn.), bovine or human collagen (e.g. Contigen brand Collagen/IMPRA/Bard), e-PTFE, temperature sensitive polymers (liquid to hydrogel transition polymers such as from Protein Polymer Technologies, San Diego, Calif.), liquid filled balloons (Uro Vive brand from American Medical Systems, Minnetonka, Minn.), solutions containing genetic material which may cause local tissue growth. [0043]
  • Another method of inserting such bulking materials into the anatomy involves creating a pocket in the periurethral tissue by firstly making an incision in the periurethral tissue then inserting a balloon catheter into the incision. The balloon catheter would then be filled with a fluid such as saline solution or a gas. When the fluid or gas was removed from the balloon catheter and the balloon catheter was removed from the incision a pocket would exist in the periurethral tissue. The next step would be inserting bulking material into the pocket. [0044]
  • The same positioning and delivery system described in this specification can be used to deliver other therapeutic and diagnostic materials. Furthermore, it can be used to remove tissue and perform other similar surgeries. [0045]

Claims (27)

We claim:
1. A method of treating urinary incontinence comprising the steps of:
making one or more incisions adjacent to the urethra for insertion of one or more implants into the periurethral wall; and
inserting one or more biocompatible, non-biodegradable implants for stabilization in soft tissue.
2. The method of treating urinary incontinence described in claim 1, wherein the incisions adjacent to the urethra are made through the abdomen.
3. The method of treating urinary incontinence described in claim 1, wherein the step of making one or more incisions adjacent to the urethra is performed cystoscopically.
4. The method of treating urinary incontinence described in claim 1, wherein the one or more implants are composed of biocompatible, non-absorbable, non-biodegradable material which includes pores sized to allow fluid diffusion and to minimize tissue ingrowth.
5. The method of treating urinary incontinence described in claim 1, wherein the one or more implants are composed of e-PTFE, polyurethane, polyethylene or a similar biocompatible, non-biodegradable material.
6. The method of treating urinary incontinence described in claim 1, wherein the one or more implants comprise a tubular shaft with an internal cavity, the tubular shaft being composed of biocompatible, non-absorbable, non-biodegradable material which includes pores sized to allow fluid diffusion and to minimize tissue ingrowth.
7. The method of treating urinary incontinence described in claim 6, wherein the tubular shaft is approximately 5 cm to 20 cm in length and approximately 1 mm to 20 mm in outside diameter.
8. The method of treating urinary incontinence described in claim 6, wherein the tubular shaft is approximately 5 cm to 20 cm in length, approximately 1.5 mm to 4 mm in outside diameter, approximately 1 mm to 2 mm in wall thickness and approximately b 1 mm or more in inner diameter.
9. The method of treating urinary incontinence described in claim 6, wherein segments have been created in the tubular shaft.
10. The method of treating urinary incontinence described in claim 9, wherein the tubular shaft is approximately 5 cm to 20 cm in total length, approximately 1 mm to 20 mm in outside diameter and wherein each segment of the tubular shaft is approximately 2 mm. to 30 mm in length.
11. The method of treating urinary incontinence described in claim 9, wherein the tubular shaft is approximately 5 cm to 20 cm in total length, approximately 1.5 mm to 4 mm in outside diameter, approximately 1 mm to 2 mm in wall thickness, approximately 1 mm or more in inner diameter and wherein each segment of the tubular shaft is approximately 2 mm to 30 mm in length.
12. The method of treating urinary incontinence described in claim 1, wherein the one or more implants consist of a collection of tubular shafts.
13. The method of treating urinary incontinence described in claim 12, wherein each tubular shaft is approximately 5 cm to 20 cm in total length and approximately 1 mm to 20 mm in outside diameter.
14. The method of treating urinary incontinence described in claim 12, wherein each tubular shaft is approximately 5 cm to 20 cm in total length, approximately 1.5mm to 4 mm in outside diameter, approximately 1 mm to 2 mm in wall thickness, and approximately 1 mm or more in inner diameter.
15. The method of treating urinary continence described in claim 1, wherein the one or more implants comprise a hollow string of small spheres.
16. The method of treating urinary incontinence described in claim 1, wherein the one or more implants comprise a hollow string of small conjoined cylinders.
17. The method of treating urinary continence described in claim 1, wherein the one or more implants comprise a solid string of small spheres.
18. The method of treating urinary continence described in claim 1, wherein the one or more implants comprise a solid string of small cylinders.
19. The method of treating urinary continence described in claim 1, wherein the one or more implants comprise a plurality of small spheres.
20. A method of treating urinary incontinence comprising the steps of:
making one or more incisions which are essentially parallel to the urethra and injecting one or more implants into the periurethral tissue;
the one or more implants being biocompatible, non-biodegradable and designed for stabilization in soft tissue.
21. The method of treating urinary incontinence described in claim 20, wherein the step of making one or more incisions in the urethral wall is performed cystoscopically.
22. The method of treating urinary incontinence described in claim 20, wherein the one or more implants are composed of biocompatible, non-absorbable, non-biodegradable material which includes pores sized to allow fluid diffusion and to minimize tissue ingrowth.
23. The method of treating urinary incontinence described in claim 20, wherein the one or more implants are composed of e-PTFE, polyurethane, polyethylene or a similar biocompatible, non-biodegradable material.
24. The method of treating urinary incontinence described in claim 20, wherein the one or more implants comprise a tubular shaft with an internal cavity, the tubular shaft being composed of biocompatible, non-absorbable, non-biodegradable material which includes pores sized to allow fluid diffusion and to minimize tissue ingrowth.
25. A method of treating urinary incontinence comprising:
a) having a system for accurate positioning and delivery of materials in vivo, the system comprising,
(i) an injector having an expulsion end and an opposite end, the opposite end having a 5 syringe attached thereto, the injector containing a bulking implant for treating urinary incontinence;
(ii) a viewing instrument having a distal end and a proximal end which remains outside the body; and,
(iii) a housing, the housing including a through cavity adapted to hold the viewing instrument, the housing further including a plurality of injector through cavities, each injector through cavity being adapted to hold the injector at an angle to the viewing instrument, each injector through cavity resulting in a different angle between the injector and the viewing instrument;
the expulsion end of the injector being positioned proximate to the distal end of 15 cystoscope;
b) selecting an injector through cavity through which to insert the injector and inserting the injector therethrough;
c) inserting the distal end of the viewing instrument into a urethra;
d) making an incision in the periurethral tissue using the expulsion end of the injector;
e) accurately positioning the expulsion end of the injector using the viewing instrument;
f) applying pressure to the syringe such that the bulking implant is delivered into the incision in the periurethral tissue;
g) removing the expulsion end of the injector and the distal end of the viewing instrument from the urethra.
26. The method of treating urinary incontinence described in claim 25, further comprising the steps of
(i) inserting a balloon catheter into the incision in the periurethral tissue ii) filling the balloon catheter with a fluid or a gas;
(ii) removing the fluid or gas from the balloon catheter; and,
(iii) removing the balloon catheter from the incision; prior to the step of inserting the bulking material into the incision in the periurethral tissue.
27. A method of treating urinary incontinence comprising the steps of:
a) creating a pocket in the periurethral tissue by a process comprising the steps of:
(i) making an incision in the periurethral tissue;
(ii) inserting a balloon catheter into the incision;
(iii) filling the balloon catheter with a fluid or a gas; 10 (iv) removing the fluid or gas from the balloon catheter; and,
(iv) removing the balloon catheter from the incision;
b) inserting bulking material into the pocket.
US10/409,934 2000-04-11 2003-04-08 Implant positioning system and method Abandoned US20030171646A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/409,934 US20030171646A1 (en) 2000-04-11 2003-04-08 Implant positioning system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/546,579 US6263930B1 (en) 2000-04-11 2000-04-11 Stump grinder
US10/409,934 US20030171646A1 (en) 2000-04-11 2003-04-08 Implant positioning system and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/546,579 Division US6263930B1 (en) 2000-04-11 2000-04-11 Stump grinder

Publications (1)

Publication Number Publication Date
US20030171646A1 true US20030171646A1 (en) 2003-09-11

Family

ID=24181042

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/546,579 Expired - Lifetime US6263930B1 (en) 2000-04-11 2000-04-11 Stump grinder
US10/409,934 Abandoned US20030171646A1 (en) 2000-04-11 2003-04-08 Implant positioning system and method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/546,579 Expired - Lifetime US6263930B1 (en) 2000-04-11 2000-04-11 Stump grinder

Country Status (1)

Country Link
US (2) US6263930B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8318209B2 (en) 2004-10-25 2012-11-27 Celonova Biosciences Germany Gmbh Loadable polymeric particles for therapeutic and/or diagnostic applications and methods of preparing and using the same
US9080146B2 (en) 2001-01-11 2015-07-14 Celonova Biosciences, Inc. Substrates containing polyphosphazene as matrices and substrates containing polyphosphazene with a micro-structured surface
US9107850B2 (en) 2004-10-25 2015-08-18 Celonova Biosciences, Inc. Color-coded and sized loadable polymeric particles for therapeutic and/or diagnostic applications and methods of preparing and using the same
US9114162B2 (en) 2004-10-25 2015-08-25 Celonova Biosciences, Inc. Loadable polymeric particles for enhanced imaging in clinical applications and methods of preparing and using the same
US10973770B2 (en) 2004-10-25 2021-04-13 Varian Medical Systems, Inc. Color-coded and sized loadable polymeric particles for therapeutic and/or diagnostic applications and methods of preparing and using the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7150300B1 (en) 2003-09-23 2006-12-19 Bay Engineering, Inc. Disc-type stump grinder
US7748421B2 (en) * 2004-12-17 2010-07-06 Darrell Everett Portable apparatus for reducing vegetation and method for using same
US7086432B1 (en) 2005-04-21 2006-08-08 Bb&F, Llc Flex coupling for grinders and chippers
US7857017B2 (en) * 2006-09-27 2010-12-28 Kodiak Kutters, Llc Land clearing apparatus
WO2009025887A1 (en) 2007-08-22 2009-02-26 Leonardi Manufacturing Co. Stump grinding tooth assembly
WO2010101928A2 (en) 2009-03-02 2010-09-10 Leonardi Manufacturing Co. Inc. Various improvements to stump cutting tool discs
US8739843B2 (en) 2010-03-11 2014-06-03 Partners In Innovation Limited, Llc Multi-functional and modular tree removal and maintenance apparatus and related methods
WO2011112943A1 (en) 2010-03-11 2011-09-15 Partners In Innovation Limited, Llc Multi-functional and modular tree removal and maintenance apparatus and related methods
CN104737879A (en) * 2015-03-31 2015-07-01 盐城工学院 Root-digging machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432357A (en) * 1992-04-16 1995-07-11 Kabushiki Kaisha Kobe Seiko Sho Diamond film electronic devices
US5445859A (en) * 1992-08-14 1995-08-29 Siemens Aktiengesellschaft Multipolar electrode lead
US5772760A (en) * 1991-11-25 1998-06-30 The University Of Chicago Method for the preparation of nanocrystalline diamond thin films
US5825078A (en) * 1992-09-23 1998-10-20 Dow Corning Corporation Hermetic protection for integrated circuits
US6162219A (en) * 1997-10-21 2000-12-19 Akzo Nobel N.V. Electrode
US6240320B1 (en) * 1998-06-05 2001-05-29 Intermedics Inc. Cardiac lead with zone insulated electrodes

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3044509A (en) 1959-07-30 1962-07-17 Kehler Jacob Tree stump cutter attachment
US3732905A (en) 1971-10-26 1973-05-15 J Pickel Tree stump removing apparatus
US4530385A (en) 1984-02-21 1985-07-23 York Norman N Apparatus for removing tree stumps
US4681145A (en) 1984-02-21 1987-07-21 York Norman N Apparatus for removing tree stumps
US4621668A (en) 1984-02-21 1986-11-11 York Norman N Apparatus for removing tree stumps and splitting logs
US5435359A (en) 1994-06-30 1995-07-25 Craft; Robert J. Stump grinder with transversely mounted cutter wheel
US5655581A (en) 1996-06-06 1997-08-12 Craft; Robert Jeffery Tractor-mounted stump grinder with laterally and longitudinally movable cutter wheel
US5829497A (en) 1997-05-30 1998-11-03 Maroney; Freeman D. Telescoping and reciprocating stump grinder
US5996657A (en) * 1999-01-28 1999-12-07 Riesselman; Bernard J. Stump cutter tool life extender

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772760A (en) * 1991-11-25 1998-06-30 The University Of Chicago Method for the preparation of nanocrystalline diamond thin films
US5432357A (en) * 1992-04-16 1995-07-11 Kabushiki Kaisha Kobe Seiko Sho Diamond film electronic devices
US5445859A (en) * 1992-08-14 1995-08-29 Siemens Aktiengesellschaft Multipolar electrode lead
US5825078A (en) * 1992-09-23 1998-10-20 Dow Corning Corporation Hermetic protection for integrated circuits
US6162219A (en) * 1997-10-21 2000-12-19 Akzo Nobel N.V. Electrode
US6240320B1 (en) * 1998-06-05 2001-05-29 Intermedics Inc. Cardiac lead with zone insulated electrodes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080146B2 (en) 2001-01-11 2015-07-14 Celonova Biosciences, Inc. Substrates containing polyphosphazene as matrices and substrates containing polyphosphazene with a micro-structured surface
US8318209B2 (en) 2004-10-25 2012-11-27 Celonova Biosciences Germany Gmbh Loadable polymeric particles for therapeutic and/or diagnostic applications and methods of preparing and using the same
US9107850B2 (en) 2004-10-25 2015-08-18 Celonova Biosciences, Inc. Color-coded and sized loadable polymeric particles for therapeutic and/or diagnostic applications and methods of preparing and using the same
US9114162B2 (en) 2004-10-25 2015-08-25 Celonova Biosciences, Inc. Loadable polymeric particles for enhanced imaging in clinical applications and methods of preparing and using the same
US9511153B2 (en) 2004-10-25 2016-12-06 Celonova Biosciences Germany Gmbh Loadable polymeric particles for therapeutic and/or diagnostic applications and methods of preparing and using the same
US9597419B2 (en) 2004-10-25 2017-03-21 Boston Scientific Limited Loadable polymeric particles for enhanced imaging in clinical applications and methods of preparing and using the same
US10973770B2 (en) 2004-10-25 2021-04-13 Varian Medical Systems, Inc. Color-coded and sized loadable polymeric particles for therapeutic and/or diagnostic applications and methods of preparing and using the same
US11052050B2 (en) 2004-10-25 2021-07-06 Varian Medical Systems, Inc. Loadable polymeric particles for therapeutic and/or diagnostic applications and methods of preparing and using the same

Also Published As

Publication number Publication date
US6263930B1 (en) 2001-07-24

Similar Documents

Publication Publication Date Title
US6572532B1 (en) Implant positioning system and method
CA2293559C (en) Adjustable implantable genitourinary device
US7828716B2 (en) Implantable device and method for adjustably restricting a body lumen
US20060189940A1 (en) Implant positioning system and method
ES2252981T3 (en) DISTENSIBLE SUSPENSION DEVICE FOR URINARY INCONTINENCE.
AU2001293085B2 (en) Surgical apparatus and methods for delivery of a sling in the treatment of female urinary incontinence
JP5001382B2 (en) Male urinary incontinence treatment tool
US20150173708A1 (en) Method and apparatus for placement of implantable device adjacent a body lumen
US20030171646A1 (en) Implant positioning system and method
JPH10511864A (en) Apparatus and method for promoting tissue growth
US6645138B2 (en) Adjustable implantable genitourinary device
US20050288639A1 (en) Instrument used in treatment of the urinary incontinence in women
US7585271B2 (en) Implantable devices and methods for treating urinary incontinence
US7381180B2 (en) Implantable devices and methods for treating fecal incontinence
US9962185B2 (en) Trocar and sheath assembly for placement of implantable device adjacent a body lumen
US20050124852A1 (en) Method and device for the treatment of incontinence
US20080119688A1 (en) Adjustably compressive female incontinence device
US20090287239A1 (en) Tissue Bulking Device and Method
Van Veggel et al. A new device for the treatment of female stress urinary incontinence
Stenberg et al. Endoscopic injection for urinary incontinence
ZA200103403B (en) Distensible sling for urinary incontinence.

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADVANCED BIOMEDICAL DEVICES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PRATT, CLYDE;SCHINDLER, ROBERT;KRAMER, JESSE;AND OTHERS;REEL/FRAME:013960/0258;SIGNING DATES FROM 20000229 TO 20000309

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION