US20110311623A1 - Composition for manufacturing orally disintegrating dosage form to protect coating layer of active substance - Google Patents

Composition for manufacturing orally disintegrating dosage form to protect coating layer of active substance Download PDF

Info

Publication number
US20110311623A1
US20110311623A1 US12/671,981 US67198108A US2011311623A1 US 20110311623 A1 US20110311623 A1 US 20110311623A1 US 67198108 A US67198108 A US 67198108A US 2011311623 A1 US2011311623 A1 US 2011311623A1
Authority
US
United States
Prior art keywords
active substance
hardness
coated active
buffer
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/671,981
Inventor
Mikyoung Hahn
Jin-Woo Choi
Dae-Hyeon Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Choongwae Pharmaceutical Co Ltd
Original Assignee
Choongwae Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Choongwae Pharmaceutical Co Ltd filed Critical Choongwae Pharmaceutical Co Ltd
Assigned to CHOONGWAE PHARMA CORPORATION reassignment CHOONGWAE PHARMA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOI, JIN-WOO, HAHN, Mikyoung, KIM, DAE-HYEON
Publication of US20110311623A1 publication Critical patent/US20110311623A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/166Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the carbon of a carboxamide group directly attached to the aromatic ring, e.g. procainamide, procarbazine, metoclopramide, labetalol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/005Coating of tablets or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/10Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of compressed tablets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41841,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/454Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0056Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2077Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
    • A61K9/2081Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets with microcapsules or coated microparticles according to A61K9/50
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2095Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5073Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
    • A61K9/5078Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings with drug-free core
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/167Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
    • A61K9/1676Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface having a drug-free core with discrete complete coating layer containing drug
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5026Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • A61K9/5042Cellulose; Cellulose derivatives, e.g. phthalate or acetate succinate esters of hydroxypropyl methylcellulose
    • A61K9/5047Cellulose ethers containing no ester groups, e.g. hydroxypropyl methylcellulose

Definitions

  • the present invention relates to a composition of an orally disintegrating dosage form that is used to protect a coating layer of an active substance from being destroyed during a tableting process.
  • Korean Patent Application Publication No. 10-2004-0011087 a process for preparing roxithromycin granules having masked taste and smell” relates to a method of manufacturing a roxithromycin granule, which comprises granulating an active substance, roxithromycin, and then fine-coating the granulated roxithromycin, which in turn serves as a seed in coating with an agent and a plasticizer at low temperatures.
  • the patent discloses that an unpleasant taste and flavor are masked and an active substance is released only in the stomach.
  • 2002-0069377 that has the invention title of “a process for preparing release-controlled granules of quinolone-based drugs having masked taste and smell” discloses a process in which an active substance is granulated and the taste and flavor are masked by using a fluidized bed water.
  • Korean Patent Application Publication No. 2000-0016654 that has the invention title of “intraorally rapidly disintegrable tablet” discloses a method for manufacturing a tablet that contains sugar alcohol or sugars having an average particle diameter of 30 ⁇ m or less, an active substance, and a disintegrating agent.
  • Korean Patent Application Publication No. 10-2004-0073288 that has the invention title of “solid orally-dispersible pharmaceutical formulation” discloses a method for manufacturing a solid orally dispersible pharmaceutical formulation comprising granules of co-dried lactose and starch and an active substance.
  • 10-2005-0096941 that has the invention title of “tablet quickly melting in the oral cavity” discloses a method of providing a tablet that has the hardness, which is considered to be desirable in practice, and rapidly integrates in the oral cavity.
  • the above-mentioned prior arts disclose the methods for manufacturing the orally disintegrating dosage form, but they do not disclose how to mask a taste and a flavor of an active substance.
  • an orally disintegrating dosage form is manufactured according to the above-mentioned methods after an active substance having bitter or unpleasant taste is covered with the coating layer, the coating layer of the active substance is destroyed by pressure, thus a patient may feel the taste of the active substance.
  • dosage and convenience performances may not be improved.
  • U.S. Pat. No. 6,923,984 B1 that has the invention title of “Cushioning wax beads for making solid shaped articles” discloses a method for protecting wax beads containing an active substance by controlling the ratio of similar-sized cushioning wax beads.
  • it requires high shear mixing with temperature-control and that CO 2 pellet needs to be supplied for temperature control.
  • a coating layer of an active substance may easily be destroyed by pressure applied during a tableting process. It is an object of the present invention to provide a composition of an orally disintegrating dosage form that is used to protect a coating layer on an active substance from being destroyed during a tableting process.
  • the present invention relates to a composition of an orally disintegrating dosage form that is used to protect a coating layer of an active substance from being destroyed during a tableting process.
  • the pharmaceutical composition comprises:
  • the dosage form be a tablet.
  • the hardness of the buffer is 0.1 times or more and less than 1 time as high as the hardness of the particle of the coated active substance, and preferably 0.1 to 0.7 times as high as the hardness of the particle of the coated active substance.
  • the hardness of the shield is more than 1 time and 20 times or less as high as the hardness of the particle of the coated active substance, and preferably 4 to 15 times as high as the hardness of the particle of the coated active substance.
  • the coated active substance has the particle diameter in the range of 0.1 to 1000 ⁇ m, and preferably in the range of 150 to 425 ⁇ m.
  • the buffer has the particle diameter which is 0.1 to 10 times as large as the particle diameter of the coated active substance, and preferably 1 to 3 times as large as the particle diameter of the coated active substance.
  • the shield has the particle diameter which is more than 1 time and 10 times or less as large as the particle diameter of the coated active substance, and preferably more than 1 time and 4 times or less as large as the particle diameter of the coated active substance.
  • the weight ratio of the buffer with respect to the coated active substance is 5 or less, and the weight ratio of the shield with respect to the coated active substance is 3 or less. It is preferable that the weight of the above coated arrive substance be in the range of 1 to 1000 mg, the weight ratio of the buffer be in the range of 0.1 to 3 with respect to the above coated active substance, and the weight ratio of the shield be in the range of 0.1 to 2. More preferably, the weight ratio of the buffer with respect to the shield is 1 or more.
  • Examples of the shape of the buffer or the shield may include: powder; fine crystals; granules that are formed by using dry, wet, or high temperature granulation; or particles that are formed by using mounting on a neutral support body or extrusion, but the shape is not limited thereto.
  • the buffer and the shield each independently are manufactured by granulating a material selected from isomalt, mannitol, dried mannitol, crystalline mannitol, maltitol, lactose, glucose, lactitol, trehalose, dextrate, white sugar, white sugar for direct tableting, sorbitol, xylitol, mannitol granules, aspartame, acesulfame, acesulfame potassium, saccharin sodium, a cellulose polymer, and a mixture thereof, but the material is not limited thereto.
  • the coating layer of the coated active substance may be manufactured by: a coating method using a fluidized bed water; a coating method using a spray drier; coagulation coating; microencapsulation; micro-granulation; ionic resin absorption process; or coating by a polymer after an active substance is applied on a seed, but the manufacturing of the coating layer is not limited thereto.
  • the orally disintegrating dosage form disintegrates in the oral cavity within 60 seconds. More preferably, the orally disintegrating dosage form disintegrates into particles having a diameter of 2 mm or less within 60 seconds.
  • the hardness of the orally disintegrating dosage form is 30 N or more.
  • the present invention provides a method for manufacturing an orally disintegrating dosage form by using the pharmaceutical composition.
  • the orally disintegrating dosage form is manufactured by a tableting process, and pressure is applied to the pharmaceutical composition during the tableting process so that the buffer is destroyed but the coated arrive substance and the shield is not destroyed.
  • an orally disintegrating dosage form that is manufactured by using a composition of the present invention, a coating layer of an active substance is protected against pressure during a tableting process.
  • a patient can take the orally disintegrating dosage form having undamaged coating layer.
  • the composition of the present invention comprises, at a predetermined mixing ratio, (a) a “buffer” having a hardness that is lower than that of a coated active substance and (b) a “shield” having a higher hardness and larger particle diameter than the coated active substance.
  • the buffer is an excipient that performs buffer action by being destroyed before the coating layer is destroyed in order to prevent the coated active substance from being destroyed by pressure that is applied during the tableting process.
  • the buffer is 0.1 to 10 times larger in diameter than the coated active substance and it has the hardness that is less than 1 time as high as that of the coated active substance, and is used at a weight ratio of 5 or less with respect to the weight of the coated active substance.
  • the shields which have the higher hardness and larger particle diameter than the coated active substance, preclude pressure from being applied to the active substances while the buffers, which are destroyed by the pressure, are disposed in spaces formed during the tableting process.
  • the shield has the particle size that is 1 to 10 times larger in diameter that the coated active substance and the hardness that is 1 to 20 times higher than the coated active substance, and it is used at a weight ratio of 3 or less with respect to the weight of the coated active substance.
  • orally disintegrating dosage form which is used in the present invention means a tablet that has a hardness of 30 N (3061.22 gf) or more and disintegrates in the oral cavity within 60 seconds.
  • dosage forms for oral administration commercially available in various types of products, which are easy to be taken by old persons or children having a poor swallowing force and which can be easily carried the dosage forms because it is unnecessary to take the dosage form in conjunction with water, are solid-type orally disintegrating dosage forms.
  • the orally disintegrating dosage form rapidly disintegrates in the oral cavity, the taste is important in administration.
  • the orally disintegrating dosage form that contains the active substance having the bitter taste or the unpleasant taste disintegrates by saliva in the oral cavity to enable a patient to feel the bitter taste or the unpleasant taste, the form is less tolerable.
  • the unpleasant taste of the active substance should be masked.
  • the buffer having a predetermined particle size (0.1 to 10 times larger in diameter than the coated active substance) and lower hardness than the coated active substance (less than 1 time) is used at the weight ratio of 5 or less with respect to the active substance including the coating layer (preferably, the weight ratio of 0.1 to 3).
  • the shield having the particle size that is larger than that of the active substance including the coating layer (1 to 10 times larger than the coated active substance) and the hardness that is higher than that of the coated active substance (more than 1 time and 20 times or less) is used at the weight ratio of 3 or less with respect to the coated active substance (preferably, the weight ratio of 0.1 to 2).
  • sugar alcohols are not limited to sugars that is allowed during the production of drugs, and examples of the sugar alcohols may include sugar alcohols, lactoses, white sugars, glucoses, and oligosaccharides that are represented by mannitol, xylitol, sorbitol, erythritol, maltitol, and maltose) that are typically used in the orally disintegrating dosage form, and one or more super-disintegrants or one or more disintegrants are contained, and one or more types of excipients that are typically used are mixed to manufacture the orally disintegrating dosage form that has the hardness of 30 N (3061.22 gf) or more and disintegrates in the oral cavity within 60 seconds.
  • the buffer that is used in the present invention has the hardness that is lower than that of the coated active substance and is destroyed before the coating layer of the active substance is destroyed in order to buffer pressure which is applied while tableting the dosage form, the pressure which is applied to the coating layer of the active substance may be minimized.
  • the shields which have the higher hardness and larger particle size than the coated active substance, prevent direct pressure applied to the active substance, and at as a secondary buffering agent so that the coated active substance and the buffer which is destroyed by pressure are disposed in the spaces formed during the tableting process.
  • one or more types of buffer that are destroyed before the coating layer of the active substance is destroyed and have lower hardness and one or more types of shield that can buffer the pressure for a predetermined time so that the coated active substance and the destroyed buffer are disposed in the spaces formed during the tableting process and have higher hardness and larger size than the active substance are mixed with each other to protect the coating layer.
  • the particle size of each of the buffer and the shield may be varied according to the particle size of the coated active substance, and the various types of buffer and shield may be used.
  • a portion of a coating layer of an active substance may be destroyed since the amount of the buffer that is destroyed in advance according to the pressure applied during the shaping is less than the amount that is required for protection. Consequently, the active substance may be exposed which allows the patient to feel the bitter taste.
  • the amount of the shield also plays an important role, and if the amount deviates from the above-mentioned range, pressure may be applied to the coating layer of the active substance to cause damages to the coating layer.
  • excipients examples include isomalt, mannitol, dried mannitol, crystalline mannitol, maltitol, lactose, glucose, lactitol, trehalose, dextrate, white sugar, white sugar for direct tableting, sorbitol, xylitol, granular mannitol, aspartame, acesulfame, acesulfame potassium, saccharin sodium, a cellulose polymer (ethyl cellulose, hydroxypropyl cellulose, hydroxypropylmethyl cellulose, cellulose acetate, cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate, hydroxypropylmethylcellulose succinate phthalate, cellulose acetate, cellulose acetate trimellitate, cellulose acetate butyrate, carboxymethyl cellulose, microcrystalline cellulose or the like), or other typically used excipient, but examples of the excipient
  • a method of masking a taste and a flavor is not limited, and examples thereof may include: a coating method using a spray drier; forming a coating layer outside of an active substance using a fluidized bed water; coagulation coating; microencapsulation; micro-granulation; ionic resin absorption process; coating by a polymer after an active substance is applied on a seed; preparing matrix; and all other technique which can mask a taste or a flavor of an active substance.
  • the wave substance that is used in the present invention contains a pharmaceutical compound or chemical material that is capable of being orally administered.
  • a drug that is useful in the present invention may include antibiotics, gastrointestinal tract (GIT) regulators, anti-viral medicines, analgesics, anesthetics, anoretics, antarthritics, antiashmatic drugs, antispasmodics, antidepressants, antidiabetic drugs, antidiarrheal agents, antihistaminic drug, anti-inflammatory agent, antiemetic drugs, antineoplastics, antiparkinsonism drugs, antipruritics, antipsychotics, antipyretics, antispasmodics, H2 antogonists, cardiovascular drugs, antiarrhythmic agents, antihypertensive agents, ACE inhibitors, diuretics, vasodilators, hormones, narcotics, immuno suppressants, muscle relaxants, parasympatholytic drugs, parasympathomimetic drugs, psychostimulants
  • a seed (cellet®) was coated with an active substance, mosapride, using Glatt fluidized bed water, and then it was coated with a solution of 80 g of the methacrylic acid-ethyl acrylate copolymer Eudragit (Eudragit® E 100) and 20 g of ethyl cellulose in 95% ethanol by using the Glatt® fluidized bed water, wherein the weight ratio of the solution to the mosapride was 2.
  • the coated mosapride passed through an 40 mesh sieve, and then the particles having the particle size in the range of 150 to 425 ⁇ m (hardness: 69.88 gf, see Experimental Example 3) that remained on 100 mesh sieve were selected by using the Ro-Tap® E test sieve shaker. After that, an orally disintegrating dosage form was manufactured according to the formulation that was described in the following Table 1.
  • the buffer used was isomalt GalenIQ® 721 (hardness: 15.02 gf, and particle size: 200 to 240 ⁇ m), and the shield was isomalt GalenIQ® 981 (hardness: 679.11 gf, and particle size: 750 to 790 ⁇ m).
  • Example 2 The same procedure as that in Example 1 was performed to obtain the coated mosapride.
  • the coated mosapride passed through an 200 mesh sieve, and then the particles having the particle size in the range of 63 to 75 ⁇ m (hardness: 39.87 gf) that remained on 230 mesh sieve were selected.
  • the buffer used was isomalt GalenIQ® 800 (hardness: 13.54 gf, and particle size: 50 ⁇ m or less), and the shield was isomalt GalenIQ® 960 (hardness: 255.48 gf, and particle size: 360 to 400 ⁇ m).
  • Hydrochloride itopride was coated with a solution of 80 g of the methacrylic acid-ethyl acrylate copolymer Eudragit (Eudragit® E 100) and 20 g of ethyl cellulose in 95% ethanol by using the Glatt® fluidized bed water, wherein the weight ratio of the solution to the hydrochloride itopride was 1.5.
  • the coated hydrochloride itopride passed through an 40 mesh sieve, and then the particles having the particle size in the range of 150 to 425 ⁇ m (hardness: 67.83 gf, see Experimental Example 3) that remained on 100 mesh sieve were selected by using the Ro-Tap® E test sieve shaker.
  • an orally disintegrating dosage form was manufactured according to the formulation that was described in the following Table 3.
  • the buffer used was isomalt GalenIQ® 721 (hardness: 15.02 gf, and particle size: 200 to 240 ⁇ m), and the shield was isomalt GalenIQ® 980 (hardness: 996.57 gf, and particle size: 810 to 850 ⁇ m).
  • a seed (cellet®) was coated with an active substance, irbesartan, using Glatt fluidized bed coater, and then it was coated with a solution of 80 g of the methacrylic acid-ethyl acrylate copolymer Eudragit (Eudragit® E 100) and 20 g of ethyl cellulose in 95% ethanol by using the Glatt fluidized bed coater, wherein the weight ratio of the solution to the irbesartan was 0.5.
  • the coated irbesartan were passed through an 30 mesh sieve, and then the particles having the particle size in the range of 425 to 600 ⁇ m (hardness: 156.11 gf) that remained on 40 mesh sieve were selected by using the Ro-Tap® E test sieve shaker. After that, an orally disintegrating dosage form was manufactured according to the formulation that was described in the following Table 4.
  • the buffer used was cellulose (ARBOCEL® A300) (hardness: 36.08 gf, 200 ⁇ m), and the shield was calcium carbonate (VIVAPRESS® Ca800; hardness 579.37 gf, particle size 710 ⁇ 850 ⁇ m remained on 25 mesh sieve after passing 20 mesh sieve).
  • Domperidon was dissolved in acid ethanol (adjusted to pH 3.5 using 0.08M citrate, and then a seed (cellet®) was coated with it using Glatt ° fluidized bed coater.
  • the coated seed was coated with 1 weight ratio of methacrylic acid-ethyl acrylate copolymer in ethanol.
  • the coated products were passed through an 50 mesh sieve, and then the particles having the particle size in the range of 250 to 300 ⁇ m (hardness: 103.38 gf) that remained on 60 mesh sieve were selected by using the Ro-Tap® E test sieve shaker. After that, an orally disintegrating dosage form was manufactured according to the formulation that was described in the following Table 5.
  • the buffer used was sorbitol (hardness: 43.12 gf, and particle size: 200 to 240 ⁇ m), and the shield was sugar spheres (NON PAREIL® 101 (hardness: 857.66 gf, particle size 710 ⁇ 850 ⁇ m).
  • Sildenafil lactate was coated with a solution of 95 g of polyvinylacetal diethylamino acetate and 5 g of triethyl citrate in 95% ethanol by using a fluidized bed water, wherein the weight ratio of the solution to the sildenafil lactate was 1.5.
  • the coated sildenafil lactate were passed through an 80 mesh sieve, and then the particles having the particle size in the range of 150 to 180 ⁇ m (hardness: 68.33 gf) that remained on 100 mesh sieve were selected by using the Ro-Tap® E test sieve shaker. After that, an orally disintegrating dosage form was manufactured according to the formulation that was described in the following Table 6.
  • buffer (a) 4% solution of the hydroxy propyl cellulose (HPC-LF) was used as the binding solution to granulate a cellulose by using the high-speed granulator, and then the granules were dried by blowing air at 30° C. and then passed through 60 mesh sieve, and then the particles having the particle size in the range of 212 to 250 ⁇ m (hardness: 24.37 gf) that remained on 70 mesh sieve were selected by using the Ro-Tap® E test sieve shaker.
  • shield (b) the same procedure was performed to get cellulose granules, which were then dried by blowing air at 60° C. and passed through 40 mesh sieve, and then the particles having the particle size in the range of 355 to 425 ⁇ m (hardness: 169.46 gf) that remained on 45 mesh sieve were selected.
  • Ibupropen was coated with a solution of 80 g of the methacrylic acid-ethyl acrylate copolymer Eudragit (Eudragit®E 100) and 20 g of ethyl cellulose in 95% ethanol by using the Glatt® fluidized bed water, wherein the weight ratio of the solution to the ibupropen was 1.5.
  • the coated ibupropen were passed through an 80 mesh sieve, and then the particles having the particle size in the range of 150 to 180 ⁇ m (hardness: 34.02 gf) that remained on a 100 mesh sieve were selected by using the Ro-Tap® E test sieve shaker. After that, an orally disintegrating dosage form was manufactured according to the formulation that was described in the following Table 7.
  • the buffer used was Tablettose® 80 (hardness: 16.38 gf, particle size in the range of 160 to 180 ⁇ m) and the shield was a lactose granule manufactured by the following procedure: 10% solution of the hydroxy propyl cellulose (HPC-LF) was used as the binding solution to granulate lactose by using the high-speed granule device, and then the granules were dried by blowing air at 50° C. and then through a 35 mesh sieve, and then the particles having the particle size in the range of 355 to 500 ⁇ m (hardness: 162.07 gf) that remained on a 45 mesh sieve were selected by using the Ro-Tap® E test sieve shaker.
  • HPC-LF hydroxy propyl cellulose
  • the orally disintegrating dosage form was manufactured by using the coated mosapride that was selected in Example 1 (hardness: 69.88 gf, and particle size: 150 to 425 ⁇ m) according to the formulation shown in Table 8.
  • the used buffer was isomalt GalenIQ® 721 (hardness: 15.02 gf, and particle size: 200 to 240 ⁇ m), and the shield was GalenIQ® 981 (hardness: 679.11 gf, and particle size: 750 to 790 ⁇ m).
  • the orally disintegrating dosage form was manufactured by using the coated mosapride that was selected in Example 2 (hardness: 39.87 gf, and particle size: 63 to 75 ⁇ m) according to the formulation shown in Table 9.
  • the used buffer was isomalt GalenIQ® 800 (hardness: 13.54 gf, and particle size: 50 ⁇ m or less), and the shield was GalenIQ® 721 (hardness: 15.02 gf, and particle size: 200 to 240 ⁇ m).
  • the orally disintegrating dosage form was manufactured by using the coated irbesartan that was selected in Example 4 (hardness: 156.11 gf, and particle size: 425 to 600 ⁇ m) according to the formulation shown in Table 10.
  • the used buffer was isomalt GalenIQ® 960 (hardness: 255.48 gf, and particle size: 360-400 ⁇ m), and the shield was GalenIQ® 980 (hardness: 996.57 gf, and particle size: 810 to 850 ⁇ m).
  • the orally disintegrating dosage form was manufactured by using the coated sildenafil lactate that was selected in Example 6 (hardness: 68.33 gf, and particle size: 150 to 180 ⁇ m) according to the formulation shown in Table 11.
  • buffer (a) 7% solution of the hydroxy propyl cellulose (HPC-LF) was used as the binding solution to granulate a cellulose by using the high-speed granulator, and then the granules were dried by blowing air at 40° C.
  • the particles having the particle size in the range of 180 to 212 ⁇ m (hardness: 70.01 gf) that remained on an 80 mesh sieve were selected by using the Ro-Tap® E test sieve shaker.
  • the same granules were through a 25 mesh sieve, and then the particles having the particle size in the range of 600 to 710 ⁇ m (hardness: 70.01 gf) that remained on 30 mesh sieve were selected.
  • Example 6 The coated sildenafil lactates in Example 6 were passed through a 50 mesh sieve, and then the particles having the particle size in the range of 250 to 300 ⁇ m (hardness: 89.12 gf) that remained on a 60 mesh sieve were selected by using the Ro-Tap® E test sieve shaker. After that, the orally disintegrating dosage form was manufactured according to the formulation shown in Table 12. In order to get buffer (a), 3% solution of the hydroxy propyl cellulose (HPC-LF) was used as the binding solution to granulate a non-crystalline cellulose by using the high-speed granulator, and then the granules were dried by blowing air at 30° C.
  • HPC-LF hydroxy propyl cellulose
  • the orally disintegrating dosage form was manufactured by using the coated irbesartan that was selected in Example 4 (hardness: 156.11 gf, and particle size: 425 to 600 ⁇ m) according to the formulation shown in Table 13.
  • the buffer used was cellulose (ARBOCEL® A300) (hardness: 36.08 gf, 200 ⁇ m), and the shield was calcium carbonate (VIVAPRESS® Ca800; hardness 579.37 gf, particle size 710 ⁇ 850 ⁇ m remained on 25 mesh sieve after passing 20 mesh sieve).
  • the hardness of the buffer, the shield, and the particles of the active substance including the coating layer that were used in the Examples were measured by using a physical property analyzer (Texture Analyser, TA.AX plus, Stable micro systems, UK), and the results are described in Table 14.
  • compositions prepared in Examples 1 to 7 which include the buffer having lower hardness than the coated active substance and the shield having higher hardness and larger particle size than the coated motive substance, with the weight ratio of the buffer to the shield of 1 or more, the degree of destroying of the coating layer in the artificial saliva was low.
  • the orally disintegrating dosage forms that were manufactured in Examples 1 to 4 and 7 and Comparative Examples 1 to 3 and 6 were administered to 15 women and 15 men of 20- to 50-aged healthy adult, and the degree of bitter taste each person felt was checked 2 minutes after it was taken. The results are described in Table 16. One dosage form was administered every 6 hours, and the test was performed for 5 days.
  • compositions prepared in Examples 1 to 4 and 7 which include the buffer having lower hardness than the coated active substance and the shield having higher hardness and larger particle size than the coated active substance, with the weight ratio of the buffer to the shield of 1 or more, most subjects did not feel bitter taste or felt the bitter taste just a little.

Abstract

The present invention relates to a composition for manufacturing an orally disintegrating dosage form that is used to prevent a coating layer of an active substance which is formed in a predetermined size in order to mask a bitter taste or an unpleasant taste. A predetermined ratio of an excipient having lower hardness than the coated active substance and another excipient having higher hardness and larger particle size than the active substance are used as means for protecting the coating layer from being destroyed.

Description

    TECHNICAL FIELD
  • The present invention relates to a composition of an orally disintegrating dosage form that is used to protect a coating layer of an active substance from being destroyed during a tableting process.
  • BACKGROUND ART
  • As a method for preventing a bitter taste or an unpleasant taste, addition of a flavored sweetener, manufacturing of a solid dispersion by using a spray dryer, shielding by using an ion exchange resin, melt extrusion, coating by fluidized bed water, and so forth have been known. In addition to that, various types of technologies, in which an active substance is coated with a polymer that is not dissolved in the oral cavity to prevent a patient from feeling a bitter taste in the oral cavity or the gullet when administered, have been known.
  • Korean Patent Application Publication No. 10-2004-0011087 a process for preparing roxithromycin granules having masked taste and smell” relates to a method of manufacturing a roxithromycin granule, which comprises granulating an active substance, roxithromycin, and then fine-coating the granulated roxithromycin, which in turn serves as a seed in coating with an agent and a plasticizer at low temperatures. The patent discloses that an unpleasant taste and flavor are masked and an active substance is released only in the stomach. Korean Patent Application Publication No. 2002-0069377 that has the invention title of “a process for preparing release-controlled granules of quinolone-based drugs having masked taste and smell” discloses a process in which an active substance is granulated and the taste and flavor are masked by using a fluidized bed water.
  • In accordance with the demand for novel medicinal products that can be easily taken and have improved convenience, various types of methods for manufacturing an orally disintegrating dosage form have been developed in many countries. Korean Patent Application Publication No. 2000-0016654 that has the invention title of “intraorally rapidly disintegrable tablet” discloses a method for manufacturing a tablet that contains sugar alcohol or sugars having an average particle diameter of 30 μm or less, an active substance, and a disintegrating agent. Korean Patent Application Publication No. 10-2004-0073288 that has the invention title of “solid orally-dispersible pharmaceutical formulation” discloses a method for manufacturing a solid orally dispersible pharmaceutical formulation comprising granules of co-dried lactose and starch and an active substance. In addition, Korean Patent Application Publication No. 10-2005-0096941 that has the invention title of “tablet quickly melting in the oral cavity” discloses a method of providing a tablet that has the hardness, which is considered to be desirable in practice, and rapidly integrates in the oral cavity. The above-mentioned prior arts disclose the methods for manufacturing the orally disintegrating dosage form, but they do not disclose how to mask a taste and a flavor of an active substance. When an orally disintegrating dosage form is manufactured according to the above-mentioned methods after an active substance having bitter or unpleasant taste is covered with the coating layer, the coating layer of the active substance is destroyed by pressure, thus a patient may feel the taste of the active substance. Thus, there is a disadvantage in that dosage and convenience performances may not be improved.
  • With respect to a method for protecting contents during tableting, U.S. Pat. No. 6,923,984 B1 that has the invention title of “Cushioning wax beads for making solid shaped articles” discloses a method for protecting wax beads containing an active substance by controlling the ratio of similar-sized cushioning wax beads. However, there are disadvantages in that it requires high shear mixing with temperature-control and that CO2 pellet needs to be supplied for temperature control.
  • DISCLOSURE OF INVENTION Technical Problem
  • A coating layer of an active substance, e.g. for preventing a bitter or an unpleasant taste and so forth, may easily be destroyed by pressure applied during a tableting process. It is an object of the present invention to provide a composition of an orally disintegrating dosage form that is used to protect a coating layer on an active substance from being destroyed during a tableting process.
  • Technical Solution
  • The present invention relates to a composition of an orally disintegrating dosage form that is used to protect a coating layer of an active substance from being destroyed during a tableting process.
  • The pharmaceutical composition comprises:
  • a coated active substance;
  • a buffer having a hardness that is lower than the coated arrive substance; and
  • a shield having a hardness that is higher than the coated active substance and a particle size that is larger than the coated active substance. It is preferable that the dosage form be a tablet.
  • According to an embodiment, the hardness of the buffer is 0.1 times or more and less than 1 time as high as the hardness of the particle of the coated active substance, and preferably 0.1 to 0.7 times as high as the hardness of the particle of the coated active substance. The hardness of the shield is more than 1 time and 20 times or less as high as the hardness of the particle of the coated active substance, and preferably 4 to 15 times as high as the hardness of the particle of the coated active substance.
  • According to another embodiment, the coated active substance has the particle diameter in the range of 0.1 to 1000 μm, and preferably in the range of 150 to 425 μm. The buffer has the particle diameter which is 0.1 to 10 times as large as the particle diameter of the coated active substance, and preferably 1 to 3 times as large as the particle diameter of the coated active substance. The shield has the particle diameter which is more than 1 time and 10 times or less as large as the particle diameter of the coated active substance, and preferably more than 1 time and 4 times or less as large as the particle diameter of the coated active substance.
  • According to another embodiment, the weight ratio of the buffer with respect to the coated active substance is 5 or less, and the weight ratio of the shield with respect to the coated active substance is 3 or less. It is preferable that the weight of the above coated arrive substance be in the range of 1 to 1000 mg, the weight ratio of the buffer be in the range of 0.1 to 3 with respect to the above coated active substance, and the weight ratio of the shield be in the range of 0.1 to 2. More preferably, the weight ratio of the buffer with respect to the shield is 1 or more.
  • Examples of the shape of the buffer or the shield may include: powder; fine crystals; granules that are formed by using dry, wet, or high temperature granulation; or particles that are formed by using mounting on a neutral support body or extrusion, but the shape is not limited thereto.
  • The buffer and the shield each independently are manufactured by granulating a material selected from isomalt, mannitol, dried mannitol, crystalline mannitol, maltitol, lactose, glucose, lactitol, trehalose, dextrate, white sugar, white sugar for direct tableting, sorbitol, xylitol, mannitol granules, aspartame, acesulfame, acesulfame potassium, saccharin sodium, a cellulose polymer, and a mixture thereof, but the material is not limited thereto.
  • The coating layer of the coated active substance may be manufactured by: a coating method using a fluidized bed water; a coating method using a spray drier; coagulation coating; microencapsulation; micro-granulation; ionic resin absorption process; or coating by a polymer after an active substance is applied on a seed, but the manufacturing of the coating layer is not limited thereto.
  • Preferably, the orally disintegrating dosage form disintegrates in the oral cavity within 60 seconds. More preferably, the orally disintegrating dosage form disintegrates into particles having a diameter of 2 mm or less within 60 seconds.
  • Preferably, the hardness of the orally disintegrating dosage form is 30 N or more.
  • In addition, the present invention provides a method for manufacturing an orally disintegrating dosage form by using the pharmaceutical composition. Specifically, the orally disintegrating dosage form is manufactured by a tableting process, and pressure is applied to the pharmaceutical composition during the tableting process so that the buffer is destroyed but the coated arrive substance and the shield is not destroyed.
  • Advantageous Effects
  • In an orally disintegrating dosage form that is manufactured by using a composition of the present invention, a coating layer of an active substance is protected against pressure during a tableting process. Thus, a patient can take the orally disintegrating dosage form having undamaged coating layer.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • As means for protecting a coating layer from being destroyed, the composition of the present invention comprises, at a predetermined mixing ratio, (a) a “buffer” having a hardness that is lower than that of a coated active substance and (b) a “shield” having a higher hardness and larger particle diameter than the coated active substance. The buffer is an excipient that performs buffer action by being destroyed before the coating layer is destroyed in order to prevent the coated active substance from being destroyed by pressure that is applied during the tableting process. The buffer is 0.1 to 10 times larger in diameter than the coated active substance and it has the hardness that is less than 1 time as high as that of the coated active substance, and is used at a weight ratio of 5 or less with respect to the weight of the coated active substance. The shields, which have the higher hardness and larger particle diameter than the coated active substance, preclude pressure from being applied to the active substances while the buffers, which are destroyed by the pressure, are disposed in spaces formed during the tableting process. The shield has the particle size that is 1 to 10 times larger in diameter that the coated active substance and the hardness that is 1 to 20 times higher than the coated active substance, and it is used at a weight ratio of 3 or less with respect to the weight of the coated active substance. Thereby, the present invention provides a method for manufacturing an orally disintegrating dosage form where a coating layer of an active substance (e.g. for masking a taste) is protected.
  • The term “orally disintegrating dosage form” which is used in the present invention means a tablet that has a hardness of 30 N (3061.22 gf) or more and disintegrates in the oral cavity within 60 seconds. Among dosage forms for oral administration, commercially available in various types of products, which are easy to be taken by old persons or children having a poor swallowing force and which can be easily carried the dosage forms because it is unnecessary to take the dosage form in conjunction with water, are solid-type orally disintegrating dosage forms.
  • Since the orally disintegrating dosage form rapidly disintegrates in the oral cavity, the taste is important in administration. In the case when the orally disintegrating dosage form that contains the active substance having the bitter taste or the unpleasant taste disintegrates by saliva in the oral cavity to enable a patient to feel the bitter taste or the unpleasant taste, the form is less tolerable. Thus, in order to manufacture the orally disintegrating dosage form with the active substance having the bitter taste or the unpleasant taste, the unpleasant taste of the active substance should be masked.
  • In the present invention, in order to prevent the coating layer for the active substance having the bitter taste or the unpleasant taste from being destroyed while the active substance is shaped into the tablet, the buffer having a predetermined particle size (0.1 to 10 times larger in diameter than the coated active substance) and lower hardness than the coated active substance (less than 1 time) is used at the weight ratio of 5 or less with respect to the active substance including the coating layer (preferably, the weight ratio of 0.1 to 3). Unlike the buffer, the shield having the particle size that is larger than that of the active substance including the coating layer (1 to 10 times larger than the coated active substance) and the hardness that is higher than that of the coated active substance (more than 1 time and 20 times or less) is used at the weight ratio of 3 or less with respect to the coated active substance (preferably, the weight ratio of 0.1 to 2). Sugar alcohols (sugar alcohols are not limited to sugars that is allowed during the production of drugs, and examples of the sugar alcohols may include sugar alcohols, lactoses, white sugars, glucoses, and oligosaccharides that are represented by mannitol, xylitol, sorbitol, erythritol, maltitol, and maltose) that are typically used in the orally disintegrating dosage form, and one or more super-disintegrants or one or more disintegrants are contained, and one or more types of excipients that are typically used are mixed to manufacture the orally disintegrating dosage form that has the hardness of 30 N (3061.22 gf) or more and disintegrates in the oral cavity within 60 seconds.
  • Since the buffer that is used in the present invention has the hardness that is lower than that of the coated active substance and is destroyed before the coating layer of the active substance is destroyed in order to buffer pressure which is applied while tableting the dosage form, the pressure which is applied to the coating layer of the active substance may be minimized. In addition, the shields, which have the higher hardness and larger particle size than the coated active substance, prevent direct pressure applied to the active substance, and at as a secondary buffering agent so that the coated active substance and the buffer which is destroyed by pressure are disposed in the spaces formed during the tableting process.
  • Therefore, in the present invention, one or more types of buffer that are destroyed before the coating layer of the active substance is destroyed and have lower hardness and one or more types of shield that can buffer the pressure for a predetermined time so that the coated active substance and the destroyed buffer are disposed in the spaces formed during the tableting process and have higher hardness and larger size than the active substance are mixed with each other to protect the coating layer. The particle size of each of the buffer and the shield may be varied according to the particle size of the coated active substance, and the various types of buffer and shield may be used.
  • If lesser amount of buffer than the above-mentioned weight ratio is used, a portion of a coating layer of an active substance may be destroyed since the amount of the buffer that is destroyed in advance according to the pressure applied during the shaping is less than the amount that is required for protection. Consequently, the active substance may be exposed which allows the patient to feel the bitter taste. The amount of the shield also plays an important role, and if the amount deviates from the above-mentioned range, pressure may be applied to the coating layer of the active substance to cause damages to the coating layer.
  • Examples of the excipient that may be used as buffer or shield in the present invention include isomalt, mannitol, dried mannitol, crystalline mannitol, maltitol, lactose, glucose, lactitol, trehalose, dextrate, white sugar, white sugar for direct tableting, sorbitol, xylitol, granular mannitol, aspartame, acesulfame, acesulfame potassium, saccharin sodium, a cellulose polymer (ethyl cellulose, hydroxypropyl cellulose, hydroxypropylmethyl cellulose, cellulose acetate, cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate, hydroxypropylmethylcellulose succinate phthalate, cellulose acetate, cellulose acetate trimellitate, cellulose acetate butyrate, carboxymethyl cellulose, microcrystalline cellulose or the like), or other typically used excipient, but examples of the excipient are not limited thereto.
  • In coating of the active substance according to the present invention, a method of masking a taste and a flavor is not limited, and examples thereof may include: a coating method using a spray drier; forming a coating layer outside of an active substance using a fluidized bed water; coagulation coating; microencapsulation; micro-granulation; ionic resin absorption process; coating by a polymer after an active substance is applied on a seed; preparing matrix; and all other technique which can mask a taste or a flavor of an active substance.
  • In addition, the wave substance that is used in the present invention contains a pharmaceutical compound or chemical material that is capable of being orally administered. Examples of a drug that is useful in the present invention may include antibiotics, gastrointestinal tract (GIT) regulators, anti-viral medicines, analgesics, anesthetics, anoretics, antarthritics, antiashmatic drugs, antispasmodics, antidepressants, antidiabetic drugs, antidiarrheal agents, antihistaminic drug, anti-inflammatory agent, antiemetic drugs, antineoplastics, antiparkinsonism drugs, antipruritics, antipsychotics, antipyretics, antispasmodics, H2 antogonists, cardiovascular drugs, antiarrhythmic agents, antihypertensive agents, ACE inhibitors, diuretics, vasodilators, hormones, narcotics, immuno suppressants, muscle relaxants, parasympatholytic drugs, parasympathomimetic drugs, psychostimulants, sedatives, migraine drugs, antituberculosis drug, ataractics and the like. Any solid medicines having bitter taste or other unpleasant tastes, which should be masked, may be used in the present invention. The term “drug” includes nutritional supplements such as vitamins and minerals. One specific example of the active substance may be hydrochloride itopride.
  • MODE FOR THE INVENTION
  • In the following Examples, a detailed description will be given of a method for manufacturing an orally disintegrating dosage form while a coating layer for preventing a bitter taste or an unpleasant taste of an active substance according to the present invention is protected, but the scope of the present invention is not limited thereto.
  • Example 1
  • Purpose: Preparation of an orally disintegrating dosage form comprising isomalts and mosaprides coated with the mixture of the methacrylic acid-ethyl acrylate copolymer and ethyl cellulose (I)
  • After a seed (cellet®) was coated with an active substance, mosapride, using Glatt fluidized bed water, and then it was coated with a solution of 80 g of the methacrylic acid-ethyl acrylate copolymer Eudragit (Eudragit® E 100) and 20 g of ethyl cellulose in 95% ethanol by using the Glatt® fluidized bed water, wherein the weight ratio of the solution to the mosapride was 2. The coated mosapride passed through an 40 mesh sieve, and then the particles having the particle size in the range of 150 to 425 μm (hardness: 69.88 gf, see Experimental Example 3) that remained on 100 mesh sieve were selected by using the Ro-Tap® E test sieve shaker. After that, an orally disintegrating dosage form was manufactured according to the formulation that was described in the following Table 1. The buffer used was isomalt GalenIQ® 721 (hardness: 15.02 gf, and particle size: 200 to 240 μm), and the shield was isomalt GalenIQ® 981 (hardness: 679.11 gf, and particle size: 750 to 790 μm).
  • TABLE 1
    Composition Addition amount (g) Weight ratio (%)
    Coated Mosapride 125 31.25
    (mosapride, 5 mg)
    Dried mannitol 138 34.5
    Isomalt (GalenIQ ® 721) 30 7.5
    Isomalt (GalenIQ ® 981) 20 5
    Crospovidone 70 17.5
    flavored sweetener 15 3.75
    Lubricant 2 0.5
  • Example 2
  • Purpose: Preparation of the orally disintegrating dosage form comprising isomalts and mosaprides coated with the mixture of methacrylic acid-ethyl acrylate copolymer and ethyl cellulose (II)
  • The same procedure as that in Example 1 was performed to obtain the coated mosapride. The coated mosapride passed through an 200 mesh sieve, and then the particles having the particle size in the range of 63 to 75 μm (hardness: 39.87 gf) that remained on 230 mesh sieve were selected. The buffer used was isomalt GalenIQ® 800 (hardness: 13.54 gf, and particle size: 50 μm or less), and the shield was isomalt GalenIQ® 960 (hardness: 255.48 gf, and particle size: 360 to 400 μm).
  • TABLE 2
    Composition Addition amount (g) Weight ratio (%)
    Coated Mosapride 125 31.25
    Dried mannitol 138 34.5
    Isomalt (GalenIQ ® 800) 38 9.5
    Isomalt (GalenIQ ® 960) 12 3
    Crospovidone 70 17.5
    flavored sweetener 15 3.75
    Lubricant 2 0.5
  • Example 3
  • Purpose: Preparation of an orally disintegrating dosage form comprising isomalts and hydrochloride itopride coated with the mixture of methacrylic acid-ethyl acrylate copolymer and ethyl cellulose
  • Hydrochloride itopride was coated with a solution of 80 g of the methacrylic acid-ethyl acrylate copolymer Eudragit (Eudragit® E 100) and 20 g of ethyl cellulose in 95% ethanol by using the Glatt® fluidized bed water, wherein the weight ratio of the solution to the hydrochloride itopride was 1.5. The coated hydrochloride itopride passed through an 40 mesh sieve, and then the particles having the particle size in the range of 150 to 425 μm (hardness: 67.83 gf, see Experimental Example 3) that remained on 100 mesh sieve were selected by using the Ro-Tap® E test sieve shaker. After that, an orally disintegrating dosage form was manufactured according to the formulation that was described in the following Table 3. The buffer used was isomalt GalenIQ® 721 (hardness: 15.02 gf, and particle size: 200 to 240 μm), and the shield was isomalt GalenIQ® 980 (hardness: 996.57 gf, and particle size: 810 to 850 μm).
  • TABLE 3
    Composition Addition amount (g) Weight ratio (%)
    Coated Hydrochloride 125 31.25
    Itopride
    Dried mannitol 138 34.5
    Isomalt (GalenIQ ® 721) 26 6.5
    Isomalt (GalenIQ ® 980) 24 6
    Crospovidone 70 17.5
    flavored sweetener 15 3.75
    Lubricant 2 0.5
  • Example 4
  • Purpose: Preparation of an orally disintegrating dosage form comprising cellulose, calcium carbonate and irbesartan coated with the mixture of methacrylic acid-ethyl acrylate copolymer and ethyl cellulose (III)
  • After a seed (cellet®) was coated with an active substance, irbesartan, using Glatt fluidized bed coater, and then it was coated with a solution of 80 g of the methacrylic acid-ethyl acrylate copolymer Eudragit (Eudragit® E 100) and 20 g of ethyl cellulose in 95% ethanol by using the Glatt fluidized bed coater, wherein the weight ratio of the solution to the irbesartan was 0.5. The coated irbesartan were passed through an 30 mesh sieve, and then the particles having the particle size in the range of 425 to 600 μm (hardness: 156.11 gf) that remained on 40 mesh sieve were selected by using the Ro-Tap® E test sieve shaker. After that, an orally disintegrating dosage form was manufactured according to the formulation that was described in the following Table 4. The buffer used was cellulose (ARBOCEL® A300) (hardness: 36.08 gf, 200 μm), and the shield was calcium carbonate (VIVAPRESS® Ca800; hardness 579.37 gf, particle size 710˜850 μm remained on 25 mesh sieve after passing 20 mesh sieve).
  • TABLE 4
    Composition Addition amount (g) Weight ratio (%)
    Coated Irbesartan 125 31.25
    Dried mannitol 138 34.5
    Cellulose (ARBOCEL ® 40 10
    A300)
    Calcium Carbonate 10 2.5
    (VIVAPRESS ® Ca800)
    Crospovidone 70 17.5
    flavored sweetener 15 3.75
    Lubricant 2 0.5
  • Example 5
  • Purpose: Preparation of an orally disintegrating dosage form comprising sorbitol, seed-type sugar and domperidon coated with methacrylic acid-ethyl acrylate copolymer
  • Domperidon was dissolved in acid ethanol (adjusted to pH 3.5 using 0.08M citrate, and then a seed (cellet®) was coated with it using Glatt ° fluidized bed coater. The coated seed, in turn, was coated with 1 weight ratio of methacrylic acid-ethyl acrylate copolymer in ethanol. The coated products were passed through an 50 mesh sieve, and then the particles having the particle size in the range of 250 to 300 μm (hardness: 103.38 gf) that remained on 60 mesh sieve were selected by using the Ro-Tap® E test sieve shaker. After that, an orally disintegrating dosage form was manufactured according to the formulation that was described in the following Table 5. The buffer used was sorbitol (hardness: 43.12 gf, and particle size: 200 to 240 μm), and the shield was sugar spheres (NON PAREIL® 101 (hardness: 857.66 gf, particle size 710˜850 μm).
  • TABLE 5
    Composition Addition amount (g) Weight ratio (%)
    Coated Domperidon 30 29.13
    Dried mannitol 35 33.98
    Sorbitol 8 7.77
    Sugar Spheres (NON 5 4.85
    PAREIL ® 101)
    Croscarmellose sodium 20 19.42
    Essence of 2.5 2.43
    Strawberry-aroma
    Sucralose 2 1.94
    Lubricant 0.5 0.48
  • Example 6
  • Purpose: Preparation of an orally disintegrating dosage form comprising sildenafil lactate coated with polyvinylacetaldiethylamino acetate and non-crystalline cellulose granules
  • Sildenafil lactate was coated with a solution of 95 g of polyvinylacetal diethylamino acetate and 5 g of triethyl citrate in 95% ethanol by using a fluidized bed water, wherein the weight ratio of the solution to the sildenafil lactate was 1.5. The coated sildenafil lactate were passed through an 80 mesh sieve, and then the particles having the particle size in the range of 150 to 180 μm (hardness: 68.33 gf) that remained on 100 mesh sieve were selected by using the Ro-Tap® E test sieve shaker. After that, an orally disintegrating dosage form was manufactured according to the formulation that was described in the following Table 6. In order to get buffer (a), 4% solution of the hydroxy propyl cellulose (HPC-LF) was used as the binding solution to granulate a cellulose by using the high-speed granulator, and then the granules were dried by blowing air at 30° C. and then passed through 60 mesh sieve, and then the particles having the particle size in the range of 212 to 250 μm (hardness: 24.37 gf) that remained on 70 mesh sieve were selected by using the Ro-Tap® E test sieve shaker. In order to get shield (b), the same procedure was performed to get cellulose granules, which were then dried by blowing air at 60° C. and passed through 40 mesh sieve, and then the particles having the particle size in the range of 355 to 425 μm (hardness: 169.46 gf) that remained on 45 mesh sieve were selected.
  • TABLE 6
    Composition Addition amount (g) Weight ratio (%)
    Sildenafil lactate 125 31.25
    Dried mannitol 138 34.5
    Non-crystalline 30 7.5
    cellulose granule (a)
    Non-crystalline 20 5
    cellulose granule (b)
    Crospovidone 70 17.5
    flavored sweetener 15 3.75
    Lubricant 2 0.5
  • Example 7
  • Purpose: Preparation of an orally disintegrating dosage form comprising spray-dried lactose, lactose granule and ibupropen coated with the mixture of methacrylic acid-ethyl acrylate copolymer and ethyl cellulose
  • Ibupropen was coated with a solution of 80 g of the methacrylic acid-ethyl acrylate copolymer Eudragit (Eudragit®E 100) and 20 g of ethyl cellulose in 95% ethanol by using the Glatt® fluidized bed water, wherein the weight ratio of the solution to the ibupropen was 1.5. The coated ibupropen were passed through an 80 mesh sieve, and then the particles having the particle size in the range of 150 to 180 μm (hardness: 34.02 gf) that remained on a 100 mesh sieve were selected by using the Ro-Tap® E test sieve shaker. After that, an orally disintegrating dosage form was manufactured according to the formulation that was described in the following Table 7. The buffer used was Tablettose® 80 (hardness: 16.38 gf, particle size in the range of 160 to 180 μm) and the shield was a lactose granule manufactured by the following procedure: 10% solution of the hydroxy propyl cellulose (HPC-LF) was used as the binding solution to granulate lactose by using the high-speed granule device, and then the granules were dried by blowing air at 50° C. and then through a 35 mesh sieve, and then the particles having the particle size in the range of 355 to 500 μm (hardness: 162.07 gf) that remained on a 45 mesh sieve were selected by using the Ro-Tap® E test sieve shaker.
  • TABLE 7
    Composition Addition amount (g) Weight ratio (%)
    Coated Ibupropen 500 31.25
    Dried mannitol 552 34.5
    Tablettose ® 80 120 7.5
    Lactose granule 80 5
    Bean polysaccharide 280 17.5
    xylitol 30 1.88
    Aspartame 20 1.25
    Essence of 10 0.62
    Vanilla-aroma
    Lubricant 8 0.5
  • Comparative Example 1
  • Purpose: Preparation of the orally disintegrating dosage form comprising mosaprides coated with the mixture of methacrylic acid-ethyl acrylate copolymer and ethyl cellulose and isomalts
  • The orally disintegrating dosage form was manufactured by using the coated mosapride that was selected in Example 1 (hardness: 69.88 gf, and particle size: 150 to 425 μm) according to the formulation shown in Table 8. The used buffer was isomalt GalenIQ® 721 (hardness: 15.02 gf, and particle size: 200 to 240 μm), and the shield was GalenIQ® 981 (hardness: 679.11 gf, and particle size: 750 to 790 μm).
  • TABLE 8
    (unit: % by weight)
    Comparative Example
    Composition Comparative Example 1-1 1-2
    Dried mannitol 34.5 34.5
    Coated Mosapride 31.25 31.25
    GalenIQ ® 721 12.5 0
    GalenIQ ® 981 0 12.5
    Crospovidone 17.5 17.5
    flavored sweetener 3.75 3.75
    Lubricant 0.5 0.5
  • Comparative Example 2
  • Purpose: Preparation of the orally disintegrating dosage form comprising mosaprides coated with the mixture of methacrylic acid-ethyl acrylate copolymer and isomalts
  • The orally disintegrating dosage form was manufactured by using the coated mosapride that was selected in Example 2 (hardness: 39.87 gf, and particle size: 63 to 75 μm) according to the formulation shown in Table 9. The used buffer was isomalt GalenIQ® 800 (hardness: 13.54 gf, and particle size: 50 μm or less), and the shield was GalenIQ® 721 (hardness: 15.02 gf, and particle size: 200 to 240 μm).
  • TABLE 9
    Composition Addition amount (g) Weight ratio (%)
    Coated Mosapride 125 31.25
    Dried mannitol 138 34.5
    Isomalt (GalenIQ ® 800) 38 9.5
    Isomalt (GalenIQ ® 721) 12 3
    Crospovidone 70 17.5
    flavored sweetener 15 3.75
    Lubricant 2 0.5
  • Comparative Example 3
  • Purpose: Preparation of the orally disintegrating dosage form comprising isomalt and irbesartan coated with the mixture of methacrylic acid-ethyl acrylate copolymer and ethyl cellulose
  • The orally disintegrating dosage form was manufactured by using the coated irbesartan that was selected in Example 4 (hardness: 156.11 gf, and particle size: 425 to 600 μm) according to the formulation shown in Table 10. The used buffer was isomalt GalenIQ® 960 (hardness: 255.48 gf, and particle size: 360-400 μm), and the shield was GalenIQ® 980 (hardness: 996.57 gf, and particle size: 810 to 850 μm).
  • TABLE 10
    Composition Addition amount (g) Weight ratio (%)
    Coated Irbesartan 125 31.25
    Dried mannitol 138 34.5
    Isomalt (GalenIQ ® 960) 38 9.5
    Isomalt (GalenIQ ® 980) 12 3
    Crospovidone 70 17.5
    flavored sweetener 15 3.75
    Lubricant 2 0.5
  • Comparative Example 4
  • Purpose: Preparation of an orally disintegrating dosage form comprising sildenafil lactate coated with polyvinylacetaldiethylamino acetate and non-crystalline cellulose granules
  • The orally disintegrating dosage form was manufactured by using the coated sildenafil lactate that was selected in Example 6 (hardness: 68.33 gf, and particle size: 150 to 180 μm) according to the formulation shown in Table 11. In order to get buffer (a), 7% solution of the hydroxy propyl cellulose (HPC-LF) was used as the binding solution to granulate a cellulose by using the high-speed granulator, and then the granules were dried by blowing air at 40° C. and then passed through a 70 mesh sieve, and then the particles having the particle size in the range of 180 to 212 μm (hardness: 70.01 gf) that remained on an 80 mesh sieve were selected by using the Ro-Tap® E test sieve shaker. In order to get shield (b), the same granules were through a 25 mesh sieve, and then the particles having the particle size in the range of 600 to 710 μm (hardness: 70.01 gf) that remained on 30 mesh sieve were selected.
  • TABLE 11
    Composition Addition amount (g) Weight ratio (%)
    Sildenafil lactate 125 31.25
    Dried mannitol 138 34.5
    Non-crystalline 30 7.5
    cellulose granule (a)
    Non-crystalline 20 5
    cellulose granule (b)
    Crospovidone 70 17.5
    flavored sweetener 15 3.75
    Lubricant 2 0.5
  • Comparative Example 5
  • Purpose: Preparation of an orally disintegrating dosage form comprising sildenafil lactate coated with polyvinylacetaldiethylamino acetate and non-crystalline cellulose granules
  • The coated sildenafil lactates in Example 6 were passed through a 50 mesh sieve, and then the particles having the particle size in the range of 250 to 300 μm (hardness: 89.12 gf) that remained on a 60 mesh sieve were selected by using the Ro-Tap® E test sieve shaker. After that, the orally disintegrating dosage form was manufactured according to the formulation shown in Table 12. In order to get buffer (a), 3% solution of the hydroxy propyl cellulose (HPC-LF) was used as the binding solution to granulate a non-crystalline cellulose by using the high-speed granulator, and then the granules were dried by blowing air at 30° C. and then passed through a 70 mesh sieve, and then the particles having the particle size in the range of 180 to 212 μm (hardness: 21.47 gf) that remained on an 80 mesh sieve were selected by using the Ro-Tap® E test sieve shaker. In order to get shield (b), 10% solution of the hydroxy propyl cellulose (HPC-LF) was used as the binding solution in granulating in the same procedure, and then the granules were dried by blowing air at 60° C. and obtained the particles having the same size as buffer (a) (hardness: 173.12 gf).
  • TABLE 12
    Composition Addition amount (g) Weight ratio (%)
    Sildenafil lactate 125 31.25
    Dried mannitol 138 34.5
    Non-crystalline 30 7.5
    cellulose granule (a)
    Non-crystalline 20 5
    cellulose granule (b)
    Crospovidone 70 17.5
    flavored sweetener 15 3.75
    Lubricant 2 0.5
  • Comparative Example 6
  • Purpose: Preparation of an orally disintegrating dosage form comprising cellulose, calcium carbonate and irbesartan coated with the mixture of methacrylic acid-ethyl acrylate copolymer and ethyl cellulose
  • The orally disintegrating dosage form was manufactured by using the coated irbesartan that was selected in Example 4 (hardness: 156.11 gf, and particle size: 425 to 600 μm) according to the formulation shown in Table 13. The buffer used was cellulose (ARBOCEL® A300) (hardness: 36.08 gf, 200 μm), and the shield was calcium carbonate (VIVAPRESS® Ca800; hardness 579.37 gf, particle size 710˜850 μm remained on 25 mesh sieve after passing 20 mesh sieve).
  • TABLE 13
    Composition Addition amount (g) Weight ratio (%)
    Coated Irbesartan 125 31.25
    Dried mannitol 138 34.5
    Cellulose (ARBOCEL ® 10 2.5
    A300)
    Calcium Carbonate 40 10
    (VIVAPRESS ® Ca800)
    Crospovidone 70 17.5
    flavored sweetener 15 3.75
    Lubricant 2 0.5
  • Experimental Example 1
  • Purpose: Test of the hardness of the particle
  • The hardness of the buffer, the shield, and the particles of the active substance including the coating layer that were used in the Examples were measured by using a physical property analyzer (Texture Analyser, TA.AX plus, Stable micro systems, UK), and the results are described in Table 14.
  • TABLE 14
    (unit: gf)
    Coated
    Active
    Substance Buffer Shield
    Example 1 69.88 15.02 679.10
    Example 2 39.87 13.54 255.48
    Example 3 67.83 15.02 996.57
    Example 4 156.11 36.08 579.37
    Example 5 103.38 43.12 857.66
    Example 6 68.33 24.37 169.46
    Example 7 34.02 16.38 162.07
    - - - - - - - - - - - -
    Comp. Example 1-1 69.88 15.02
    Comp. Example 1-2 69.88 679.11
    Comp. Example 2 39.87 13.54 15.02
    Comp. Example 3 156.11 255.48 996.57
    Comp. Example 4 68.33 70.01 70.01
    Comp. Example 5 89.12 21.47 173.12
    Comp. Example 6 156.11 36.08 579.37
  • Experimental Example 2
  • Purpose: Test of the solubility in artificial saliva
  • After 12 mM of potassium dihydrogen phosphate solution, 40 nM of sodium chloride solution, and 1.5 nM of calcium chloride solution were mixed with each other, the pH was adjusted to 6.2 with sodium hydroxide to prepare artificial saliva. Each of the samples of Examples 1 to 7 and Comparative Examples 1 to 6 was disintegrated in 100 ml of the artificial saliva, was left for 10 mM, and then assayed to determine the content of the released active substance. The results are described in Table 15. The higher content shows the more of the coating layers are destroyed and the release of active substance within the oral cavity.
  • TABLE 15
    (unit: %)
    Average content (%)
    Example 1 1.39
    Example 2 2.26
    Example 3 2.89
    Example 4 1.75
    Example 5 3.64
    Example 6 3.18
    Example 7 2.44
    - - - - - -
    Comp. Example 1-1 59.48
    Comp. Example 1-2 65.15
    Comp. Example 2 87.64
    Comp. Example 3 70.11
    Comp. Example 4 79.88
    Comp. Example 5 45.34
    Comp. Example 6 87.44
  • In the case of the compositions prepared in Examples 1 to 7, which include the buffer having lower hardness than the coated active substance and the shield having higher hardness and larger particle size than the coated motive substance, with the weight ratio of the buffer to the shield of 1 or more, the degree of destroying of the coating layer in the artificial saliva was low. However, in the case when buffer or shield was used alone (Comparative Example 1), when the hardness of shield was lower than that of the particle of the coated active substance (Comparative Example 2), when the hardness of the first protective excipient was higher than that of the particle of the coated active substance (Comparative Example 3), when the buffer and the shield had the same hardness to each other (Comparative Example 4), when the particle of the shield was smaller than that of the particle of the coated active substance (Comparative Example 5), and when the weight ratio of the buffer to the shield was less than 1 (Comparative Example 6), the degree of destroying of the coating layer was high.
  • Experimental Example 3
  • Purpose: Sensory evaluation
  • The orally disintegrating dosage forms that were manufactured in Examples 1 to 4 and 7 and Comparative Examples 1 to 3 and 6 were administered to 15 women and 15 men of 20- to 50-aged healthy adult, and the degree of bitter taste each person felt was checked 2 minutes after it was taken. The results are described in Table 16. One dosage form was administered every 6 hours, and the test was performed for 5 days.
  • (Degree of Bitter Taste)
  • The patient does not feel bitter taste at all: 0
  • The patient feels bitter taste just a little: 1
  • The patient feels bitter taste just a little more: 2
  • The patient feels bitter taste: 3
  • The patient feels bitter taste but can bear the bitter taste: 4
  • The patient feels bitter taste and cannot bear the bitter taste: 5
  • TABLE 16
    Degree of bitter taste (the number of persons)
    0 1 2 3 4 5
    Example 1 26 4 0 0 0 0
    Example 2 16 13 1 0 0 0
    Example 3 16 14 0 0 0 0
    Example 4 18 19 3 0 0 0
    Example 7 16 14 0 0 0 0
    Comp. Example 1-1 0 0 5 13 11 1
    Comp. Example 1-2 0 0 4 10 15 1
    Comp. Example 2 0 0 0 8 18 4
    Comp. Example 3 0 0 0 7 12 11
    Comp. Example 6 0 0 0 6 15 9
  • In the case of the compositions prepared in Examples 1 to 4 and 7, which include the buffer having lower hardness than the coated active substance and the shield having higher hardness and larger particle size than the coated active substance, with the weight ratio of the buffer to the shield of 1 or more, most subjects did not feel bitter taste or felt the bitter taste just a little. However, in the case when buffer or shield was used alone (Comparative Example 1), when the hardness of shield was lower than that of the particle of the coated active substance (Comparative Example 2), when the hardness of the first protective excipient was higher than that of the particle of the coated active substance (Comparative Example 3), when the buffer and the shield had the same hardness to each other (Comparative Example 4), when the particle of the shield was smaller than that of the particle of the coated active substance (Comparative Example 5), and when the weight ratio of the buffer to the shield was less than 1 (Comparative Example 6), most subjects felt the bitter taste.

Claims (16)

1. A pharmaceutical composition for manufacturing an orally disintegrating dosage form, comprising: a coated active substance; a buffer having lower hardness than the coated active substance; and a shield having higher hardness and larger particle size than the coated active substance.
2. The pharmaceutical composition as set forth in claim 1, wherein the dosage form is a tablet.
3. The pharmaceutical composition as set forth in claim 1, wherein the hardness of the buffer is 0.1 times or more and less than 1 time as high as the hardness of the particle of the coated active substance, and the hardness of the shield is more than 1 time and 20 times or less as high as the hardness of the particle of the coated active substance.
4. The pharmaceutical composition as set forth in claim 3, wherein the hardness of the buffer is 0.1 to 0.7 times as high as the hardness of the particle of the coated active substance, and the hardness of the shield is 4 to 15 times as high as the hardness of the particle of the coated active substance.
5. The pharmaceutical composition as set forth in claim 1, wherein the coated active substance has the particle diameter in the range of 0.1 to 1000 the buffer has the particle diameter which is 0.1 to 10 times as large as the particle diameter of the coated active substance, and the shield has the particle size that is more than 1 time and 10 times or less as large as the particle diameter of the coated active substance.
6. The pharmaceutical composition as set forth in claim 5, wherein the coated active substance has the particle diameter in the range of 150 to 425 μm, the buffer has the particle diameter which is 1 to 3 times as large as the particle diameter of the coated active substance and the shield has the particle diameter which is more than 1 time and 4 times or less as large as the particle diameter of the coated active substance.
7. The pharmaceutical composition as set forth in claim 1, wherein the weight ratio of the buffer with respect to the coated active substance is 5 or less, and the weight ratio of the shield with respect to the coated active substance is 3 or less.
8. The pharmaceutical composition as set forth in claim 7, wherein the weight of
the above coated active substance for preparing one dosage form is in the range of 1 to 1000 mg, the weight ratio of the buffer with respect to the coated active substance is in the range of 0.1 to 3, and the weight ratio of the shield with respect to the above coated active substance is in the range of 0.1 to 2.
9. The pharmaceutical composition as set forth in claim 8, wherein the weight ratio of the buffer with respect to the shield is at least 1.
10. The pharmaceutical composition as set forth in claim 1, wherein the buffer or the shield is in the form of one selected from: powder; fine crystals; granules that are formed by using dry, wet, or high temperature granulation; and particles that are formed by using mounting on a neutral support body or a extrusion.
11. The pharmaceutical composition as set forth in claim 1, wherein each of the buffer and the shield is independently manufactured by granulating a material selected from isomalt, mannitol, dried mannitol, crystalline mannitol, maltitol, lactose, glucose, lactitol, trehalose, dextrate, white sugar, white sugar for direct tableting, sorbitol, xylitol, mannitol granules, aspartame, acesulfame, acesulfame potassium, saccharin sodium, a cellulose polymer, and a mixture thereof.
12. The pharmaceutical composition as set forth in claim 1, wherein the coating layer of the coated active substance is manufactured by: a coating method using a fluidized bed coater; a coating method using a spray drier; coagulation coating; microencapsulation; micro-granulation; ionic resin absorption process; or coating by a polymer after an active substance is applied on a seed.
13. The pharmaceutical composition as set forth in claim 1, wherein the orally disintegrating dosage form disintegrates in an oral cavity within 60 seconds.
14. The pharmaceutical composition as set forth in claim 1, wherein the hardness of the orally disintegrating dosage form is at least 30 N.
15. The pharmaceutical composition as set forth in claim 1, wherein the active substance is hydrochloride itopride.
16. A method of manufacturing an orally disintegrating dosage form by using the pharmaceutical composition according to claim 1, the method comprising:
performing a tableting process to manufacture the orally disintegrating dosage form while such pressure as to destroy at least a portion of the buffer but not to destroy the coated active substance and the shield is applied to the pharmaceutical composition during the tableting process.
US12/671,981 2007-08-03 2008-03-12 Composition for manufacturing orally disintegrating dosage form to protect coating layer of active substance Abandoned US20110311623A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20070078175 2007-08-03
KR10-2007-0078175 2007-08-03
KR10-2008-0016315 2008-02-22
KR1020080016315A KR101109633B1 (en) 2007-08-03 2008-02-22 Composition for manufacturing orally disintegrating dosage forms, for protecting the coating of active substance
PCT/KR2008/001405 WO2009020268A1 (en) 2007-08-03 2008-03-12 Composition for manufacturing orally disintegrating dosage form to protect coating layer of active substance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2008/001405 A-371-Of-International WO2009020268A1 (en) 2007-08-03 2008-03-12 Composition for manufacturing orally disintegrating dosage form to protect coating layer of active substance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/803,546 Division US10548847B2 (en) 2007-08-03 2015-07-20 Composition for manufacturing orally disintegrating dosage form to protect coating layer of active substance

Publications (1)

Publication Number Publication Date
US20110311623A1 true US20110311623A1 (en) 2011-12-22

Family

ID=40684268

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/671,981 Abandoned US20110311623A1 (en) 2007-08-03 2008-03-12 Composition for manufacturing orally disintegrating dosage form to protect coating layer of active substance
US14/803,546 Expired - Fee Related US10548847B2 (en) 2007-08-03 2015-07-20 Composition for manufacturing orally disintegrating dosage form to protect coating layer of active substance

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/803,546 Expired - Fee Related US10548847B2 (en) 2007-08-03 2015-07-20 Composition for manufacturing orally disintegrating dosage form to protect coating layer of active substance

Country Status (7)

Country Link
US (2) US20110311623A1 (en)
EP (1) EP2185140B1 (en)
JP (1) JP5174909B2 (en)
KR (2) KR101109633B1 (en)
CN (1) CN101772342B (en)
ES (1) ES2650614T3 (en)
WO (1) WO2009020268A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014160285A1 (en) * 2013-03-14 2014-10-02 Okay Devin J Compositions for treatment of xerostomia and for tooth treatment
EP2939661B1 (en) * 2012-12-31 2022-11-23 CorePharm Co., Ltd. Novel microgranular formulation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480987B (en) * 2009-08-18 2015-02-25 卡吉尔公司 Process for compressing isomalt
TWI462739B (en) * 2010-11-02 2014-12-01 Univ Kaohsiung Medical Processes for preparing piperazinium salts of sildenafil-analogues and use thereof
WO2012087113A1 (en) * 2010-12-24 2012-06-28 N.V. Nutricia Improved nutritional tablet
JP2013053136A (en) * 2011-08-09 2013-03-21 Taisho Pharmaceutical Co Ltd Oral liquid preparation
JP2013053135A (en) * 2011-08-09 2013-03-21 Taisho Pharmaceutical Co Ltd Oral preparation
WO2015045604A1 (en) * 2013-09-30 2015-04-02 富士フイルム株式会社 Orally disintegrating tablet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780055A (en) * 1996-09-06 1998-07-14 University Of Maryland, Baltimore Cushioning beads and tablet comprising the same capable of forming a suspension
US5853762A (en) * 1994-06-14 1998-12-29 Fuisz Technologies Ltd Delivery of controlled-release system(s)
US6020002A (en) * 1994-06-14 2000-02-01 Fuisz Technologies Ltd. Delivery of controlled-release system(s)
US20020071865A1 (en) * 2000-06-30 2002-06-13 Atushi Kajiyama Quick disintegrating tablet in buccal cavity and manufacturing method thereof
US6858725B1 (en) * 1999-11-12 2005-02-22 R.P. Scherer Technologies, Inc. Microcrystalline cellulose cushioning granules
US20050232988A1 (en) * 2004-04-19 2005-10-20 Venkatesh Gopi M Orally disintegrating tablets and methods of manufacture
WO2005105047A1 (en) * 2004-04-30 2005-11-10 Quantum Hi-Tech (Beijing) Research Institute Orally disintegrating tablet and method of preparation

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1259924A (en) * 1985-03-25 1989-09-26 Wallace E. Becker Pharmaceutical tableting method
IE69270B1 (en) * 1989-01-03 1996-08-21 Sterling Winthrop Inc Controlled-release low-dose aspirin
US5422122A (en) * 1992-08-04 1995-06-06 Eurand America, Incorporated Controlled release potassium chloride tablet
JPH08333242A (en) * 1995-06-09 1996-12-17 Tanabe Seiyaku Co Ltd Compression molded preparation
GB9600390D0 (en) 1996-01-09 1996-03-13 Univ London Pharmacy Preparation of tablets
KR100481583B1 (en) 1996-06-14 2005-07-12 교와 핫꼬 고교 가부시끼가이샤 Tablets disintegrate quickly in the oral cavity
KR100522248B1 (en) * 1997-05-29 2006-02-01 동아제약주식회사 Oral sustained release preparation of double controlled release membrane structure and its manufacturing method
US6270790B1 (en) 1998-08-18 2001-08-07 Mxneil-Ppc, Inc. Soft, convex shaped chewable tablets having reduced friability
FR2785538B1 (en) * 1998-11-06 2004-04-09 Prographarm Laboratoires PERFECTED QUICK DELIVERY TABLET
WO2000056287A1 (en) * 1999-03-19 2000-09-28 Kyowa Hakko Kogyo Co., Ltd. Tablets and process for producing the same
GB9921933D0 (en) 1999-09-17 1999-11-17 Univ Gent Solid shaped articles comprising biologically active substances and a method for their production
JP3415835B2 (en) * 2000-06-30 2003-06-09 山之内製薬株式会社 Oral fast disintegrating tablet and method for producing the same
EP1300420B1 (en) * 2000-07-05 2015-11-18 Asahi Kasei Kabushiki Kaisha Cellulose powder
KR20020069377A (en) 2001-01-31 2002-09-04 전홍렬 A process for preparing release controlled granules of quinolone drugs having masked taste and smell
JP3900245B2 (en) * 2001-03-01 2007-04-04 ヤンセン ファーマシューティカ エヌ.ベー. Intraoral rapidly disintegrating tablet and method for producing the same
FR2834889B1 (en) 2002-01-18 2004-04-02 Roquette Freres SOLID ORODISPERSIBLE PHARMACEUTICAL FORM
KR20040011087A (en) 2002-07-27 2004-02-05 주식회사 씨티씨바이오 A process for preparing roxythromycin granules having masked taste and smell
US8580305B2 (en) 2003-01-21 2013-11-12 Tomoharu Suga Tablet quickly melting in oral cavity
KR20050118775A (en) 2004-06-15 2005-12-20 주식회사 태평양 Orally disintegrating tablet utilizing crystallized solid bridge between sugars and drug particles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853762A (en) * 1994-06-14 1998-12-29 Fuisz Technologies Ltd Delivery of controlled-release system(s)
US6020002A (en) * 1994-06-14 2000-02-01 Fuisz Technologies Ltd. Delivery of controlled-release system(s)
US5780055A (en) * 1996-09-06 1998-07-14 University Of Maryland, Baltimore Cushioning beads and tablet comprising the same capable of forming a suspension
US6858725B1 (en) * 1999-11-12 2005-02-22 R.P. Scherer Technologies, Inc. Microcrystalline cellulose cushioning granules
US20020071865A1 (en) * 2000-06-30 2002-06-13 Atushi Kajiyama Quick disintegrating tablet in buccal cavity and manufacturing method thereof
US20050232988A1 (en) * 2004-04-19 2005-10-20 Venkatesh Gopi M Orally disintegrating tablets and methods of manufacture
WO2005105047A1 (en) * 2004-04-30 2005-11-10 Quantum Hi-Tech (Beijing) Research Institute Orally disintegrating tablet and method of preparation
US20070092564A1 (en) * 2004-04-30 2007-04-26 Quantum Hi-Tech (Beijing) Research Institute Orally distintegrating formulation and process for preparing the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"destroy", Merriam-Webster, downloaded from http://www.merriam-webster.com/dictionary/destroy Mar. 8, 2015 *
Gupta et al., JK Science, 6: 106-108 (2004). *
Lundqvist et al., European Journal of Pharmaceutics and Biopharmaceutics, 46: 369-379 (1998). *
Tunon, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, 288 (2003) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2939661B1 (en) * 2012-12-31 2022-11-23 CorePharm Co., Ltd. Novel microgranular formulation
WO2014160285A1 (en) * 2013-03-14 2014-10-02 Okay Devin J Compositions for treatment of xerostomia and for tooth treatment

Also Published As

Publication number Publication date
WO2009020268A1 (en) 2009-02-12
CN101772342B (en) 2012-11-07
JP5174909B2 (en) 2013-04-03
ES2650614T3 (en) 2018-01-19
EP2185140A1 (en) 2010-05-19
JP2010535196A (en) 2010-11-18
KR20090014081A (en) 2009-02-06
KR20100084145A (en) 2010-07-23
KR101109633B1 (en) 2012-01-31
EP2185140A4 (en) 2012-09-26
US10548847B2 (en) 2020-02-04
CN101772342A (en) 2010-07-07
EP2185140B1 (en) 2017-09-06
US20160030357A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
US10548847B2 (en) Composition for manufacturing orally disintegrating dosage form to protect coating layer of active substance
US6475510B1 (en) Process for manufacturing bite-dispersion tablets
EP2026768B1 (en) Multiple unit pharmaceutical formulation
EP2246052B1 (en) Orally rapidly disintegrating tablet comprising imidafenacin
ES2256485T3 (en) COVERED GRANULES OF AN INHIBITOR OF THE ANGIOTENSIN CONVERSION ENZYME.
JP2013241462A (en) Orally disintegrating tablet composition of lamotrigine
ES2590807T3 (en) Composition comprising a mixture of active ingredients and preparation procedure
CA2585363A1 (en) Taste-masked multiparticulate pharmaceutical compositions comprising a drug-containing core particle and a solvent-coacervated membrane
CN106913553A (en) Oral disnitegration tablet and its manufacture method
JPWO2005055989A1 (en) Drug-containing particles and solid preparation containing the particles
EP1911444A1 (en) Drug-containing coated fine particle for intrabuccally disintegrating preparation and method of producing the same
EP1469848B1 (en) Sedative non-benzodiazepine formulations
US7815939B2 (en) Coated fine particles containing drug for intrabuccally fast disintegrating dosage forms
US20030165566A1 (en) Sedative non-benzodiazepine formulations
ES2471077T3 (en) Composition of ferrimanitol-ovalbumin tablet
EP1941878A1 (en) Sedative non-benzodiazepine formulations
CZ20002258A3 (en) Process for preparing tablets dispersing by grasp
SK50992007A3 (en) Quickly soluble tablets with masked taste of active agent and method for the preparation thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHOONGWAE PHARMA CORPORATION, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAHN, MIKYOUNG;CHOI, JIN-WOO;KIM, DAE-HYEON;SIGNING DATES FROM 20100119 TO 20100120;REEL/FRAME:023891/0875

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION