US3016308A - Recording paper coated with microscopic capsules of coloring material, capsules and method of making - Google Patents

Recording paper coated with microscopic capsules of coloring material, capsules and method of making Download PDF

Info

Publication number
US3016308A
US3016308A US676574A US67657457A US3016308A US 3016308 A US3016308 A US 3016308A US 676574 A US676574 A US 676574A US 67657457 A US67657457 A US 67657457A US 3016308 A US3016308 A US 3016308A
Authority
US
United States
Prior art keywords
capsules
microscopic
film
emulsion
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US676574A
Inventor
Macaulay Norman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moore Business Forms Inc
Original Assignee
Moore Business Forms Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24715075&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US3016308(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Moore Business Forms Inc filed Critical Moore Business Forms Inc
Priority to US676574A priority Critical patent/US3016308A/en
Application granted granted Critical
Publication of US3016308A publication Critical patent/US3016308A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/12Making microcapsules or microballoons by phase separation removing solvent from the wall-forming material solution
    • B01J13/125Making microcapsules or microballoons by phase separation removing solvent from the wall-forming material solution by evaporation of the solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/124Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components
    • B41M5/165Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components characterised by the use of microcapsules; Special solvents for incorporating the ingredients
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S101/00Printing
    • Y10S101/29Printing involving a color-forming phenomenon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S521/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S521/92Cellular product containing a dye or pigment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]
    • Y10T428/2985Solid-walled microcapsule from synthetic polymer
    • Y10T428/2987Addition polymer from unsaturated monomers only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2989Microcapsule with solid core [includes liposome]

Definitions

  • FIG.2 RECORDING PAPER COATED w MICROSCOPIC CAPSULES OF COLORING MATERIAL, CAPSULES AND METHOD 0 AK Flled Aug. 6, 1957 Sh s-Sheet 1 MAGNIFIED CROSS-SECTION 0F DISCRETE CAPSULE ACCORDING TO THE INVENTION
  • FIG.2 RECORDING PAPER COATED w MICROSCOPIC CAPSULES OF COLORING MATERIAL, CAPSULES AND METHOD 0 AK Flled Aug. 6, 1957 Sh s-Sheet 1 MAGNIFIED CROSS-SECTION 0F DISCRETE CAPSULE ACCORDING TO THE INVENTION
  • FIG.2 RECORDING PAPER COATED w MICROSCOPIC CAPSULES OF COLORING MATERIAL, CAPSULES AND METHOD 0 AK Flled Aug. 6, 1957 Sh s-Sheet 1 MAGNIFIED CROSS-S
  • FIG.4 PHOTOMICROGRAPH MAGNIFIED L000 TIMES OF DISCRETE CAPSULES ACCORDING TO THE INVENTION
  • This invention relates to a novel product comprising a substantially dry free-flowing powder of microscopic discrete capsules, to the process of producing said product, and to a pressure-sensitive record or copying material having a transfer coating of said microscopic discrete capsules on at least a portion of one surface thereof.
  • the discrete capsules which make up the free-flowing powder of the invention possess a shell or wall containing therein a marking fluid.
  • Present pressure-sensitive copying systems are primarily of two types.
  • One such system employs as a coating 2.
  • mixture consisting of waxes, oils, carbon black and fillers which are applied to a sheet surface as a hot melt.
  • This type of coating which is typified by ordinary carbon paper, provides a mark under pressure by transfer at the areas of pressure of a complete mass of coating containing the carbon black or other pigment.
  • This waxy mixture is relatively soft and of low tensile strength and is, therefore, not resistant to scufl or offset.
  • the mark obtained on the copy sheet is also prone to smudge and offset onto bands and clothing.
  • a second type of pressure sensitive copying system employs, on one side of a sheet, a continuous coating containing marking fluid inclusions.
  • This type of system illustrates previous efforts employing minute droplets of a marking fluid in a transfer coating to be used with record material, particularly with record material in manifold form.
  • Typical of this type of product are the record or copying materials disclosed in British Patent 392,220 and US. Patents Nos. 2,374,862; 2,548,366 and 2,550,466.
  • the paper of the record material is coated on one surface with a continuous film containing minute droplets of an oily marking fluid.
  • the marking fluid may be colored or it may be colorless but capable of forming a color by a chemical reaction with another chemical upon being brought into contact with each other.
  • the coating ruptures and the droplets of marking fluid exude on to the copy sheet to make a mark by direct coloration or color transfer or by forming a color by chemical reaction with a coreacting chemical on the adjacent surface of the copy sheet.
  • the difliculty with products of this type is that the surface of the coated sheet is susceptible to scufling, abrasion and incidental rubbing which unavoidably causes rupture of the film, release of the marking fluid, and consequently smudge or offset or both.
  • the coating material tends to dry out and crack, particularly when bended or folded, thus releasing the marking fluid through the resulting cracks to smudge oroffset an adjacent copy sheet or the hands or clothing.
  • this difficulty arises only when the ruptured film is in contact with a copy sheet or other source of the coreacting chemical. But this is a very real disadvantage since such copying materials are not only used, but usually stored, in this condition.
  • This type of coating requires that the walls of the fluid inclusions be of the same hydrophilic colloid material as the coating on the paper in which the fluid inclusions are dispersed, since the patent produces the fluid inclusions in the same aqueous system which is applied to paper and dried to form the continuous coating.
  • This type of product suffers from several disadvantages. First of all, as stated above, it usually employs an aqueous coating system in which the hydrophilic colloid forming the walls about the fluid inclusions is the same as that of the continuous coating on the paper. This leads to lack of flexibility and versatility in control of the product and in coating operations. it requires that aqueous coating methods be employed.
  • aqueous coatings require that special grades of generally more expensive paper be employed and even then often results in buckling, distortion, warping of the paper since water tends to strike through or penetrate the paper. Additionally, aqueous coatings are generally not suitable for spot application or application to limited areas of one side of a sheet of paper. They are generally suitable only for application to the entire side of a sheet to produce a continuous coating.
  • the' coating of marking material is usually applied to the backs of the sheets of paper or web.
  • a colorless colorforming dye intermediate is employed as the marking material it is generally applied to the backs of the sheets so as to react with a coreactant or developing agent which is applied to the fronts of the sheets of a manifold when pressure is applied to the sheets.
  • the coating on the backs of the sheets containing marking fluid is in contact with the fronts of the copy sheets, which may or may not have the developing agent.
  • FIG. 1 is a greatly magnified cross-section of a discrete capsule making up the free-flowing powder according to the invention in which is the marking fluid and 11 is the wall of the capsule;
  • FIG. 2 is a greatly magnified cross-section of a cluster of discrete capsules which is frequently produced in accordance with this invention, in which the reference numerals have the same significance as in FIG. 1;
  • FIG. 3 is a photomicrograph magnified 1000 times of the discrete capsules of marking fluid making up the freeflowing powder of the invention.
  • FIG. 4 is a photomicrograph magnified 1000 times of another sample of discrete capsules of marking fluid making up the free-flowing powder of the invention.
  • the free-flowing powder of microscopic discrete capsules of the invention containing a marking fluid comprises a capsule shell or film containing a marking fluid.
  • the shell is indicated at 11 and the liquid inclusion of marking fluid is shown at 10.
  • the discrete capsules are produced in the form of aggregates or clusters as shown in FIG. 2. While FIG. 2 illustrates a cluster of six discrete capsules, the number of capsules or spheres in a cluster is usually not so great.
  • the shell or film of the capsules is of a nonpermeable nature and comprises a substance which is substantially insoluble in the liquid of the marking fluid. The capsule shell remains intact and retains the fluid within.
  • the marking fluid may contain a colored substance which produces a direct transfer to a copy sheet or which may be an uncolored color-forming dye intermediate which reacts with a coreactant present on the copy sheet to produce a color transfer.
  • the microscopic discrete capsules of the invention are aflixed over at least a portion of a surface, such as a surface of a sheet of paper, the coated sheet then acts as a pressure-sensitive copying material at the coated area.
  • the size of the microscopic capsules is desirably such that they may be dispersed in any of the common media used as binders or coatings or other backing material for application to paper without producing a surface rough to the touch.
  • These micro-capsules may be considered as being analogous to pigment particles and they can be dispersed in any binder/vehicle combination in a manner similar to ordinary pigments.
  • Various binder systems may be employed such as aqueous binders, an organic solvent/binder system, a plastisol or organosol binder system, a hot melt coating system or an ink-type coating which may be set to the paper by absorption, oxidation, evaporation, heat or moisture.
  • the discrete microscopic capsules of the invention are desirably of from between. about 0.1 and 70 microns in diameter. More desirably, the diameter of the capsules is from about 0.5 to 20 microns. For preferred results, it has been found that a capsule diameter of between about 1 and 5 microns is most satisfactory. When the particle size exceeds 20 microns in diameter, a coating of the capsules on a paper surface may feel slightly rough to the touch. Below a diameter of one micron, the capsules are less sensitive to rupture when subjected to the pressure employed to produce copying through rupture of the capsule shell.
  • the microscopic capsules of the invention Since it is desired to employ the microscopic capsules of the invention in pressure-sensitive copying systems which do not require the use of excessive pressures, it is desirable to provide capsules having a diameter of from about 1 to 5 microns.
  • the microscopic capsules of the invention falling within the various particle size ranges described hereinabove exist as a free-flowing powder.
  • one convenient shell thickness is approximately ,6 to A of the diameter of the capsules.
  • shell thicknesses substantially in excess of /3 of the diameter are produced, it has been found that the capsules are more diflicult to rupture and the ability to produce a copy is reduced.
  • shell thicknesses substantially less than of the diameter it has been found that the capsules are more prone to rupture prematurely and thus smudge or offset in a normal handling and preparation of the paper product.
  • the sensitivity to rupture under pressure is dependent upon the size of the capsule as well as the thickness of the wall, with the larger size capsules having greater tendency to rupture when subjected to pressure than the smaller size capsules.
  • the microscopic capsules of the invention are produced by first providing a stable emulsion having as a continuous phase the film-former material which is capable of forming the shell of the capsule.
  • the discontinuous phase of the emulsion shall constitute the marking fluid which comprises the pigment, colored dye or colorless color-forming dye intermediate suspended or dissolved in a non-volatile liquid.
  • An essential characteristic of a film-forming substance is that it be substantially insoluble in the marking fluid.
  • the emulsions are produced by placing the two mutually insoluble liquids in a blender or emulsifier and by agitation producing a stable emulsion with droplets of marking fluid of the desired particle size, preferably 1 to 5 microns in diameter.
  • the resulting emulsion is then dried, preferably by spray drying, or the continuous film-forming material first condensed around the emulsified droplets by curing or other means and then spray dried.
  • the resulting product is a dry free-flowing powder.
  • the discrete microscopic capsules may be prepared by several types of emulsification processes.
  • one process which produces microscopic capsules of approximately one micron diameter is as follows: About 20 parts by weight of a non-volatile liquid containing up to 25% by weight of a pigment, colored or colorless color-forming dye intermediate is emulsified into a solution containing from about 5 to 40 or 50 parts of a filmforming material by agitation in a high-speed blender.
  • the liquid droplets shall preferably comprise between about 23% and by Weight of the capsules.
  • the film-former Upon drying, the film-former produces a shell about the non-volatile marking fluid.
  • the dry freeflowing powder so produced is collected by means of a cyclone chamber and, if necessary, washed with a solvent capable of removing any marking fluid which may exist on the shell of the capsule. After washing, the powder is air dried and stored ready for use.
  • a third process for producing the microscopic capsules in accordance with the invention employs plastisol or organosol sphere formation.
  • the general procedure is as follows: Up to about 50 parts by weight of a nonvolatile liquid containing up to about 25% by weight of pigment or colored or colorless color-forming ,dye intermediate is emulsified into 50 parts by weight of a dispersion of a polymeric material in a plasticizer.
  • the dispersion employed may contain up to about 30% of a volatile diluent.
  • the emulsion is produced by a highspeed agitator, as in the foregoing procedures, and is sprayed into a hot air chamber or spray drier where the individual particles produced are heated to a temperature such that the resin-plasticizer, film-forming combination mutually dissolves and cures to provide a rigid shell around the marking fluid particles. This resulting powder is then collected.
  • the shell 11 of the microscopic capsules of the invention is produced from a film-former which may be organic or inorganic in nature, capable of providing interactive forces such as are capable of producing a network in the form of a continuous dry film or shell.
  • the film-former must be substantially insoluble in the marking fluid employed, and when the shell is produced it must not permit permeation of the marking fluid.
  • the shell formed may be hard and brittle or, if desired, made soft and flexible by the incorporation of a plasticizer.
  • the film-forming materials may be either of the nonionizable Water-soluble type or the hydropholic waterinsoluble (organic solvent-soluble) type.
  • filmformers which may be employed to produce the shell of the capsules are the following: acrylate and methacrylate resins, such as polymethylmethacrylate and po-lyacrylic acid; alkyd resins, such as those produced from esters of ethylene glycol and terephthalic acid; animal glues; casein; cellulose derivatives, such as hydroethyl cellulose, carboxymethyl cellulose, methyl cellulose, cellulose acetate, cellulose acetate butyrate and nitrocellulose; a conmarone-indene resin; furan resins, such as those of furfuraldehyde and acetophenone', petroleum hydrocarbon polymer resins, such as the Piccopale resins; isobutylene resins, such as polyisobutylene; isocyanate resins, such as polymers of polyesters and tolylene diisocyanate; melamine resins, such as melamine-formaldehyde; phe' nolic resins, such as phenol-form
  • the film-formers may be used alone or in combinations, where compatible, or with various plasticizers and modifying agents which impart improved characteristics, such as flexibility, scuff resistance, solvent impermeability, or,
  • a plasticizer may be one of many types of materials which modify a particular film or shell to give suitable elasticity, flexibility and toughness, etc.
  • adipic acid esters such as dioctyl adipate and dibutyl adipate
  • biphenyl derivatives such as chlorinated biphenyl
  • glycol derivatives such as polyethylene glycol of molecular weight of 200 to 20,000, polypropylene glycols, ethylene glycol dibutyrate and ethyl phthalyl ethyl glycolate
  • hydrocarbons such as the polyaromatic hydrocarbon oils
  • acid esters and ethers such as butyl or isooctyl esters and glycol ethers of lauric, oleic, citric, abietic, adipic, azelaic, benzoic, palmitic, phosphoric acids, etc.
  • phthalic acid derivatives such as dimethyl-, diethyl-, dibutyl-phthalates
  • polyesters such as Flexol R2H of Carbide and Carbon Co.
  • the marking fluid may comprise any liquid, whether organic or inorganic which will provide a suspending or dissolving medium for the pigment, or colored or colorless color-forming dye intermediates.
  • the fluid medium within the capsule shell shall have a low volatility, i.e., wherein less than about 10% of the liquid evaporates through the shell wall over a period of several years of normal storage. Fluids having vapor pressure of less than 0.01 mm. of mercury at 25 C. are particularly satisfactory in this respect.
  • the fluid shall desirably have a low freezing point, i.e., a freezing point of less than 0 F., preferably as low as -30 F.
  • the fluid shall desirably have a high boiling point which will provide reduced volatility at temperatures of use.
  • Fluids having boiling points in excess of 100 C. are usually suitable in this respect.
  • An additional important property of the fluid is that it have a flash point above the temperature of proposed use. above 100 C. are generally satisfactory.
  • the product will be more useful, permanent and safe with liquids having higher boiling points and flash points and lower volatility and freezing points.
  • the fluid must not dissolve the filmformer or shell of the capsules.
  • Table 1 the satisfactory fluids which may be employed are those listed below in Table 1:
  • the marking fluid may contain a colored pigment or Fluids having a flash point' dye or it may contain a colorless color-forming dye intermediate which will react with a coreactant when brought into contact with it to produce a colored finish.
  • a pigment is considered to be a colored or color-forming substance which is insoluble in the fluid of the marking fluid.
  • pigments which may be employed are: carbon blacks, iron blues, phthalocyanines, cadmium reds, ultramarine blues, phosphoand molybdotungstic acid laked colors.
  • a dye or dye former is herein considered to be colored or colorforming compound soluble in the fluid of the marking fluid.
  • dyes and dye formers which may be employed are: triphenylmethane, e.g., malachite green and crystal violet, azo dyes, diazonium salts, indigoid dyes, phthalocyanine dyes, anthraquinone dyes, acridine dyes, azine dyes, oxazine dyes, thiazine dyes and thioindigoid dyes.
  • colorless color-forming dye system which may be advantageously used in the products of the invention is that described in British Patent No. 757,136.
  • a colorless color-forming dye intermediate such as an ether of a triphenylmethane dye former is maintained in an alkaline condition by neutralizing the dye former with an alkaline substance, in which form the dye former is colorless, and then producing a color by bringing the alkaline colorless dyestutf into contact with an excess of an acid which converts the dye former into a colored product.
  • the marking fluid of the microscopic capsules may contain the colorless color-forming dye intermediate along with a small amount of an alkaline substance such as sodium carbonate, potassium hydroxide, etc. These capsules are applied to one surface of sheets of paper. On the opposite side of some sheets of paper is placed suflicient acid which when brought into contact with marking fluid containing the colorless color-forming dye intermediate will neutralize the dye intermediate thereby producing a color.
  • acids which may be employed to coat the opposite surface of the sheets are tannic acid, gallic acid and stearic acid. Also one may employ an acidic clay such as attapulgite clay. As will be apparent to those skilled in the art from the teachings of this disclosure, it is possible to incorporate the acid into the marking fluid of the discrete capsules and to place the colorless colorforming dye intermediate on the opposite sides of the sheets of paper. In either instance when pressure is exerted through two or more sheets in a manifold, rupture of the capsules will produce intermixing of the reacting chemicals to produce a color or copy at the sites Where pressure is applied.
  • a coating of capsules and binder weighing 1 to 6 lbs., and preferably 2 lbs., per 500 sheets of 20"x 30" paper in which 50 to 95% of the weight of the coating consists of capsules has been found to be satisfactory.
  • the free-flowing capsule powders of the invention are the extreme flexibility and versatility in the manner in which they may be applied to web material, such as paper, to provide a pressure sensitive copying material having a coating of the rupturable capsules according to the invention which permits copying.
  • the free-flowing capsule powders may be applied to a surface of a sheet of paper by means of a binder material which provides adhesion of the capsules to the paper surface, which binder is of a different material and different type of substance from that of the shells of the capsules.
  • binder coatings of various thickness may be employed, permitting precise control over the thickness of the coating on the paper. In essence the binder employed need serve only as an adhesive to hold the capsules to the paper.
  • aqueous binders and non-aqueous binders may be employed. Since non-aqueous binders may be used, it is not necessary to employ expensive papers thereby providing additional economies as well as a superior product.
  • One of the particular advantages of the free-flowing powders of the invention is that it may be employed with a hot melt wax binder or dispersed in a printing ink vehicle. In the case of printing ink vehicles, the microscopic capsules may be dispersed in them and the resulting product reverse printed on a paper sheet at the same time as ordinary line printing is done.
  • Example I This example describes the preparation of microscopic capsules prepared by spray drying an emulsion of mineral oil in aqueous hydroxyethylcellulose.
  • Second mineral oil containing 4.5 parts of Mogul A (Godfrey Cabot, Inc.) carbon black (high volatile contentlow oil absorption-336 Angstrom units mean diameter) was emulsified into 700 parts of a 10% aqueous solution of hydroxyethylcellulose (having a viscosity of 250-350 centipoises at 20 C. when in the form of a 5% aqueous solution).
  • Emulsification was accomplished by agitating the 10% aqueous solution of hydroxyethylcellulose by itself in a Waring Blendor and then pouring in the oil solution slowly while agitation was continued. A fine particle size (one micron) stable emulsion was thus produced.
  • the resulting emulsion was injected via a fine air feed nozzle into a heated spray drying chamber of a temperature of between about 225-265 F. and the dried product collected. On examination, microscopic capsules ranging from 1 to 10 microns were observed. The capsules exuded black oil when subjected to ordinary writing pressure.
  • Example II This example describes the preparation of microscopic capsules prepared by spray drying an emulsion of mineral oil in aqueous hydroxyethylcellulose.
  • Example III This example describes the preparation of microscopic capsules containing a marking fluid containing a colorless color-forming dye intermediate.
  • Example IV This example describes the preparation of microscopic capsules containing carbon black.
  • Arochlor 1248 a chlorinated diphenyl having a Saybolt viscosity of 36-37 seconds at 210 F.
  • 90% 100 second mineral oil mixture containing 22.5 partsof carbon black was emulsified into 75 parts of an aqueous solution of water soluble urea-formaldehyde resin (Uformite 400-67% solids) and 2.5 parts of extra low viscosity (-25 centipoises in a 2% aqueous solution at 25 C.) carboxymethylcellulose in 175 parts of water.
  • the emulsion was produced in accordance with the procedure of Example I and diluted with 600 parts of water, and while continuing the rapid agitation, sufiicient concentrated hydrochloric acid' was added to produce condensation and precipitation of the urea formaldehyde resin.
  • the resulting mixture was agitated for another five minutes, filtered, and the filter cake washed with water and acetone and then agitated with toluene to remove any free oily liquid.
  • the mixture was again filtered and the filter cake air dried and then subjected to further drying at 105 C. Under microscopic examination the resulting dry, free-flowing powder was found to consist of agglomerated microscopic capsules ranging in diameter from between about 4 to 50 microns. On applying pressure to these capsules, the Walls ruptured and black oil was exuded in copious quantities.
  • Example V This example describes the preparation of microscopic capsules prepared from an emulsion of mineral oil in cellulose acetate.
  • Example VI sules exuded the blue colored fluid when subjected; to pressure to give a blue mark on a receptive surface.
  • Example VII This example describes the preparation of capsules containing a colorless color-forming dye intermediate.
  • Second mineral oil containing about 2 parts of the butyl ether of malachite green A (Color Index No. 657) in the alkaline condition was emulsified into a solution of 40 parts of Zein and 1 part of sodium hydroxide in 200 parts of methanol.
  • the emulsification was accomplished in accordance with the procedure of Example I.
  • the resulting emulsion was spray dried by atomizing the emulsion into the air to provide rnicro-capsules ranging in size from about 1 to 60 microns.
  • Example VIII Microscopic capsules produced in accordance with Example III to the extent of 30 parts of free-flowing capsule powder was placed into 70 parts of a 5% solution of Du Pont isobutyl methacrylate in benzene. The resulting dispersion was applied to the backs of sheets of bond paper with a doctor blade and then subsequently air dried. The fronts of these sheets of paper had been sensitized with attapulgite clay. When a manifold of sheets were stacked one above the other, with the capsule coated surfaces adjacent to the clay sensitized surfaces and writing pressure applied, a copy was produced on the fronts sensitized with clay at the sites where pressure was applied.
  • Example IX Microscopic capsules produced in accordance with Example VII were placed in a flexographic vehicle (Bensing Bros. and Deeney D-536) (a water soluble protein dissolved in water) to the extent of 30 parts by weight of capsules and 70 parts of flexographic vehicle, to provide a printable ink which was applied to portions of a surface of sheets of paper by means of a gravure roll which printed the desired portion of the surface of the sheets of paper with the capsule coating. The coating dried on the paper promptly. When the resulting coated sheets were assembled with the coated portions facing adjacent sheets activated with attapulgite clay and writing pressure applied against the treated surface, a strong colored mark was produced.
  • a flexographic vehicle Bosing Bros. and Deeney D-536
  • a water soluble protein dissolved in water to the extent of 30 parts by weight of capsules and 70 parts of flexographic vehicle
  • Example X About 30 parts of capsules produced in accordance with Example I were mixed with 70 parts of a mixture of 6 parts of cellulose acetate and 64 parts of acetone. The resulting mixture was applied to one surface of sheets of paper by means of a doctor blade. The sheets were permitted to dry in the air. The surface of the sheets of paper coated with the capsules provided an excellent means of copying.
  • Example XI About 40 parts of paraflin wax having a melting point of 135 F. and 20 parts of FTC-200 petroleum wax (Fischer-Tropsch-l) were melted together at C. Into the resulting molten mixture were added about 5 parts of Alpex resin (a cyclized rubber resin) and 120 parts of Schenectady ST-5115 resin and the resulting clear melt reheated to 120 C. and maintained at this temperature. About parts of a solution of 5 parts of phenyl leuco auramine in 120 parts of butyl benzyl phthalate and 0.5 part of dimethylethanolamine, heated to 120 C. was added with rapid agitation to the foregoing melt in a Waring Blendor.
  • Alpex resin a cyclized rubber resin
  • Schenectady ST-5115 resin Schenectady ST-5115
  • the emulsion so formed was sprayed via a hot air stream C. temperature) inlet into a chilled atmosphere and the resulting spherical particles collected ranged in size from 1 to 60 microns. When subjected to writing pressures, these spheres ruptured and exuded the marking fluid which gave a strong blue coloration both on a paper sheet coated with attapulgite clay and on a paper sheet coated with citric acid.
  • Example XIII About 50 parts of Geon 121 resin (polyvinyl chloride resin) was dispersed in 50 parts of dioctylphthalate as a plasticizer. Into this mixture was emulsified 50 parts of polyethylene glycol (mol. wt. 400) containing parts of carbon black. The resulting emulsion was sprayed into an air chamber at a temperature of 350 F. in order to fuse the resin and plasticizer about the fluid colored particles to form capsules containing marking fluid.
  • polyethylene glycol mol. wt. 400
  • Example XIV About 50 parts of capsules prepared according to Example I were dispersed in 50 parts of Geon 121 resin and 50 parts of dioctylphthalate to provide a paste. The
  • a process for producing a free-flowing powder of microscopic discrete rupturable capsules comprising liquid droplets encapsulated within an outer rupturable shell of film-forming material, said encapsulating outer shell being formed directly by evaporation forces on the solvent of a film-former solution of a non-ionizable water-soluble film-former which comprises the continuous phase of suspended minute particles of an emulsion, the discontinuous phase of which emulsion comprises the liquid droplets and between about 23% and 80% by weight of the capsules, which process comprises producing an emulsion of the liquid droplets in a film-former solution in which the latter forms the continuous phase and is substantially insoluble in the liquid droplets, suspending minute particles of said emulsion in a gaseous atmosphere, and then subjecting said suspended emulsion particles to evaporation forces to produce said microscopic discrete capsules in the form of a free-flowing powder.
  • a process for producing a free-flowing powder of microscopic discrete rupturable capsules comprising liquid droplets encapsulated within an outer rupturable shell of film-forming material, said encapsulating outer shell being formed from a hot molten non-aqueous film-former comprising the continuous phase of an emulsion, the discontinuous phase of which emulsion comprises liquid droplets comprising between about 23% and 80% by weight of the emulsion, which process comprises producing an emulsion of the liquid droplets in said hot molten nonaqueous film-former in which the latter forms the continuous phase and is substantially insoluble in the liquid droplets, suspending minute particles of said emulsion in a gaseous atmosphere, and cooling the suspended particles to solidify said film-former and produce microscopic discrete rupturable capsules in the form of a free-flowing powder.
  • a process for producing a free-flowing powder of microscopic discrete rupturable capsules comprising liquid droplets encapsulated within an outer rupturable shell of film-forming material, said encapsulating outer shell consisting of a hydrophobic water-insoluble material proucked by the chemical condensation of the reactive constituents of the film-former dissolved in aqueous solution, said solution comprising the continuous phase of an emulsion, the discontinuous phase of which emulsion comprises liquid droplets comprising between about 23% and 80% by weight of the capsules, which process comprises producing an emulsion of the liquid droplets in said aqueous solution of film-former constituents, causing said film-former constituents to undergo Chemical condensation about the liquid droplets, and thereby produce said microscopic discrete rupturable capsules in the form of a free-flowing powder.
  • a process for producing a free-flowing powder of microscopic discrete rupturable capsules comprising liquid droplets encapsulated within an outer rupturable shell of film-forming material, said encapsulating outer shell being formed of a plastisol film-former comprising the continuous phase of an emulsion, the discontinuous phase of which emulsion comprises liquid droplets comprising be tween about 23% and 80% by weight of the capsules, which process comprises producing an emulsion of the liquid droplets in said plastisol film-former in which the latter forms the continuous phase and is substantially insoluble in the liquid droplets, heating minute particles of said emulsion to thereby produce said microscopic discrete rupturable capsules in the form of a free-flowing powder.
  • a process for producing a free-flowing powder of microscopic discrete rupturable capsules comprising liquid droplets encapsulated within an outer rupturable shell of film-forming material, said encapsulating outer shell being formed directly by evaporation forces on the organic solvent of a film-former solution of a hydrophobic waterinsoluble film-former in an organic solvent which comprises the continuous phase' of suspended minute particles of an emulsion, the discontinuous phase of which emulsion comprises the liquid droplets, and between about 23% and by weight of the capsules, which process comprises producing an emulsion of the liquid droplets in the film-former solution in which the latter forms the continuous phase andis substantially insoluble in the liquid droplets, suspending minute particles of said emulsion in a gaseous atmosphere, and then subjecting said suspended emulsion particles to evaporation forces to produce said microscopic discrete capsules in the form of a free-flowing powder.
  • a free-fl0wing powder of microscopic discrete rupturable capsules having a particle size of between about 0.1 and 70 microns diameter, said capsules comp-rising liquid droplets encapsulated within an outer shell rupturable under pressure, said liquid droplets being substantially insoluble in and incapable of dissolving said outer shell and comprising between about 23% and 80% by weight of said capsules, said outer shell having a thickness comprising from about one-tenth to one-third of the capsule diameter and comprising a material selected from the class consisting of a non-ionizable water-soluble filmformer and a hydrophobic water-insoluble film-former.
  • a record copying sheet having on at least a portion of one side thereof a coating of a free-flowing powder of microscopic discrete capsules comprising a rupturable shell containing therein a marking fluid capable of being liberated when the shells of said discrete capsules are ruptured upon being subjected to an external printing or marking pressure, said microscopic discrete capsules being those defined by claim 11.
  • a record copying sheet having on at least a portion of one side thereof a coating of microscopic discrete capsules comprising a rupturable shell containing therein a marking fluid capable of being liberated when the shells of said discrete capsules are ruptured upon being subjected to external pressure, said capsules being held to said sheet by a binder which is of a different substance from that forming the rupturable shell of said capsules, said microscopic discrete capsules being those defined by claim 11.
  • Paper having coated on at least a portion of a surface thereof microscopic discrete capsules comprising a rupturable shell containing therein a marking fluid capable of being liberated when the shells of said discrete capsules are ruptured upon being subjected to external pressure, said capsules being held to said sheet by a binder which is of a different substance from that forming the rupturable shell of said capsules, said microscopic discrete capsules being those defined by claim 11.

Description

Jan. 9, 1962 N. MA ULAY 3,016,303
RECORDING PAPER COATED w MICROSCOPIC CAPSULES OF COLORING MATERIAL, CAPSULES AND METHOD 0 AK Flled Aug. 6, 1957 Sh s-Sheet 1 MAGNIFIED CROSS-SECTION 0F DISCRETE CAPSULE ACCORDING TO THE INVENTION FIG.2
I MAGNIFIED C SS-SECTION O CLUSTER OF DISCRET APSULES AC DING TO THE INVENTION Jan. 9, 1962 N. MACAULAY 3,016,308
RECORDING PAPER COATED WITH MICROSCOPIC CAPSULES OF COLORING MATERIAL. CAPSULES AND METHOD OF MAKING Flled Aug. 6, 1957 2 Sheets-Sheet 2 FIG.3
PHOTOMICROGRAPH MAGNIFIED L000 TIMES OF DISCRETE CAPSULES ACCORDING TO THE INVENTION FIG.4
PHOTOMICROGRAPH MAGNIFIED I,OOO TIMES OF DISCRETE CAPSULES ACCORDING TO THE INVENTION 1 ate rates This invention relates to a novel product comprising a substantially dry free-flowing powder of microscopic discrete capsules, to the process of producing said product, and to a pressure-sensitive record or copying material having a transfer coating of said microscopic discrete capsules on at least a portion of one surface thereof. The discrete capsules which make up the free-flowing powder of the invention possess a shell or wall containing therein a marking fluid.
Present pressure-sensitive copying systems are primarily of two types. One such system employs as a coating 2. mixture consisting of waxes, oils, carbon black and fillers which are applied to a sheet surface as a hot melt. This type of coating, which is typified by ordinary carbon paper, provides a mark under pressure by transfer at the areas of pressure of a complete mass of coating containing the carbon black or other pigment. This waxy mixture is relatively soft and of low tensile strength and is, therefore, not resistant to scufl or offset. The mark obtained on the copy sheet is also prone to smudge and offset onto bands and clothing.
A second type of pressure sensitive copying system employs, on one side of a sheet, a continuous coating containing marking fluid inclusions. This type of system illustrates previous efforts employing minute droplets of a marking fluid in a transfer coating to be used with record material, particularly with record material in manifold form. Typical of this type of product are the record or copying materials disclosed in British Patent 392,220 and US. Patents Nos. 2,374,862; 2,548,366 and 2,550,466. In accordance with these patents, the paper of the record material is coated on one surface with a continuous film containing minute droplets of an oily marking fluid. In this type of copying sheet, the marking fluid may be colored or it may be colorless but capable of forming a color by a chemical reaction with another chemical upon being brought into contact with each other. Under the pressure of writing or typing, the coating ruptures and the droplets of marking fluid exude on to the copy sheet to make a mark by direct coloration or color transfer or by forming a color by chemical reaction with a coreacting chemical on the adjacent surface of the copy sheet. The difliculty with products of this type is that the surface of the coated sheet is susceptible to scufling, abrasion and incidental rubbing which unavoidably causes rupture of the film, release of the marking fluid, and consequently smudge or offset or both. Also, on storage of the sheets, the coating material tends to dry out and crack, particularly when bended or folded, thus releasing the marking fluid through the resulting cracks to smudge oroffset an adjacent copy sheet or the hands or clothing. In the case of such coatings containing a colorless marking fluid, this difficulty arises only when the ruptured film is in contact with a copy sheet or other source of the coreacting chemical. But this is a very real disadvantage since such copying materials are not only used, but usually stored, in this condition.
Further work has been carried out in an attempt to overcome some of the objectionable features of the coatings employing fluid inclusions described hereinabove. An example of such work is described in Green Patentv No. 2,712,507. According to this patent a coating for pressure-sensitive copying materials is prepared in which the fluid inclusions of marking materials are produced having a wall about them which is somewhat more concentrated with respect to colloid solids than the remainder of the continuous dried coating on the surface of the paper. This product is predicated upon the theory that the walls about the fluid inclusions are tougher than the remainder of the colloid coating material, thus cracks which develop in the coating are said to be more prone to run between the fluid inclusions than through them and the leakage of marking fluid is said to be reduced. This type of coating requires that the walls of the fluid inclusions be of the same hydrophilic colloid material as the coating on the paper in which the fluid inclusions are dispersed, since the patent produces the fluid inclusions in the same aqueous system which is applied to paper and dried to form the continuous coating. This type of product suffers from several disadvantages. First of all, as stated above, it usually employs an aqueous coating system in which the hydrophilic colloid forming the walls about the fluid inclusions is the same as that of the continuous coating on the paper. This leads to lack of flexibility and versatility in control of the product and in coating operations. it requires that aqueous coating methods be employed. This is a serious disadvantage since aqueous coatings require that special grades of generally more expensive paper be employed and even then often results in buckling, distortion, warping of the paper since water tends to strike through or penetrate the paper. Additionally, aqueous coatings are generally not suitable for spot application or application to limited areas of one side of a sheet of paper. They are generally suitable only for application to the entire side of a sheet to produce a continuous coating.
The above disadvantages are particularly serious since in producing manifold business forms, the' coating of marking material is usually applied to the backs of the sheets of paper or web. Even when a colorless colorforming dye intermediate is employed as the marking material it is generally applied to the backs of the sheets so as to react with a coreactant or developing agent which is applied to the fronts of the sheets of a manifold when pressure is applied to the sheets. During the usual handling which such business forms must undergo in their assembly, cutting, perforation, etc., the coating on the backs of the sheets containing marking fluid is in contact with the fronts of the copy sheets, which may or may not have the developing agent. When the coating on the backs of the sheets is continuous, the passage of the sheets over mill rolls, punching of holes, perforation and guillotining of edges will produce smudging or oflset at areas of pressure. This undesirable smudging and offset can be minimized by spot coating the coating material on limited areas which are 'less subject to unavoidable mechanical pressure until actually used to produce copying.
It is an object of the present invention to provide a substantially dry free-flowing powder of microscopic discrete capsules of marking fluid which may be applied to paper and other web material to provide pressuresensitive materials which avoid the disadvantages of the prior art.
It is another object of this invention to provide a substantially dry free-flowing powder of microscopic discrete capsules of marking fluid which may be applied to paper in a variety of ways and which does not require an aqueous coating system in preparing a pressure-sensitive copying material from the capsules.
It is a further object of this invention to provide a process for producing the substantially dry free-flowing powder of microscopic discrete capsules having an outer shell of a material which is a non-ionizable water-soluble film-former or a hydrophobic water-insoluble film-former according to the invention.
It is an additional object of this invention to provide a superior pressure-sensitive copying or record material having the microscopic discrete capsules of marking fluid applied to at least a portion of one side of a sheet of paper or other web material.
It is also an object of this invention to provide a superior pressure-sensitive copying or record material having the microscopic discrete capsules of marking fluid applied to at least a portion of at least one side of a sheet of paper by means of a carrier or binder which is of a different material from that of the walls of the capsules.
The above enumerated objects, as well as other objects, together with the advantages of the invention, will be readily comprehended by persons skilled in the art upon reference to the following description, taken in conjunction with the annexed drawings.
In the drawings:
FIG. 1 is a greatly magnified cross-section of a discrete capsule making up the free-flowing powder according to the invention in which is the marking fluid and 11 is the wall of the capsule;
FIG. 2 is a greatly magnified cross-section of a cluster of discrete capsules which is frequently produced in accordance with this invention, in which the reference numerals have the same significance as in FIG. 1;
FIG. 3 is a photomicrograph magnified 1000 times of the discrete capsules of marking fluid making up the freeflowing powder of the invention; and
FIG. 4 is a photomicrograph magnified 1000 times of another sample of discrete capsules of marking fluid making up the free-flowing powder of the invention.
The free-flowing powder of microscopic discrete capsules of the invention containing a marking fluid comprises a capsule shell or film containing a marking fluid. In FIG. 1 of the drawings, the shell is indicated at 11 and the liquid inclusion of marking fluid is shown at 10. Frequently the discrete capsules are produced in the form of aggregates or clusters as shown in FIG. 2. While FIG. 2 illustrates a cluster of six discrete capsules, the number of capsules or spheres in a cluster is usually not so great. The shell or film of the capsules is of a nonpermeable nature and comprises a substance which is substantially insoluble in the liquid of the marking fluid. The capsule shell remains intact and retains the fluid within. Under substantial pressures, such as that of a pencil, pen or typewriter key, the shell will break and release the marking fluid which then marks or stains any receptive or copy material with which it comes in contact. The marking fluid may contain a colored substance which produces a direct transfer to a copy sheet or which may be an uncolored color-forming dye intermediate which reacts with a coreactant present on the copy sheet to produce a color transfer. When the microscopic discrete capsules of the invention are aflixed over at least a portion of a surface, such as a surface of a sheet of paper, the coated sheet then acts as a pressure-sensitive copying material at the coated area.
The size of the microscopic capsules is desirably such that they may be dispersed in any of the common media used as binders or coatings or other backing material for application to paper without producing a surface rough to the touch. These micro-capsules may be considered as being analogous to pigment particles and they can be dispersed in any binder/vehicle combination in a manner similar to ordinary pigments. Various binder systems may be employed such as aqueous binders, an organic solvent/binder system, a plastisol or organosol binder system, a hot melt coating system or an ink-type coating which may be set to the paper by absorption, oxidation, evaporation, heat or moisture.
The discrete microscopic capsules of the invention are desirably of from between. about 0.1 and 70 microns in diameter. More desirably, the diameter of the capsules is from about 0.5 to 20 microns. For preferred results, it has been found that a capsule diameter of between about 1 and 5 microns is most satisfactory. When the particle size exceeds 20 microns in diameter, a coating of the capsules on a paper surface may feel slightly rough to the touch. Below a diameter of one micron, the capsules are less sensitive to rupture when subjected to the pressure employed to produce copying through rupture of the capsule shell. Since it is desired to employ the microscopic capsules of the invention in pressure-sensitive copying systems which do not require the use of excessive pressures, it is desirable to provide capsules having a diameter of from about 1 to 5 microns. The microscopic capsules of the invention falling within the various particle size ranges described hereinabove exist as a free-flowing powder.
It has been found that one convenient shell thickness is approximately ,6 to A of the diameter of the capsules. When shell thicknesses substantially in excess of /3 of the diameter are produced, it has been found that the capsules are more diflicult to rupture and the ability to produce a copy is reduced. With shell thicknesses substantially less than of the diameter, it has been found that the capsules are more prone to rupture prematurely and thus smudge or offset in a normal handling and preparation of the paper product. As will be appreciated by those skilled in the art, the sensitivity to rupture under pressure is dependent upon the size of the capsule as well as the thickness of the wall, with the larger size capsules having greater tendency to rupture when subjected to pressure than the smaller size capsules. Generally speaking, it is desirable to employ as thin a capsule shell as is practical.
The microscopic capsules of the invention are produced by first providing a stable emulsion having as a continuous phase the film-former material which is capable of forming the shell of the capsule. The discontinuous phase of the emulsion shall constitute the marking fluid which comprises the pigment, colored dye or colorless color-forming dye intermediate suspended or dissolved in a non-volatile liquid. An essential characteristic of a film-forming substance is that it be substantially insoluble in the marking fluid. The emulsions are produced by placing the two mutually insoluble liquids in a blender or emulsifier and by agitation producing a stable emulsion with droplets of marking fluid of the desired particle size, preferably 1 to 5 microns in diameter. The resulting emulsion is then dried, preferably by spray drying, or the continuous film-forming material first condensed around the emulsified droplets by curing or other means and then spray dried. The resulting product is a dry free-flowing powder.
The discrete microscopic capsules may be prepared by several types of emulsification processes. For example, one process which produces microscopic capsules of approximately one micron diameter is as follows: About 20 parts by weight of a non-volatile liquid containing up to 25% by weight of a pigment, colored or colorless color-forming dye intermediate is emulsified into a solution containing from about 5 to 40 or 50 parts of a filmforming material by agitation in a high-speed blender. In other words, the liquid droplets shall preferably comprise between about 23% and by Weight of the capsules. When the particle size of the marking fluid is substantially uniform and of the desired diameter, the resulting emulsion is sprayed into a drying chamber or spray drier to evaporate the solvent of the film-forming material. Upon drying, the film-former produces a shell about the non-volatile marking fluid. The dry freeflowing powder so produced is collected by means of a cyclone chamber and, if necessary, washed with a solvent capable of removing any marking fluid which may exist on the shell of the capsule. After washing, the powder is air dried and stored ready for use.
Another capsule-forming process employing a hot melt procedure which might be employed is as follows: About 50 parts by weight of a non-volatile liquid containing up to about 25% by weight of a pigment, colored or colorless color-forming dye intermediate is emulsified into about 50 parts by weight of a molten 100% solids film-former composition. The emulsion is produced in a high-speed agitator as in the above procedure. When the particles of color-forming marking fluid are of satisfactory particles size, the resulting emulsion =is hot sprayed into a chilled chamber and the resulting solidified free-flowing powder of discrete microscopic capsules is collected.
A third process for producing the microscopic capsules in accordance with the invention employs plastisol or organosol sphere formation. The general procedure is as follows: Up to about 50 parts by weight of a nonvolatile liquid containing up to about 25% by weight of pigment or colored or colorless color-forming ,dye intermediate is emulsified into 50 parts by weight of a dispersion of a polymeric material in a plasticizer. The dispersion employed may contain up to about 30% of a volatile diluent. The emulsion is produced by a highspeed agitator, as in the foregoing procedures, and is sprayed into a hot air chamber or spray drier where the individual particles produced are heated to a temperature such that the resin-plasticizer, film-forming combination mutually dissolves and cures to provide a rigid shell around the marking fluid particles. This resulting powder is then collected.
The shell 11 of the microscopic capsules of the invention is produced from a film-former which may be organic or inorganic in nature, capable of providing interactive forces such as are capable of producing a network in the form of a continuous dry film or shell. The film-former must be substantially insoluble in the marking fluid employed, and when the shell is produced it must not permit permeation of the marking fluid. The shell formed may be hard and brittle or, if desired, made soft and flexible by the incorporation of a plasticizer. The film-forming materials may be either of the nonionizable Water-soluble type or the hydropholic waterinsoluble (organic solvent-soluble) type. Among the filmformers which may be employed to produce the shell of the capsules are the following: acrylate and methacrylate resins, such as polymethylmethacrylate and po-lyacrylic acid; alkyd resins, such as those produced from esters of ethylene glycol and terephthalic acid; animal glues; casein; cellulose derivatives, such as hydroethyl cellulose, carboxymethyl cellulose, methyl cellulose, cellulose acetate, cellulose acetate butyrate and nitrocellulose; a conmarone-indene resin; furan resins, such as those of furfuraldehyde and acetophenone', petroleum hydrocarbon polymer resins, such as the Piccopale resins; isobutylene resins, such as polyisobutylene; isocyanate resins, such as polymers of polyesters and tolylene diisocyanate; melamine resins, such as melamine-formaldehyde; phe' nolic resins, such as phenol-formaldehyde resins, etc.; polyamide resins, such as alkoxy substituted nylon; rubbers, both natural and synthetic, GR-S, etc.; shellac; styrene resins, such as polystyrene, styrene-divinyl-benzene and styrene-divinyl sulfide; terpene resins, such as polyterpene; urea resins, such as urea-formaldehyde resins and urea-acetaldehyde resins; vinyl resins, such as polyvinyl chloride and polyvinyl acetate; vinylidene resins, such as vinylidine chloride-vinyl chloride (Saran); natural and synthetic waxes, such as par-afi'in and candelilla wax; and zein. Additionally, inorganic filmformers, such as sodium silicate, may be employed, although this film-former is less desirable because it is more difficult to emulsify.
The film-formers may be used alone or in combinations, where compatible, or with various plasticizers and modifying agents which impart improved characteristics, such as flexibility, scuff resistance, solvent impermeability, or,
in the case of water soluble film-formers, agents which cause water impermeability to the film-former. As an example of the latter type of material, formaldehyde may be employed to harden the shell of the capsule produced from a water-soluble film-former. A plasticizer may be one of many types of materials which modify a particular film or shell to give suitable elasticity, flexibility and toughness, etc. Among some of the satisfactory plasticizers which may be employed are: adipic acid esters, such as dioctyl adipate and dibutyl adipate; biphenyl derivatives, such as chlorinated biphenyl; glycol derivatives, such as polyethylene glycol of molecular weight of 200 to 20,000, polypropylene glycols, ethylene glycol dibutyrate and ethyl phthalyl ethyl glycolate; hydrocarbons, such as the polyaromatic hydrocarbon oils; acid esters and ethers, such as butyl or isooctyl esters and glycol ethers of lauric, oleic, citric, abietic, adipic, azelaic, benzoic, palmitic, phosphoric acids, etc.; phthalic acid derivatives, such as dimethyl-, diethyl-, dibutyl-phthalates; polyesters, such as Flexol R2H of Carbide and Carbon Co.; sulphonic acid derivatives, such as n-ethyl-, 0-, p-toluene-sulphonamides; tall oil derivatives, such as the methyl esters of tall oil, etc.
The marking fluid may comprise any liquid, whether organic or inorganic which will provide a suspending or dissolving medium for the pigment, or colored or colorless color-forming dye intermediates. Desirably, the fluid medium within the capsule shell shall have a low volatility, i.e., wherein less than about 10% of the liquid evaporates through the shell wall over a period of several years of normal storage. Fluids having vapor pressure of less than 0.01 mm. of mercury at 25 C. are particularly satisfactory in this respect. Additionally, the fluid shall desirably have a low freezing point, i.e., a freezing point of less than 0 F., preferably as low as -30 F. Also, the fluid shall desirably have a high boiling point which will provide reduced volatility at temperatures of use. Fluids having boiling points in excess of 100 C. are usually suitable in this respect. An additional important property of the fluid is that it have a flash point above the temperature of proposed use. above 100 C. are generally satisfactory. As those skilled in the art will appreciate, the product will be more useful, permanent and safe with liquids having higher boiling points and flash points and lower volatility and freezing points. Of course, the fluid must not dissolve the filmformer or shell of the capsules. Among the satisfactory fluids which may be employed are those listed below in Table 1:
TABLE 1 V.P., mm. Freezing Boiling Flash Compound Hg. Point, Point. Point,
at 20 0. C. O. at 760 F.
mm. Hg.
100 Sec. mineral oil polyethylene glycol (mol.
wt. 400) 4-8 435 diethylene glycol. 0. 01 8. 0 245. 8 290 dipropylene glycol 0.01 231. 8 280 thiodiethylene glycol.-. 0. 0]. --l0. 0 282.0 320 pentanediol-1,5 0. 01 15. 6 242. 5 265 monoamylnaphthalene O. 01 279 255 dibutyl maleate 0. 01 280. 6 285 (ii (2-ethy1 hexyl) maleate 0. 01 -60 209 (10 365 mm. ethoxytriglycol 0. -18. 7 255. 8 275 dioctyl phthalate 1.3 (200 -46 231 (5 425 0.) mm.) chlorinated biphenyl (Arochlor 1248 Monsanto) 7 340 379 methyl phthalyl-ethyl glycollate 0. 01 35 189 (5mm) 374 dibutyl phthalata -35 340 338 cottonseed oil 582 rapeseed oil 10 530 As will be appreciated, the free-flowing powders in accordance with this invention permit extreme flexibility in the choice of film-formers and marking fluids.
The marking fluid may contain a colored pigment or Fluids having a flash point' dye or it may contain a colorless color-forming dye intermediate which will react with a coreactant when brought into contact with it to produce a colored finish. The line of demarcation between pigments and dyes is often difficult to delineate. As used herein, a pigment is considered to be a colored or color-forming substance which is insoluble in the fluid of the marking fluid. Examples of pigments which may be employed are: carbon blacks, iron blues, phthalocyanines, cadmium reds, ultramarine blues, phosphoand molybdotungstic acid laked colors. A dye or dye former is herein considered to be colored or colorforming compound soluble in the fluid of the marking fluid. Among the dyes and dye formers which may be employed are: triphenylmethane, e.g., malachite green and crystal violet, azo dyes, diazonium salts, indigoid dyes, phthalocyanine dyes, anthraquinone dyes, acridine dyes, azine dyes, oxazine dyes, thiazine dyes and thioindigoid dyes.
One type of colorless color-forming dye system which may be advantageously used in the products of the invention is that described in British Patent No. 757,136. In accordance with that patent a colorless color-forming dye intermediate, such as an ether of a triphenylmethane dye former is maintained in an alkaline condition by neutralizing the dye former with an alkaline substance, in which form the dye former is colorless, and then producing a color by bringing the alkaline colorless dyestutf into contact with an excess of an acid which converts the dye former into a colored product. Among the colorless ethers of triphenylmethane dyestuffs which may be employed are the butyl ethers of methyl violet 2B, methyl violet 10B, magenta, malachite green A. In accordance with one embodiment of the present invention the marking fluid of the microscopic capsules may contain the colorless color-forming dye intermediate along with a small amount of an alkaline substance such as sodium carbonate, potassium hydroxide, etc. These capsules are applied to one surface of sheets of paper. On the opposite side of some sheets of paper is placed suflicient acid which when brought into contact with marking fluid containing the colorless color-forming dye intermediate will neutralize the dye intermediate thereby producing a color. Among the acids which may be employed to coat the opposite surface of the sheets are tannic acid, gallic acid and stearic acid. Also one may employ an acidic clay such as attapulgite clay. As will be apparent to those skilled in the art from the teachings of this disclosure, it is possible to incorporate the acid into the marking fluid of the discrete capsules and to place the colorless colorforming dye intermediate on the opposite sides of the sheets of paper. In either instance when pressure is exerted through two or more sheets in a manifold, rupture of the capsules will produce intermixing of the reacting chemicals to produce a color or copy at the sites Where pressure is applied.
A coating of capsules and binder weighing 1 to 6 lbs., and preferably 2 lbs., per 500 sheets of 20"x 30" paper in which 50 to 95% of the weight of the coating consists of capsules has been found to be satisfactory.
Among the important advantages of the free-flowing capsule powders of the invention is the extreme flexibility and versatility in the manner in which they may be applied to web material, such as paper, to provide a pressure sensitive copying material having a coating of the rupturable capsules according to the invention which permits copying. What is also important is that the free-flowing capsule powders may be applied to a surface of a sheet of paper by means of a binder material which provides adhesion of the capsules to the paper surface, which binder is of a different material and different type of substance from that of the shells of the capsules. Also, binder coatings of various thickness may be employed, permitting precise control over the thickness of the coating on the paper. In essence the binder employed need serve only as an adhesive to hold the capsules to the paper. Only a small thin layer of binder is needed rather than a thick coating covering the capsules. Both aqueous binders and non-aqueous binders may be employed. Since non-aqueous binders may be used, it is not necessary to employ expensive papers thereby providing additional economies as well as a superior product. One of the particular advantages of the free-flowing powders of the invention is that it may be employed with a hot melt wax binder or dispersed in a printing ink vehicle. In the case of printing ink vehicles, the microscopic capsules may be dispersed in them and the resulting product reverse printed on a paper sheet at the same time as ordinary line printing is done. This is particularly satisfactory since it provides an excellent means of spot application whereby prescribed areas on the backs or fronts of the sheets of paper may be coated with capsules. This is one of the particular advantages of the present invention since it permits application of a transfer film or coating of capsules to only those areas of the paper where it is desired.
In order that the present invention may be better understood, the following examples of products prepared according to the invention are given for purposes of illustration. Although the number of film-formers, marking fluids, coloring and color-forming materials and binders is so great, and the number of combinations of materials suitable for making the capsules and record materials containing the capsules over an area thereof is vast, those skilled in the art will be able to readily practice the invention from reading the examples which illustrate the preparation of the products of the invention. Portions of components are given in terms of parts by weight, unless otherwise specified.
Example I This example describes the preparation of microscopic capsules prepared by spray drying an emulsion of mineral oil in aqueous hydroxyethylcellulose.
About 30 parts of second mineral oil containing 4.5 parts of Mogul A (Godfrey Cabot, Inc.) carbon black (high volatile contentlow oil absorption-336 Angstrom units mean diameter) was emulsified into 700 parts of a 10% aqueous solution of hydroxyethylcellulose (having a viscosity of 250-350 centipoises at 20 C. when in the form of a 5% aqueous solution). Emulsification was accomplished by agitating the 10% aqueous solution of hydroxyethylcellulose by itself in a Waring Blendor and then pouring in the oil solution slowly while agitation was continued. A fine particle size (one micron) stable emulsion was thus produced. The resulting emulsion was injected via a fine air feed nozzle into a heated spray drying chamber of a temperature of between about 225-265 F. and the dried product collected. On examination, microscopic capsules ranging from 1 to 10 microns were observed. The capsules exuded black oil when subjected to ordinary writing pressure.
Example II This example describes the preparation of microscopic capsules prepared by spray drying an emulsion of mineral oil in aqueous hydroxyethylcellulose.
About 17 parts of 100 second mineral oil containing 5% by weight of the butyl ether of malachite green A was emulsified into 3000 parts of a 5% aqueous solution of Cellosize WP-40 (hydroxyethylcellulose which when in the form of a 2% aqueous solution at 20 C. possesses a viscosity of 75 to centipoises). An emulsion was produced and then spray dried in accordance with the procedure of Example I. A free-flowing powder of microscopic capsules was obtained.
Example III This example describes the preparation of microscopic capsules containing a marking fluid containing a colorless color-forming dye intermediate.
About 4.5 parts of the butyl ether of methyl violet was dissolved in 180 parts of an equal part mixture of Arochlor 1254 (a chlorinated diphenyl having a Saybolt viscosity of 44-48 seconds at 210 F.), amyl diphenyl and amylnaphthalene. The resulting solution was colorless. This solution was emulsified into 600 parts of a 10% aqueous solution by hydroxyethylcellulose in accordance with the procedure of Example I and the resulting emulsion spray dried in accordance with Example I. A free-flowing powder of microscopic capsules having particle sizes from about 0.5 to 10 microns diameter was obtained.
When the capsules were subjected to pressure they exuded colorless marking fluid which produced a strong color when absorbed on a paper impregnated with a surface of attapulgite clay or a paper surface coated with tannic acid.
Example IV This example describes the preparation of microscopic capsules containing carbon black.
About 150 parts of a 10% Arochlor 1248 (a chlorinated diphenyl having a Saybolt viscosity of 36-37 seconds at 210 F.) and 90% 100 second mineral oil mixture containing 22.5 partsof carbon black was emulsified into 75 parts of an aqueous solution of water soluble urea-formaldehyde resin (Uformite 400-67% solids) and 2.5 parts of extra low viscosity (-25 centipoises in a 2% aqueous solution at 25 C.) carboxymethylcellulose in 175 parts of water. The emulsion was produced in accordance with the procedure of Example I and diluted with 600 parts of water, and while continuing the rapid agitation, sufiicient concentrated hydrochloric acid' was added to produce condensation and precipitation of the urea formaldehyde resin. The resulting mixture was agitated for another five minutes, filtered, and the filter cake washed with water and acetone and then agitated with toluene to remove any free oily liquid. The mixture was again filtered and the filter cake air dried and then subjected to further drying at 105 C. Under microscopic examination the resulting dry, free-flowing powder was found to consist of agglomerated microscopic capsules ranging in diameter from between about 4 to 50 microns. On applying pressure to these capsules, the Walls ruptured and black oil was exuded in copious quantities.
Example V This example describes the preparation of microscopic capsules prepared from an emulsion of mineral oil in cellulose acetate.
About 100 parts of 100 second mineral oil containing about 25% by weight of nigrosine dye was emulsified into a solution of 50 parts of cellulose acetate in 600 parts of acetone in accordance with the procedure of Example I. The resulting emulsion was sprayed through an aspirator into the air to evaporate the acetone and the resulting dry microscopic capsules collected. The capsules were of about 50 micron diameter particle size. When this free-flowing powder of capsules was subjected to writing pressure, the cellulose acetate shells of the capsules were ruptured and the oil containing the nigrosine exuded therefrom in copious quantities.
Example VI sules exuded the blue colored fluid when subjected; to pressure to give a blue mark on a receptive surface.
10 Example VII This example describes the preparation of capsules containing a colorless color-forming dye intermediate.
About 50 parts of second mineral oil containing about 2 parts of the butyl ether of malachite green A (Color Index No. 657) in the alkaline condition was emulsified into a solution of 40 parts of Zein and 1 part of sodium hydroxide in 200 parts of methanol. The emulsification was accomplished in accordance with the procedure of Example I. The resulting emulsion was spray dried by atomizing the emulsion into the air to provide rnicro-capsules ranging in size from about 1 to 60 microns. When the resulting capsules were coated' to a sheet of paper and the sheet of paper placed in contact with the surface of an adjacent sheet which was coated with tannic acid, and pressure applied to the sheets in the form of pencil writing, a strongly colored mark was produced on' the surface of the sheet containing the tannic acid.
Example VIII Microscopic capsules produced in accordance with Example III to the extent of 30 parts of free-flowing capsule powder was placed into 70 parts of a 5% solution of Du Pont isobutyl methacrylate in benzene. The resulting dispersion was applied to the backs of sheets of bond paper with a doctor blade and then subsequently air dried. The fronts of these sheets of paper had been sensitized with attapulgite clay. When a manifold of sheets were stacked one above the other, with the capsule coated surfaces adjacent to the clay sensitized surfaces and writing pressure applied, a copy was produced on the fronts sensitized with clay at the sites where pressure was applied.
Example IX Microscopic capsules produced in accordance with Example VII were placed in a flexographic vehicle (Bensing Bros. and Deeney D-536) (a water soluble protein dissolved in water) to the extent of 30 parts by weight of capsules and 70 parts of flexographic vehicle, to provide a printable ink which was applied to portions of a surface of sheets of paper by means of a gravure roll which printed the desired portion of the surface of the sheets of paper with the capsule coating. The coating dried on the paper promptly. When the resulting coated sheets were assembled with the coated portions facing adjacent sheets activated with attapulgite clay and writing pressure applied against the treated surface, a strong colored mark was produced.
Example X About 30 parts of capsules produced in accordance with Example I were mixed with 70 parts of a mixture of 6 parts of cellulose acetate and 64 parts of acetone. The resulting mixture was applied to one surface of sheets of paper by means of a doctor blade. The sheets were permitted to dry in the air. The surface of the sheets of paper coated with the capsules provided an excellent means of copying.
Example XI About 40 parts of paraflin wax having a melting point of 135 F. and 20 parts of FTC-200 petroleum wax (Fischer-Tropsch-l) were melted together at C. Into the resulting molten mixture were added about 5 parts of Alpex resin (a cyclized rubber resin) and 120 parts of Schenectady ST-5115 resin and the resulting clear melt reheated to 120 C. and maintained at this temperature. About parts of a solution of 5 parts of phenyl leuco auramine in 120 parts of butyl benzyl phthalate and 0.5 part of dimethylethanolamine, heated to 120 C. was added with rapid agitation to the foregoing melt in a Waring Blendor. The emulsion so formed was sprayed via a hot air stream C. temperature) inlet into a chilled atmosphere and the resulting spherical particles collected ranged in size from 1 to 60 microns. When subjected to writing pressures, these spheres ruptured and exuded the marking fluid which gave a strong blue coloration both on a paper sheet coated with attapulgite clay and on a paper sheet coated with citric acid.
12 As will be apparent from the foregoing examples various components of film-formers, plasticizers, marking fluids, dyes, pigments and binders may be employed. 5 Listed below in Table 2 are some of the components which may be employed.
TABLE 2 Binder Film Forming Resin or Polymer Plasticizer Resin Solvent or Fluid For Dye or Dye or Pigment Binder Solvent or Dispersion Medium Pigment Dispersion Medium Ce lulose acetate dibutyl-phthalate. acetone mineral oil oil soluble blue A carboxymethyl- Water.
(du Pont). cellulose. fiydr xyethylcellulose polylezhylene glywater rapeseed oil. carbon black nitrocellulose methanol.
co 00. Ze none water methanol mineral oil butyl ether of casein Wateralkali. crystal violet. yrenebutadiene copolymer do water chlorinated bimalachite green polyviuylchloride none.
phenyl. lactone. plastisol. Melamineformaldehyde do do amyl biphenyl phthalocyanine methylmethacryltoluene.
blue pigment. ate. Polyvillylchloride dioetyl adipate none polyethylene crystal violet nitrocellulose methanol glycol 400. carbiriol. toluene. y yl acetate-.. cottonseed il ultramarine blue lithovarnlsh none. yv pyrrolidone. amyluaphthalene. Hectograph hot melt resin"... D0.
White A du Pont. Petroleum resin paraffin wax none thirlidieti'hylerio methyl violet. starch water.
g yco Piccopale (Penna. Indus.
Chemical Co.) mineral oil Oyclized rubber do "Troi oir polyethylene Cadmium Red cellulose acetate-.- acetone- (Andersonglycol 400. Lithopone Eriehgrd Oil Dup Glidden.
orp. o yterpene resin. parafiin wax none glycerol pigment gelatin water. Piccolyte (Penn Chemc mineral oil Example XII An emulsion was prepared by homogenizing 100 parts of a 5050 mixture of polyethylene glycol 400 and ethoxytriglycol containing 7 parts of Spirit Hectograph Black A (a black pigment) (General Dyestutf Co.) into a molten mixture of 50 parts of parafiin wax and 45 parts of Piccopale 100 (a petroleum hydrocarbon resin). The resulting emulsion was sprayed into a chilled atmosphere and the solidified particles containing the colored fluid collected and stored. The spheres possessed a particle size of from 1 to 60 microns.
Example XIII About 50 parts of Geon 121 resin (polyvinyl chloride resin) was dispersed in 50 parts of dioctylphthalate as a plasticizer. Into this mixture was emulsified 50 parts of polyethylene glycol (mol. wt. 400) containing parts of carbon black. The resulting emulsion was sprayed into an air chamber at a temperature of 350 F. in order to fuse the resin and plasticizer about the fluid colored particles to form capsules containing marking fluid.
Example XIV About 50 parts of capsules prepared according to Example I were dispersed in 50 parts of Geon 121 resin and 50 parts of dioctylphthalate to provide a paste. The
resulting paste was printed onto paper and the coating cured by passing the coated paper over rollers at 350 F. An excellent copy sheet was produced.
It will be appreciated that if more than one copy is wanted it is possible to coat the capsules of the invention on at least a portion of one side of sheets of paper and, if necessary, a reactive coating on the other side, so that by placing a pile of such sheets one upon the other and pressing upon them with a pencil or subjecting them to the blow of a typewriter key, a suitable number of copies can be obtained depending upon the amount of pressure applied and the thickness of the paper.
The terms and expressions which have been employed are used as terms of description and not of limitation, and it is not intended, in the use of such terms and expressions, to exclude any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed.
What is claimed is:
1. A process for producing a free-flowing powder of microscopic discrete rupturable capsules comprising liquid droplets encapsulated within an outer rupturable shell of film-forming material, said encapsulating outer shell being formed directly by evaporation forces on the solvent of a film-former solution of a non-ionizable water-soluble film-former which comprises the continuous phase of suspended minute particles of an emulsion, the discontinuous phase of which emulsion comprises the liquid droplets and between about 23% and 80% by weight of the capsules, which process comprises producing an emulsion of the liquid droplets in a film-former solution in which the latter forms the continuous phase and is substantially insoluble in the liquid droplets, suspending minute particles of said emulsion in a gaseous atmosphere, and then subjecting said suspended emulsion particles to evaporation forces to produce said microscopic discrete capsules in the form of a free-flowing powder.
2. A process defined by claim 1, wherein the drying is accomplished by spray evaporation.
3. A process as defined by claim 1, wherein the resulting capsules which are produced have a diameter of between about 0.1 and microns.
4. A process for producing a free-flowing powder of microscopic discrete rupturable capsulescomprising'marking fluid droplets encapsulated within an outer rupturable shell of film-forming material, said encapsulating outer shell being formed directly by evaporation forces on the solvent of a film-former solution of a non-ionizable watersoluble film-former which comprises the continuous phase of suspended minute particles of an emulsion, the discontinuous phase of which emulsion comprises the marking fluid droplets and between about 23% and 80% by weight of the capsules, which process comprises producing an emulsion of the marking fluid in a film-former solution in which the latter forms the continuous'phase and is substantially insoluble in, the marking fluid, suspending minute particles of said emulsion in a gaseous atmosphere, and then subjecting said suspended minute emulsion particles to evaporation forces to produce said microscopic discrete capsules in the form of a free-flowing powder.
5. A process as defined by claim 4 wherein said marking fluid comprises a colored material.
6. A process for producing a free-flowing powder of microscopic discrete rupturable capsules comprising liquid droplets encapsulated within an outer rupturable shell of film-forming material, said encapsulating outer shell being formed from a hot molten non-aqueous film-former comprising the continuous phase of an emulsion, the discontinuous phase of which emulsion comprises liquid droplets comprising between about 23% and 80% by weight of the emulsion, which process comprises producing an emulsion of the liquid droplets in said hot molten nonaqueous film-former in which the latter forms the continuous phase and is substantially insoluble in the liquid droplets, suspending minute particles of said emulsion in a gaseous atmosphere, and cooling the suspended particles to solidify said film-former and produce microscopic discrete rupturable capsules in the form of a free-flowing powder.
7. A process as defined by claim 6, wherein the resulting capsules have a diameter between about 0.1 and 70 microns.
8. A process for producing a free-flowing powder of microscopic discrete rupturable capsules comprising liquid droplets encapsulated within an outer rupturable shell of film-forming material, said encapsulating outer shell consisting of a hydrophobic water-insoluble material pro duced by the chemical condensation of the reactive constituents of the film-former dissolved in aqueous solution, said solution comprising the continuous phase of an emulsion, the discontinuous phase of which emulsion comprises liquid droplets comprising between about 23% and 80% by weight of the capsules, which process comprises producing an emulsion of the liquid droplets in said aqueous solution of film-former constituents, causing said film-former constituents to undergo Chemical condensation about the liquid droplets, and thereby produce said microscopic discrete rupturable capsules in the form of a free-flowing powder.
9. A process for producing a free-flowing powder of microscopic discrete rupturable capsules comprising liquid droplets encapsulated within an outer rupturable shell of film-forming material, said encapsulating outer shell being formed of a plastisol film-former comprising the continuous phase of an emulsion, the discontinuous phase of which emulsion comprises liquid droplets comprising be tween about 23% and 80% by weight of the capsules, which process comprises producing an emulsion of the liquid droplets in said plastisol film-former in which the latter forms the continuous phase and is substantially insoluble in the liquid droplets, heating minute particles of said emulsion to thereby produce said microscopic discrete rupturable capsules in the form of a free-flowing powder.
10. A process for producing a free-flowing powder of microscopic discrete rupturable capsules comprising liquid droplets encapsulated within an outer rupturable shell of film-forming material, said encapsulating outer shell being formed directly by evaporation forces on the organic solvent of a film-former solution of a hydrophobic waterinsoluble film-former in an organic solvent which comprises the continuous phase' of suspended minute particles of an emulsion, the discontinuous phase of which emulsion comprises the liquid droplets, and between about 23% and by weight of the capsules, which process comprises producing an emulsion of the liquid droplets in the film-former solution in which the latter forms the continuous phase andis substantially insoluble in the liquid droplets, suspending minute particles of said emulsion in a gaseous atmosphere, and then subjecting said suspended emulsion particles to evaporation forces to produce said microscopic discrete capsules in the form of a free-flowing powder.
11. A free-fl0wing powder of microscopic discrete rupturable capsules having a particle size of between about 0.1 and 70 microns diameter, said capsules comp-rising liquid droplets encapsulated within an outer shell rupturable under pressure, said liquid droplets being substantially insoluble in and incapable of dissolving said outer shell and comprising between about 23% and 80% by weight of said capsules, said outer shell having a thickness comprising from about one-tenth to one-third of the capsule diameter and comprising a material selected from the class consisting of a non-ionizable water-soluble filmformer and a hydrophobic water-insoluble film-former.
12. A substantially dry free-flowing powder as defined by claim 11 wherein the capsules have a particle size of between about 1 and 20 microns diameter.
13. A substantially dry free-flowing powder as defined by claim 11 wherein the capsules have a particle size of between about 1 and 5 microns diameter.
14. A free-flowing powder of microscopic discrete rupturable capsules as defined by claim 11 wherein the outer shell material is a non-ionizable water-soluble film-former comprising a cellulosic material.
15. A free-flowing powder of microscopic discrete rupturable capsules as defined by claim 14 wherein the liquid droplets comprise a marking fluid.
16. A free-flowing powder of microscopic discrete rupturable capsules as defined by claim 11 wherein the shell material is a hydrophobic water-insoluble film-former comprising a chemical condensation polymer.
17. A free-flowing powder of microscopic discrete rupturable capsules as defined by claim 16 wherein the liquid droplets comprise a marking fluid.
18. A free-flowing powder of microscopic discrete rupturable capsules as defined by claim 11 wherein the shell material is a hydrophobic water-insoluble film-former comprising a vinyl polymer.
19. A free-flowing powder of microscopic discrete rupturable capsules as defined by claim 18 wherein the liquid droplets comprise a marking fluid.
20. A free-flowing powder of microscopic discrete rupturable capsules as defined by claim 11 wherein the shell material comprises a fusible wax material.
21. A free-flowing powder of microscopic discrete rupturable capsules as defined by claim 20 wherein the liquid droplets comprise a marking fluid.
22. A free-flowing powder of microscopic discrete rupturable capsules as defined by claim 11 wherein the liquid droplets comprise a marking fluid.
23. A record copying sheet having on at least a portion of one side thereof a coating of a free-flowing powder of microscopic discrete capsules comprising a rupturable shell containing therein a marking fluid capable of being liberated when the shells of said discrete capsules are ruptured upon being subjected to an external printing or marking pressure, said microscopic discrete capsules being those defined by claim 11.
24. A record copying sheet having on at least a portion of one side thereof a coating of microscopic discrete capsules comprising a rupturable shell containing therein a marking fluid capable of being liberated when the shells of said discrete capsules are ruptured upon being subjected to external pressure, said capsules being held to said sheet by a binder which is of a different substance from that forming the rupturable shell of said capsules, said microscopic discrete capsules being those defined by claim 11.
25. Paper having coated on at least a portion of a surface thereof microscopic discrete capsules comprising a rupturable shell containing therein a marking fluid capable of being liberated when the shells of said discrete capsules are ruptured upon being subjected to external pressure, said capsules being held to said sheet by a binder which is of a different substance from that forming the rupturable shell of said capsules, said microscopic discrete capsules being those defined by claim 11.
26. Paper as defined by claim 25 wherein the marking fluid comprises a colored transfer substance.
' ing a color when in the presence of an acidic substance.
29. Paper as defined by claim 25 wherein the capsules have a diameter of between about 0.1 and 70 microns.
References Cited in the file of this patent UNITED STATES PATENTS 2,650,895 Wallenmeyer Sept, 1, 1953 2,711,375 Sandberg June 21, 1955 2,712,507 Green July 5, 1955 2,777,798 Hochberg Jan. 15, 1957 2,800,457 Green July 23, 1957 2,800,458 Green July 23, 1957 UNITED STATES PATENT OFFICE CERTIFICATE, OF CORRECTION Patent No,, 3 016 368 January 9 1962 Norman Macaulay It is hereby certified that error appears in the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.
Column 1 line 31 for ,"bands" read hands ---3 column 5 line 1O for "particles" read particle line 42,, for "'hydropholic" read hydrophobic column 'Z line 11, before "colored" insert a column 9 line 6 for "by" read of columns 11 and 12 TABLE 2"", the horizontal lines. beginning "Petroleum resin! and "Piccopale" should be presented as a single composition and not as two separate compositions as in the patent.
Signed and gsealed this 19th day of June 1962,
(SEAL) Attest ERNEST W. SWIDER v DAVID L. LADD Attesting Officer Commissioner of Patents UNITED STATES PATENT OFF-ICE CERTIFICATE, OF CORRECTION Patent Noe 3 O16 3O8 January 9 1962 NormanMacaulay It is hereby certified that error appears in the above numbered patant requiring correction and that the said Letters Patent should read as corrected below.
Column l line 31,, for -"bands" read hands column 5 line 10 for "particles" read particle line 42 for "hydropho1ic' read hydrophobic column '7 line 11,, before "coloned' insert a column 9 line 6 for "by" read of columns 11 and 12,, TABLE 2" the horizontal lines beginning "Petroleum resin"? and "Piccopale" should be presented as a single composition and not as two separate compositions as in the patent Signed and sea1ed this 19th day of June 1962.
(SEAL) Attest ERNEST w. SWIDER DAVID A D Attesting Officer Commissioner of Patents

Claims (1)

1. A PROCESS FOR PRODUCING A FREE-FLOWING POWDER OF MICROSCOPIC DISCRETE RUPTURABLE CAPSULES COMPRISING LIQUID DROPLETS ENCAPSULATED WITHIN AN OUTER RUPTURABLE SHELL OF FILM-FORMING MATERIAL, SAID ENCAPSULATING OUTER SHELL BEING FORMED DIRECTLY BY EVAPORATION FORCES IN THE SOLVENT OF A FILM-FORMER SOLUTION OF A NON-IONIZABLE WATER-SOLUBLE FILM-FORMER WHICH COMPRISES THE CONTINUOUS PHASE OF SUSPENDED MINUTE PARTICLES OF AN EMULSION, THE DISCONTINUOUS PHASE OF WHICH EMULSION COMPRISES THE LIQUID DROPLETS AND BETWEEN ABOUT 23% AND 80% BY WEIGHT OF THE CAPSULES, WHICH PROCESS COMPRISES PRODUCING AN EMULSION OF THE LIQUID DROPLETS IN A FILM-FORMER SOLUTION IN WHICH THE LATTER FORMS THE CONTINUOUS PHASE AND IS SUBSTANTIALLY IN-
US676574A 1957-08-06 1957-08-06 Recording paper coated with microscopic capsules of coloring material, capsules and method of making Expired - Lifetime US3016308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US676574A US3016308A (en) 1957-08-06 1957-08-06 Recording paper coated with microscopic capsules of coloring material, capsules and method of making

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US676574A US3016308A (en) 1957-08-06 1957-08-06 Recording paper coated with microscopic capsules of coloring material, capsules and method of making

Publications (1)

Publication Number Publication Date
US3016308A true US3016308A (en) 1962-01-09

Family

ID=24715075

Family Applications (1)

Application Number Title Priority Date Filing Date
US676574A Expired - Lifetime US3016308A (en) 1957-08-06 1957-08-06 Recording paper coated with microscopic capsules of coloring material, capsules and method of making

Country Status (1)

Country Link
US (1) US3016308A (en)

Cited By (260)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079351A (en) * 1958-11-26 1963-02-26 Moore Business Forms Inc Copying materials and emulsions
US3111407A (en) * 1960-02-26 1963-11-19 Ibm Methods for making record materials
US3116206A (en) * 1961-12-22 1963-12-31 Ncr Co Encapsulation process and its product
US3130050A (en) * 1960-01-18 1964-04-21 Gen Aniline & Film Corp Oil-dispersed dyes in photopolym-erization systems
US3132075A (en) * 1960-10-17 1964-05-05 Upjohn Co Solid medicinal dosage forms coated with hydroxyethylcellulose and hydrolyzed styrene-maleic anhydride copolymer
US3143436A (en) * 1960-10-20 1964-08-04 Us Rubber Co Method of making breathable films and coated fabrics
US3161602A (en) * 1961-09-05 1964-12-15 Ncr Co Process for making capsules
US3202510A (en) * 1961-07-11 1965-08-24 Frederick Post Co Production of encapsulated light-sensitive diazotype compositions and coatings
US3202533A (en) * 1962-07-24 1965-08-24 Ibm Method of encapsulating liquids
US3208951A (en) * 1961-10-30 1965-09-28 Ht Res Inst Electrostatic encapsulation
US3256090A (en) * 1961-03-27 1966-06-14 Polaroid Corp Diffusion transfer photographic package with pressure-rupturable capsule of edge-sealing adhesive
US3260620A (en) * 1962-10-22 1966-07-12 Monsanto Res Corp Tape fed fuel cell
US3265630A (en) * 1958-12-22 1966-08-09 Ncr Co Encapsulating lipophilic material by coacervation
US3272629A (en) * 1962-01-25 1966-09-13 Nashua Corp Photosensitive diazotype materials
US3276876A (en) * 1963-03-19 1966-10-04 Gen Aniline & Film Corp Photographic sheet material
US3276869A (en) * 1961-05-09 1966-10-04 Polaroid Corp Capsular product coated with silver halide and containing a color-providing substance
US3281244A (en) * 1962-01-27 1966-10-25 Keuffel & Esser Co Heat-developable two-component diazotype reproduction material
US3305382A (en) * 1964-01-02 1967-02-21 Ibm Pressure sensitive transfer sheet
US3306748A (en) * 1963-03-05 1967-02-28 Chalkley Lyman Photosensitive system based on hydrophobic dye cyanides and polyvinylpyrrolidone
US3316119A (en) * 1960-09-29 1967-04-25 Litton Systems Inc Recording member for visibly recording radio frequency microwaves
US3322556A (en) * 1961-12-22 1967-05-30 Keuffel & Esser Co Method for preparing heat-developable two-component diazotype reproduction sheet
US3328257A (en) * 1962-02-20 1967-06-27 Gevaert Photo Prod Nv Preparation of microcapsules
US3351531A (en) * 1965-08-09 1967-11-07 Beatrice Foods Co Wheat gluten-encapsulated dried oilin-water dispersions of fat-soluble food, medicaments, flavoring agents or food coloring agents
US3357354A (en) * 1965-09-03 1967-12-12 Xerox Corp Reproduction method
US3360371A (en) * 1962-12-29 1967-12-26 Keuffel & Esser Co Heat-developable two-component diazotype reproduction material
US3386824A (en) * 1967-03-27 1968-06-04 Chicago Aerial Ind Inc Photographic processing film laminate structure utilizing plastic microcapsules
US3389007A (en) * 1962-07-20 1968-06-18 Oda Ryohei Record transfer sheet material, method of making and composition
US3391095A (en) * 1965-09-20 1968-07-02 Interchem Corp Normally stable curable epoxy resin composition containing encapsulated water insoluble amine curing agents
US3401123A (en) * 1961-03-15 1968-09-10 Ncr Co Process for making case-hardened capsules and its capsule product
US3406137A (en) * 1965-04-29 1968-10-15 Xerox Corp Imaging material
US3409461A (en) * 1962-11-24 1968-11-05 Kalle Ag Process for the manufacture of an encapsulated isocyanate
US3415186A (en) * 1966-02-10 1968-12-10 Xerox Corp Duplicating system
US3415758A (en) * 1960-03-09 1968-12-10 Ncr Co Process of forming minute capsules en masse
US3418250A (en) * 1965-10-23 1968-12-24 Us Plywood Champ Papers Inc Microcapsules, process for their formation and transfer sheet record material coated therewith
US3418656A (en) * 1965-10-23 1968-12-24 Us Plywood Champ Papers Inc Microcapsules, process for their formation and transfer sheet record material coated therewith
US3421894A (en) * 1966-01-13 1969-01-14 Ncr Co Recording process utilizing 6'-nitro-1,3,3 - trimethyl-benzoindolinospiropyran dispersed in heat-meltable wax
US3427160A (en) * 1961-05-09 1969-02-11 Polaroid Corp Capsular products
US3432327A (en) * 1964-03-13 1969-03-11 Pilot Pen Co Ltd Pressure sensitive copying sheet and the production thereof
US3436234A (en) * 1965-04-29 1969-04-01 Xerox Corp Duplicating ink
US3446741A (en) * 1963-11-14 1969-05-27 Minnesota Mining & Mfg Insulating device,composition,and method
US3454430A (en) * 1966-03-29 1969-07-08 Monsanto Res Corp Tape feed for tape fuel cell and the method of operating a dry tape fuel cell
US3455390A (en) * 1965-12-03 1969-07-15 Union Oil Co Low fluid loss well treating composition and method
US3455838A (en) * 1966-04-22 1969-07-15 Nat Starch Chem Corp Method of encapsulating water-insoluble substances and product thereof
US3461092A (en) * 1965-08-23 1969-08-12 Owens Illinois Inc Solid particulate printing ink composition and process for producing same
US3463655A (en) * 1966-04-09 1969-08-26 Fuji Photo Film Co Ltd Pressure-sensitive copying paper
US3472675A (en) * 1966-01-27 1969-10-14 Ncr Co Pressure-sensitive capsule-containing foraminated sheet material
US3486752A (en) * 1967-08-28 1969-12-30 Minnesota Mining & Mfg Target toy device
US3486449A (en) * 1966-08-26 1969-12-30 Alfred B Levine Process of repulsion printing employing a radiant energy field
US3510435A (en) * 1967-11-17 1970-05-05 Ncr Co Method of producing opaque encapsulated materials
US3516846A (en) * 1969-11-18 1970-06-23 Minnesota Mining & Mfg Microcapsule-containing paper
US3516941A (en) * 1966-07-25 1970-06-23 Minnesota Mining & Mfg Microcapsules and process of making
DE1771622B1 (en) * 1967-06-30 1971-09-09 Baumgartner Papiers Sa Flavoring cigarette paper
US3615972A (en) * 1967-04-28 1971-10-26 Dow Chemical Co Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same
US3617334A (en) * 1968-11-08 1971-11-02 Ncr Co Pressure-sensitive sheet material
DE2134326A1 (en) * 1970-07-11 1972-01-13 Kureha Kagaku Kogyo K K , Tokio Microcapsules for carbon-free copier paper
US3639256A (en) * 1970-05-27 1972-02-01 Ncr Co Encapsulation process by complex coacervation using inorganic polymers
US3639257A (en) * 1967-06-23 1972-02-01 Pelikan Werke Wagner Guenther Microcapsules as carriers for color reaction components in color reaction paper and process of making said microcapsules
US3691090A (en) * 1969-01-16 1972-09-12 Fuji Photo Film Co Ltd Encapsulation method
DE2210133A1 (en) * 1971-03-02 1972-10-26
US3720534A (en) * 1964-01-29 1973-03-13 Moore Business Forms Inc Polymer gels and method of making same
DE2251350A1 (en) * 1971-10-20 1973-04-26 Monsanto Co DYE SOLVENT FOR PRESSURE SENSITIVE RECORDING MATERIALS
US3763347A (en) * 1972-04-13 1973-10-02 Ncr Co Vaporous lamp
US3769045A (en) * 1971-06-22 1973-10-30 Ncr Co Process for producing liquid write crayon
JPS492124B1 (en) * 1970-08-17 1974-01-18
JPS4914685B1 (en) * 1969-05-05 1974-04-09
US3819398A (en) * 1970-07-17 1974-06-25 Champion Int Corp Process for production of pressure-sensitive copy sheet
US3836383A (en) * 1970-10-27 1974-09-17 Fuji Photo Film Co Ltd Pressure sensitive recording paper
JPS49122906U (en) * 1973-02-20 1974-10-22
US3852076A (en) * 1972-02-22 1974-12-03 Ryan J Aqueous method of microencapsulation and capsules
US3852401A (en) * 1971-06-29 1974-12-03 Japan Exlan Co Ltd Method for producing artificial fibers containing microcapsules
US3865613A (en) * 1971-09-23 1975-02-11 Wiggins Teape Res Dev Pressure-sensitive copying systems
US3872023A (en) * 1972-04-17 1975-03-18 Basf Ag Microcapsules having walls made of copolymer of methylmethacrylate and acetylacetates of mono(meth) acrylates of aliphatic diols
US3872024A (en) * 1970-05-27 1975-03-18 Ncr Co Encapsulation process by simple coacervation using inorganic polymers
US3883298A (en) * 1969-10-13 1975-05-13 Gerald Platt Energy responsive thread
US3888689A (en) * 1970-10-01 1975-06-10 Fuji Photo Film Co Ltd Aqueous printing ink containing perfume-containing microcapsules
US3896033A (en) * 1972-07-03 1975-07-22 Colgate Palmolive Co Encapsulated fabric softener
US3900669A (en) * 1971-10-21 1975-08-19 Fuji Photo Film Co Ltd Pressure-sensitive recording sheet with microcapsules having polyurea walls
US3914511A (en) * 1973-10-18 1975-10-21 Champion Int Corp Spot printing of color-forming microcapsules and co-reactant therefor
US3919110A (en) * 1968-12-23 1975-11-11 Champion Int Corp Colored organic synthetic pigments and method for producing same
JPS519079A (en) * 1974-07-10 1976-01-24 Ncr Co
US3939095A (en) * 1972-08-10 1976-02-17 Badische Anilin- & Soda-Fabrik Aktiengesellschaft Dye-containing microcapsules
US3968301A (en) * 1972-02-11 1976-07-06 Monsanto Company Pressure-sensitive record material and dye solvents therefor
DE2612036A1 (en) * 1975-03-24 1976-10-14 Moore Business Forms Inc CARBON-FREE MULTIPLE COPY SHEET SYSTEM
US3993831A (en) * 1968-12-17 1976-11-23 Champion International Corporation Microcapsules, process for their formation and transfer sheet record material coated therewith
US4000087A (en) * 1974-07-29 1976-12-28 Moore Business Forms, Inc. Microcapsules useful in carbonless copying systems and process for their preparation
US4003589A (en) * 1970-07-11 1977-01-18 Kureha Kagaku Kogyo Kabushiki Kaisha Carbonless copying paper
US4018688A (en) * 1975-07-21 1977-04-19 The Procter & Gamble Company Capsules, process of their preparation and fabric conditioning composition containing said capsules
US4039712A (en) * 1971-03-02 1977-08-02 Nippon Petrochemicals Company Ltd. Process for producing a solvent for use in microcapsule for pressure-sensitive copying paper
US4050945A (en) * 1974-07-08 1977-09-27 Yoshio Suzuki Heat-sensitive color-producing compositions and articles using same
US4054697A (en) * 1974-12-16 1977-10-18 Imperial Chemical Industries Limited Decorative sheet material
US4055358A (en) * 1973-05-21 1977-10-25 Ciba-Geigy Corporation Nitro-phthalides, their manufacture and their use in recording systems
DE2719914A1 (en) * 1976-05-07 1977-11-17 Mead Corp PRESSURE SENSITIVE, CARBON-FREE SHEETS OF CLEAN PAPER WITH NEW HOT MELTING SYSTEMS AND METHODS FOR THEIR PRODUCTION
US4063754A (en) * 1976-05-07 1977-12-20 The Mead Corporation Process for the production of pressure sensitive carbonless record sheets using novel hot melt systems and products thereof
US4070303A (en) * 1975-05-02 1978-01-24 Kureha Kagaku Kogyo Kabushiki Kaisha Solvent for dye used in pressure-sensitive copying paper
US4111874A (en) * 1971-12-22 1978-09-05 Canadian Patents And Development Limited Transparent pressure-sensitive coatings
JPS5345725B1 (en) * 1971-03-06 1978-12-08
DE2820600A1 (en) * 1977-06-16 1978-12-21 Mead Corp METHOD FOR THE PRODUCTION OF MICROCAPSULA COATING COMPOSITIONS WITH PIGMENT ARTICLES AND COMPOSITIONS PRODUCED THEREOF
US4138362A (en) * 1975-03-24 1979-02-06 Champion International Corporation Formation of microcapsules by interfacial cross-linking, microcapsules produced, and microcapsular dispersion
US4171981A (en) * 1977-04-29 1979-10-23 The Mead Corporation Process for the production of hot melt coating compositions containing microcapsules
DE2919838A1 (en) * 1978-05-17 1979-11-22 Minnesota Mining & Mfg DRY MICROCAPSULES AS A PRESSURE-SENSITIVE MARKING SUBSTANCE AND PRESSURE-SENSITIVE, CARBON-FREE PAPER
EP0005921A1 (en) * 1978-05-31 1979-12-12 Monsanto Europe S.A./N.V. Mark-recording systems
US4187194A (en) * 1972-01-03 1980-02-05 Xerox Corporation Encapsulation process
US4191404A (en) * 1977-03-03 1980-03-04 The Mead Corporation Process for producing a pressure-sensitive carbonless copy sheet using microcapsules formed in situ in a radiation curable binder
US4200667A (en) * 1977-03-03 1980-04-29 The Mead Corporation Process for producing a pressure-sensitive carbonless copy sheet using microcapsules formed in situ in a radiation curable binder
US4208460A (en) * 1975-09-29 1980-06-17 Blockfabrik Lichtensteig, AG Process for producing paper having a coating of pressure-sensitive transfer copying material
US4209188A (en) * 1978-04-11 1980-06-24 Moore Business Forms, Inc. Microcapsules, method of making same, and carbonless copying system including said microcapsules
US4219439A (en) * 1977-01-28 1980-08-26 Kanzaki Paper Manufacturing Co., Ltd. Method of making oil-containing microcapsules
US4221601A (en) * 1976-01-26 1980-09-09 Basf Farben & Fasern Ag Packaged pigment pastes and process for coloring and toning water-diluted coating agents
US4235458A (en) * 1979-01-08 1980-11-25 The Mead Corporation Process for the production of hot melt coating compositions containing microcapsules
US4264365A (en) * 1979-02-14 1981-04-28 The Mead Corporation Production of pressure-sensitive carbonless record sheets using dioic acid hot melt systems and products thereof
EP0037477A2 (en) * 1980-03-26 1981-10-14 Bayer Ag Copying system and method for its manufacture, and offset or printing dyes useful in this system
US4327939A (en) * 1980-06-16 1982-05-04 Frye Copysystems, Inc. Chemical carbonless copy paper and image receptor medium therefor
US4339360A (en) * 1979-03-31 1982-07-13 Agency Of Industrial Science & Technology Particles of activated oxidized polysaccharide substance coated with inactive protective layer and method for manufacture thereof
EP0064204A1 (en) * 1981-04-30 1982-11-10 Bayer Ag Production of carbonless copying papers by flexography
US4371634A (en) * 1980-11-24 1983-02-01 Basf Aktiengesellschaft Microcapsule-containing wax composition
FR2510480A1 (en) * 1981-08-01 1983-02-04 Mitsubishi Paper Mills Ltd POWDER COMPOSITION BASED ON MICROCAPSULES
US4372581A (en) * 1978-04-21 1983-02-08 Hermann Schumacher Pressure sensitive copying material
US4396670A (en) * 1980-04-08 1983-08-02 The Wiggins Teape Group Limited Process for the production of microcapsules
US4399209A (en) * 1981-11-12 1983-08-16 The Mead Corporation Transfer imaging system
US4406816A (en) * 1979-10-08 1983-09-27 Basf Aktiengesellschaft Process for the preparation of microcapsules, and the microcapsules obtained thereby
US4428978A (en) 1980-05-28 1984-01-31 Bayer Aktiengesellschaft Concentrated microcapsule suspensions for reaction copying papers
US4440846A (en) * 1981-11-12 1984-04-03 Mead Corporation Photocopy sheet employing encapsulated radiation sensitive composition and imaging process
DE3335174A1 (en) * 1982-10-01 1984-04-12 Mitsubishi Paper Mills, Ltd., Tokyo Process for the production of heat-fusible and cold-hardenable printing inks including microcapsules
US4487801A (en) * 1983-10-11 1984-12-11 Minnesota Mining And Manufacturing Company Fragrance-releasing pull-apart sheet
US4493869A (en) * 1983-10-11 1985-01-15 Minnesota Mining And Manufacturing Company Fragrance-releasing microcapsules on a see-through substrate
US4495509A (en) * 1983-06-09 1985-01-22 Moore Business Forms, Inc. Microencapsulation by interchange of multiple emulsions
US4497887A (en) * 1981-06-09 1985-02-05 Ricoh Compay, Ltd. Thermal development type diazo copying material with hydrophobic resin encapsulated coupler particle
USRE32162E (en) * 1971-03-02 1986-05-27 Nippon Petrochemicals Co., Ltd. Pressure sensitive record material employing diaryl alkane solvents
US4599271A (en) * 1983-06-09 1986-07-08 Moore Business Forms, Inc. Microencapsulation of polyisocyanates by interchange of multiple
US4606956A (en) * 1984-12-21 1986-08-19 Minnesota Mining And Manufacturing Company On page fragrance sampling device
US4620726A (en) * 1985-12-09 1986-11-04 General Foods Corporation Computer-assisted laboratory notebook kit
US4626471A (en) * 1985-02-25 1986-12-02 Moore Business Forms, Inc. Microencapsulation by in-situ polymerization of multifunctional epoxy resins
US4636818A (en) * 1985-06-05 1987-01-13 Moore Business Forms, Inc. Carbonless system including solvent-only microcapsules
US4640847A (en) * 1984-01-17 1987-02-03 Kureha Kagaku Kogyo Kabushiki Kaisha Partially pressure-sensitive recording paper
US4681806A (en) * 1986-02-13 1987-07-21 Minnesota Mining And Manufacturing Company Particles containing releasable fill material and method of making same
US4692188A (en) * 1985-10-15 1987-09-08 Xerox Corporation Preparation of ink jet compositions
US4701397A (en) * 1986-02-26 1987-10-20 The Mead Corporation Method for forming images on plain paper and an imaging sheet useful therein
US4729792A (en) * 1985-11-08 1988-03-08 The Standard Register Company Microcapsules, printing inks and their production
US4751165A (en) * 1986-02-26 1988-06-14 The Mead Corporation Imaging sheet useful in forming images on plain paper comprising photosensitive microcapsules and developer-containing
US4822769A (en) * 1985-06-12 1989-04-18 Nashua Corporation High solids content coated back paper
US4822416A (en) * 1985-06-12 1989-04-18 Nashua Corporation High solids content CB coating
US4859561A (en) * 1986-09-09 1989-08-22 The Mead Corporation Developer sheet useful in providing transparencies or reproductions having a controlled gloss finish
US4865943A (en) * 1985-08-28 1989-09-12 The Mead Corporation Method for forming images using free flowing photosensitive microcapsules
US4879175A (en) * 1985-12-11 1989-11-07 Minnesota Mining And Manufacturing Company Device for exposing colorant to be transferred
US4879174A (en) * 1986-01-10 1989-11-07 Minnesota Mining And Manufacturing Company Device for exposing colorant to be transferred
US4889877A (en) * 1988-01-07 1989-12-26 The Standard Register Company High solids CB printing ink
US4891245A (en) * 1986-03-21 1990-01-02 Koh-I-Noor Rapidograph, Inc. Electrophoretic display particles and a process for their preparation
US4898780A (en) * 1985-11-08 1990-02-06 The Standard Register Company Production of microcapsules
US4933249A (en) * 1982-02-24 1990-06-12 Fuji Photo Film Co., Ltd. Electrostatographic pressure fixing process using encapsulated toner particles
US4940739A (en) * 1988-01-07 1990-07-10 The Standard Register Company Process for making a high solids CB printing ink
US4940738A (en) * 1988-01-07 1990-07-10 The Standard Register Company High solids CB printing ink containing a protective colloid blend
GR900100217A (en) * 1989-03-24 1990-07-31 Nehezvegyipari Kutato Intezet Method for producing ecologic capsule of natural origin for products with controlled release of the active ingredient
US4945121A (en) * 1987-08-18 1990-07-31 Koh-I-Noor Radiograph, Inc. Thermosetting dyed latex colorant dispersions
US4956129A (en) * 1984-03-30 1990-09-11 Ici Americas Inc. Microencapsulation process
US5050910A (en) * 1989-07-13 1991-09-24 Sheldon Schechter Fragrance-releasing insert for a magazine
WO1991015947A1 (en) * 1990-04-17 1991-10-31 Isp Investments Inc. Preparation of discrete microdroplets of an oil in water stabilized by in situ polymerization of a water-soluble vinyl monomer
US5084208A (en) * 1991-01-07 1992-01-28 Isp Investments Inc. Preparation of discrete microdroplets of a high viscosity oil in water
US5102856A (en) * 1990-11-07 1992-04-07 The Standard Register Company High solids self-contained printing ink
US5135437A (en) * 1989-11-13 1992-08-04 Schubert Keith E Form for making two-sided carbonless copies of information entered on both sides of an original sheet and methods of making and using same
US5137494A (en) * 1989-11-13 1992-08-11 Schubert Keith E Two-sided forms and methods of laying out, printing and filling out same
US5154668A (en) * 1989-04-06 1992-10-13 Schubert Keith E Single paper sheet forming a two-sided copy of information entered on both sides thereof
US5160530A (en) * 1989-01-24 1992-11-03 Griffin Corporation Microencapsulated polymorphic agriculturally active material
US5175071A (en) * 1991-06-25 1992-12-29 Xerox Corporation Encapsulated toner composition
US5178949A (en) * 1989-03-27 1993-01-12 Jujo Paper Co., Ltd. Color-former
US5197922A (en) * 1989-04-06 1993-03-30 Schubert Keith E Method and apparatus for producing two-sided carbonless copies of both sides of an original document
US5223370A (en) * 1991-12-06 1993-06-29 Xerox Corporation Low gloss toner compositions and processes thereof
US5224897A (en) * 1989-04-06 1993-07-06 Linden Gerald E Self-replicating duplex forms
US5244768A (en) * 1991-02-15 1993-09-14 Fuji Xerox Co., Ltd. Manufacturing process for an electrophotographic toner
US5248279A (en) * 1989-04-06 1993-09-28 Linden Gerald E Two-sided, self-replicating forms
US5281266A (en) * 1991-06-18 1994-01-25 The Wiggins Teape Group Limited Solvent compositions for use in pressure-sensitive copying paper
EP0593192A2 (en) * 1992-10-15 1994-04-20 The Wiggins Teape Group Limited Chromogenic composition for use in pressure-sensitive record material
US5325721A (en) * 1993-02-17 1994-07-05 Minnesota Mining And Manufacturing Company System for indicating exposure to preselected temperatures or tampering
US5395288A (en) * 1989-04-06 1995-03-07 Linden; Gerald E. Two-way-write type, single sheet, self-replicating forms
US5401516A (en) * 1992-12-21 1995-03-28 Emisphere Technologies, Inc. Modified hydrolyzed vegetable protein microspheres and methods for preparation and use thereof
US5443841A (en) * 1992-06-15 1995-08-22 Emisphere Technologies, Inc. Proteinoid microspheres and methods for preparation and use thereof
US5447728A (en) * 1992-06-15 1995-09-05 Emisphere Technologies, Inc. Desferrioxamine oral delivery system
US5461027A (en) * 1989-01-24 1995-10-24 Griffin Corporation Microencapsulated pendimethalin and method of making and using same
US5464803A (en) * 1992-06-04 1995-11-07 The Wiggins Teape Group Limited Pressure-sensitive record material
US5476829A (en) * 1993-07-03 1995-12-19 The Wiggins Teape Group Limited Pressure-sensitive copying material
EP0697292A1 (en) 1994-07-20 1996-02-21 The Wiggings Teape Group Limited Pressure-sensitive copying material
EP0697293A1 (en) 1994-07-26 1996-02-21 Copigraph New organic solvent for microcapsules useful notably for pressure-sensitive copy paper and pressure-sensitive copy coated with such microcapsules
US5518981A (en) * 1992-03-06 1996-05-21 Nashua Corporation Xerographable carbonless forms
EP0714786A1 (en) 1994-12-02 1996-06-05 Copigraph New microcapsules comprising as solvent a terpene derivative or an abietic acid derivative, notably for chemical copy papers and messure sensitive papers coated with such microcapsules
US5541155A (en) * 1994-04-22 1996-07-30 Emisphere Technologies, Inc. Acids and acid salts and their use in delivery systems
US5554323A (en) * 1992-11-05 1996-09-10 Fuji Photo Film Co., Ltd. Process for producing microcapsules
US5556583A (en) * 1991-03-28 1996-09-17 Dainippon Ink And Chemicals, Inc. Encapsulation method
US5578323A (en) * 1992-06-15 1996-11-26 Emisphere Technologies, Inc. Proteinoid carriers and methods for preparation and use thereof
US5607738A (en) * 1995-08-29 1997-03-04 Moore Business Forms, Inc. Multiple-part carbonless pressure seal business form assembly
US5629020A (en) * 1994-04-22 1997-05-13 Emisphere Technologies, Inc. Modified amino acids for drug delivery
US5643957A (en) * 1993-04-22 1997-07-01 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5650386A (en) * 1995-03-31 1997-07-22 Emisphere Technologies, Inc. Compositions for oral delivery of active agents
US5650566A (en) * 1996-08-12 1997-07-22 Chou; J. P. Pressure gauge showing a current and a preset pressure
US5667806A (en) * 1995-06-07 1997-09-16 Emisphere Technologies, Inc. Spray drying method and apparatus
US5693338A (en) * 1994-09-29 1997-12-02 Emisphere Technologies, Inc. Diketopiperazine-based delivery systems
US5709861A (en) * 1993-04-22 1998-01-20 Emisphere Technologies, Inc. Compositions for the delivery of antigens
US5714167A (en) * 1992-06-15 1998-02-03 Emisphere Technologies, Inc. Active agent transport systems
US5750147A (en) * 1995-06-07 1998-05-12 Emisphere Technologies, Inc. Method of solubilizing and encapsulating itraconazole
US5766633A (en) * 1993-04-22 1998-06-16 Emisphere Technologies, Inc. Oral drug delivery compositions and methods
USRE35862E (en) * 1986-08-18 1998-07-28 Emisphere Technologies, Inc. Delivery systems for pharmacological agents encapsulated with proteinoids
US5792451A (en) * 1994-03-02 1998-08-11 Emisphere Technologies, Inc. Oral drug delivery compositions and methods
US5804688A (en) * 1997-02-07 1998-09-08 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5811127A (en) * 1992-06-15 1998-09-22 Emisphere Technologies, Inc. Desferrioxamine oral delivery system
US5820881A (en) * 1995-04-28 1998-10-13 Emisphere Technologies, Inc. Microspheres of diamide-dicarboxylic acids
US5824345A (en) * 1995-06-07 1998-10-20 Emisphere Technologies, Inc. Fragrances and flavorants
US5863944A (en) * 1997-04-30 1999-01-26 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5866536A (en) * 1995-03-31 1999-02-02 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5876710A (en) * 1997-02-07 1999-03-02 Emisphere Technologies Inc. Compounds and compositions for delivering active agents
US5879681A (en) * 1997-02-07 1999-03-09 Emisphere Technolgies Inc. Compounds and compositions for delivering active agents
US5928126A (en) * 1995-12-14 1999-07-27 Aimco Sa (Automatic Instant Mesures Et Controle Optique) Process for homogeneously dispersing at least one reactant in a fluid matrix, and products obtained
US5939381A (en) * 1997-02-07 1999-08-17 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5958457A (en) * 1993-04-22 1999-09-28 Emisphere Technologies, Inc. Compositions for the delivery of antigens
US5962710A (en) * 1997-05-09 1999-10-05 Emisphere Technologies, Inc. Method of preparing salicyloylamino acids
US5965121A (en) * 1995-03-31 1999-10-12 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5989539A (en) * 1995-03-31 1999-11-23 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5990166A (en) * 1997-02-07 1999-11-23 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6001347A (en) * 1995-03-31 1999-12-14 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6051258A (en) * 1995-06-07 2000-04-18 Emisphere Technologies, Inc. Proteinoid emulsions and methods for preparation and use thereof
US6060084A (en) * 1997-08-28 2000-05-09 Cannon Chemical Company Method for preparing a core material containment system and the core material containment system prepared thereby
US6060513A (en) * 1997-02-07 2000-05-09 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6071510A (en) * 1995-03-31 2000-06-06 Emisphere Technologies, Inc. Modified amino acids and compositions comprising the same for delivering active agents
US6084112A (en) * 1995-09-11 2000-07-04 Emisphere Technologies, Inc. Method for preparing ω-aminoalkanoic acid derivatives from cycloalkanones
US6090958A (en) * 1995-03-31 2000-07-18 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6099856A (en) * 1992-06-15 2000-08-08 Emisphere Technologies, Inc. Active agent transport systems
US6221367B1 (en) 1992-06-15 2001-04-24 Emisphere Technologies, Inc. Active agent transport systems
US6242495B1 (en) 1997-02-07 2001-06-05 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6280322B1 (en) 1989-11-13 2001-08-28 Gerald E. Linden Single sheet of paper for duplicating information entered on both surfaces thereof
US6310002B1 (en) 2000-03-07 2001-10-30 Appleton Papers Inc. Record material
US6331318B1 (en) 1994-09-30 2001-12-18 Emisphere Technologies Inc. Carbon-substituted diketopiperazine delivery systems
US6375872B1 (en) 1992-11-17 2002-04-23 Moore Business Forms Microencapsulated adhesive
US6375983B1 (en) 1996-06-14 2002-04-23 Emisphere Technologies, Inc. Microencapsulated fragrances and method for preparation
US6508604B1 (en) 1999-03-19 2003-01-21 The Procter & Gamble Company Article comprising a cell system
US6544926B1 (en) 2001-10-11 2003-04-08 Appleton Papers Inc. Microcapsules having improved printing and efficiency
US6562755B1 (en) 2000-10-31 2003-05-13 Ncr Corporation Thermal paper with security features
US6803344B2 (en) 2001-12-21 2004-10-12 Ncr Corporation Thermal paper with preprinted indicia
US20040210289A1 (en) * 2002-03-04 2004-10-21 Xingwu Wang Novel nanomagnetic particles
US20040254419A1 (en) * 2003-04-08 2004-12-16 Xingwu Wang Therapeutic assembly
US20050123605A1 (en) * 1993-07-19 2005-06-09 Angiotech Pharmaceuticals, Inc. Anti-angiogenic compositions and methods of use
US20050186176A1 (en) * 1996-03-29 2005-08-25 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US20050238676A1 (en) * 2002-06-26 2005-10-27 Gladman David Charles F Biliquid foam entrapment
US20060079399A1 (en) * 2004-10-13 2006-04-13 Ncr Corporation Thermal paper with security features
US20060134130A1 (en) * 1993-04-22 2006-06-22 Emisphere Technologies, Inc. Oral drug delivery compositions and methods
US20060166859A1 (en) * 1997-02-07 2006-07-27 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US20070098148A1 (en) * 2005-10-14 2007-05-03 Sherman Kenneth N Aroma releasing patch on mobile telephones
US20070148198A1 (en) * 2005-12-28 2007-06-28 Kimberly-Clark Worldwide, Inc. Method of Manufacturing Self-Warming Products
US20070197670A1 (en) * 2006-02-23 2007-08-23 International Business Machines Corporation Rigidized compliant foam and method for implementing a rigidized compliant foam
US20070278242A1 (en) * 2006-05-30 2007-12-06 Kimberly-Clark Worldwide, Inc. Wet wipe dispensing system
US20070289988A1 (en) * 2006-05-30 2007-12-20 Kimberly-Clark Worldwide, Inc. Dispensing system for dispensing warm wet wipes
US20080087680A1 (en) * 2006-05-30 2008-04-17 Kimberly-Clark Worldwide, Inc. Wet wipe dispensing system for dispensing warm wet wipes
US20080145663A1 (en) * 2006-12-14 2008-06-19 Kimberly-Clark Worldwide, Inc. Supersaturated Solutions Using Crystallization Enthalpy to Impact Temperature Change to Wet Wipes
US20080145644A1 (en) * 2006-12-14 2008-06-19 Kimberly-Clark Worldwide, Inc. Supersaturated Solutions Using Crystallization Enthalpy To Impact Temperature Change To Wet Wipes
US20080145437A1 (en) * 2006-12-14 2008-06-19 Kimberly-Clark Worldwide, Inc. Reactive Chemistries For Warming Personal Care Products
US20080272332A1 (en) * 2005-12-28 2008-11-06 Kimberly-Clark Worldwide, Inc. Microencapsulated heat delivery vehicles
US20090050506A1 (en) * 2000-03-20 2009-02-26 Sven Dobler Fragrance sampler insert
US20090078918A1 (en) * 2007-09-25 2009-03-26 Cary Michael Huettner Methods and Structures With Fire Retardant Spheres for Implementing Enhanced Fire Protection
US20090215621A1 (en) * 2008-02-27 2009-08-27 Elmer's Products, Inc. Coloring system with encapsulated dyes
US7914891B2 (en) 2005-12-28 2011-03-29 Kimberly-Clark Worldwide, Inc. Wipes including microencapsulated delivery vehicles and phase change materials
US8192841B2 (en) 2006-12-14 2012-06-05 Kimberly-Clark Worldwide, Inc. Microencapsulated delivery vehicle having an aqueous core
WO2013150085A1 (en) * 2012-04-05 2013-10-10 Basf Se Amino plastic containing porous particles
US8992898B2 (en) 2010-04-17 2015-03-31 Shannon Elizabeth Klingman Antiperspirants and deodorants
US9588114B2 (en) 2013-04-23 2017-03-07 Montecito Bio Sciences Ltd Flow through testing system with pressure indicator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650895A (en) * 1947-02-24 1953-09-01 Mead Johnson & Co Spray dried vitamin a and d emulsion
US2711375A (en) * 1951-08-24 1955-06-21 Ncr Co Pressure sensitive manifold sheet
US2712507A (en) * 1953-06-30 1955-07-05 Ncr Co Pressure sensitive record material
US2777798A (en) * 1953-02-19 1957-01-15 Nopco Chem Co Stable fat-soluble vitamin-containing composition
US2800457A (en) * 1953-06-30 1957-07-23 Ncr Co Oil-containing microscopic capsules and method of making them
US2800458A (en) * 1953-06-30 1957-07-23 Ncr Co Oil-containing microscopic capsules and method of making them

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650895A (en) * 1947-02-24 1953-09-01 Mead Johnson & Co Spray dried vitamin a and d emulsion
US2711375A (en) * 1951-08-24 1955-06-21 Ncr Co Pressure sensitive manifold sheet
US2777798A (en) * 1953-02-19 1957-01-15 Nopco Chem Co Stable fat-soluble vitamin-containing composition
US2712507A (en) * 1953-06-30 1955-07-05 Ncr Co Pressure sensitive record material
US2800457A (en) * 1953-06-30 1957-07-23 Ncr Co Oil-containing microscopic capsules and method of making them
US2800458A (en) * 1953-06-30 1957-07-23 Ncr Co Oil-containing microscopic capsules and method of making them

Cited By (317)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079351A (en) * 1958-11-26 1963-02-26 Moore Business Forms Inc Copying materials and emulsions
US3265630A (en) * 1958-12-22 1966-08-09 Ncr Co Encapsulating lipophilic material by coacervation
US3130050A (en) * 1960-01-18 1964-04-21 Gen Aniline & Film Corp Oil-dispersed dyes in photopolym-erization systems
US3111407A (en) * 1960-02-26 1963-11-19 Ibm Methods for making record materials
US3415758A (en) * 1960-03-09 1968-12-10 Ncr Co Process of forming minute capsules en masse
US3316119A (en) * 1960-09-29 1967-04-25 Litton Systems Inc Recording member for visibly recording radio frequency microwaves
US3132075A (en) * 1960-10-17 1964-05-05 Upjohn Co Solid medicinal dosage forms coated with hydroxyethylcellulose and hydrolyzed styrene-maleic anhydride copolymer
US3143436A (en) * 1960-10-20 1964-08-04 Us Rubber Co Method of making breathable films and coated fabrics
US3401123A (en) * 1961-03-15 1968-09-10 Ncr Co Process for making case-hardened capsules and its capsule product
US3256090A (en) * 1961-03-27 1966-06-14 Polaroid Corp Diffusion transfer photographic package with pressure-rupturable capsule of edge-sealing adhesive
US3276869A (en) * 1961-05-09 1966-10-04 Polaroid Corp Capsular product coated with silver halide and containing a color-providing substance
US3427160A (en) * 1961-05-09 1969-02-11 Polaroid Corp Capsular products
US3202510A (en) * 1961-07-11 1965-08-24 Frederick Post Co Production of encapsulated light-sensitive diazotype compositions and coatings
US3161602A (en) * 1961-09-05 1964-12-15 Ncr Co Process for making capsules
US3208951A (en) * 1961-10-30 1965-09-28 Ht Res Inst Electrostatic encapsulation
US3322556A (en) * 1961-12-22 1967-05-30 Keuffel & Esser Co Method for preparing heat-developable two-component diazotype reproduction sheet
US3116206A (en) * 1961-12-22 1963-12-31 Ncr Co Encapsulation process and its product
US3272629A (en) * 1962-01-25 1966-09-13 Nashua Corp Photosensitive diazotype materials
US3281244A (en) * 1962-01-27 1966-10-25 Keuffel & Esser Co Heat-developable two-component diazotype reproduction material
US3328257A (en) * 1962-02-20 1967-06-27 Gevaert Photo Prod Nv Preparation of microcapsules
US3389007A (en) * 1962-07-20 1968-06-18 Oda Ryohei Record transfer sheet material, method of making and composition
US3202533A (en) * 1962-07-24 1965-08-24 Ibm Method of encapsulating liquids
US3260620A (en) * 1962-10-22 1966-07-12 Monsanto Res Corp Tape fed fuel cell
US3409461A (en) * 1962-11-24 1968-11-05 Kalle Ag Process for the manufacture of an encapsulated isocyanate
US3360371A (en) * 1962-12-29 1967-12-26 Keuffel & Esser Co Heat-developable two-component diazotype reproduction material
US3306748A (en) * 1963-03-05 1967-02-28 Chalkley Lyman Photosensitive system based on hydrophobic dye cyanides and polyvinylpyrrolidone
US3276876A (en) * 1963-03-19 1966-10-04 Gen Aniline & Film Corp Photographic sheet material
US3446741A (en) * 1963-11-14 1969-05-27 Minnesota Mining & Mfg Insulating device,composition,and method
US3305382A (en) * 1964-01-02 1967-02-21 Ibm Pressure sensitive transfer sheet
US3720534A (en) * 1964-01-29 1973-03-13 Moore Business Forms Inc Polymer gels and method of making same
US3432327A (en) * 1964-03-13 1969-03-11 Pilot Pen Co Ltd Pressure sensitive copying sheet and the production thereof
US3436234A (en) * 1965-04-29 1969-04-01 Xerox Corp Duplicating ink
US3406137A (en) * 1965-04-29 1968-10-15 Xerox Corp Imaging material
US3351531A (en) * 1965-08-09 1967-11-07 Beatrice Foods Co Wheat gluten-encapsulated dried oilin-water dispersions of fat-soluble food, medicaments, flavoring agents or food coloring agents
US3461092A (en) * 1965-08-23 1969-08-12 Owens Illinois Inc Solid particulate printing ink composition and process for producing same
US3357354A (en) * 1965-09-03 1967-12-12 Xerox Corp Reproduction method
US3391095A (en) * 1965-09-20 1968-07-02 Interchem Corp Normally stable curable epoxy resin composition containing encapsulated water insoluble amine curing agents
US3418656A (en) * 1965-10-23 1968-12-24 Us Plywood Champ Papers Inc Microcapsules, process for their formation and transfer sheet record material coated therewith
US3418250A (en) * 1965-10-23 1968-12-24 Us Plywood Champ Papers Inc Microcapsules, process for their formation and transfer sheet record material coated therewith
US3455390A (en) * 1965-12-03 1969-07-15 Union Oil Co Low fluid loss well treating composition and method
US3421894A (en) * 1966-01-13 1969-01-14 Ncr Co Recording process utilizing 6'-nitro-1,3,3 - trimethyl-benzoindolinospiropyran dispersed in heat-meltable wax
US3472675A (en) * 1966-01-27 1969-10-14 Ncr Co Pressure-sensitive capsule-containing foraminated sheet material
US3415186A (en) * 1966-02-10 1968-12-10 Xerox Corp Duplicating system
US3454430A (en) * 1966-03-29 1969-07-08 Monsanto Res Corp Tape feed for tape fuel cell and the method of operating a dry tape fuel cell
US3463655A (en) * 1966-04-09 1969-08-26 Fuji Photo Film Co Ltd Pressure-sensitive copying paper
US3455838A (en) * 1966-04-22 1969-07-15 Nat Starch Chem Corp Method of encapsulating water-insoluble substances and product thereof
US3516941A (en) * 1966-07-25 1970-06-23 Minnesota Mining & Mfg Microcapsules and process of making
US3486449A (en) * 1966-08-26 1969-12-30 Alfred B Levine Process of repulsion printing employing a radiant energy field
US3608488A (en) * 1966-08-26 1971-09-28 Alfred B Levine Printing and reproducing process
US3386824A (en) * 1967-03-27 1968-06-04 Chicago Aerial Ind Inc Photographic processing film laminate structure utilizing plastic microcapsules
US3615972A (en) * 1967-04-28 1971-10-26 Dow Chemical Co Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same
US3639257A (en) * 1967-06-23 1972-02-01 Pelikan Werke Wagner Guenther Microcapsules as carriers for color reaction components in color reaction paper and process of making said microcapsules
DE1771622B1 (en) * 1967-06-30 1971-09-09 Baumgartner Papiers Sa Flavoring cigarette paper
US3486752A (en) * 1967-08-28 1969-12-30 Minnesota Mining & Mfg Target toy device
US3510435A (en) * 1967-11-17 1970-05-05 Ncr Co Method of producing opaque encapsulated materials
US3617334A (en) * 1968-11-08 1971-11-02 Ncr Co Pressure-sensitive sheet material
US3993831A (en) * 1968-12-17 1976-11-23 Champion International Corporation Microcapsules, process for their formation and transfer sheet record material coated therewith
US3919110A (en) * 1968-12-23 1975-11-11 Champion Int Corp Colored organic synthetic pigments and method for producing same
US3691090A (en) * 1969-01-16 1972-09-12 Fuji Photo Film Co Ltd Encapsulation method
JPS4914685B1 (en) * 1969-05-05 1974-04-09
US3883298A (en) * 1969-10-13 1975-05-13 Gerald Platt Energy responsive thread
US3516846A (en) * 1969-11-18 1970-06-23 Minnesota Mining & Mfg Microcapsule-containing paper
US3639256A (en) * 1970-05-27 1972-02-01 Ncr Co Encapsulation process by complex coacervation using inorganic polymers
US3872024A (en) * 1970-05-27 1975-03-18 Ncr Co Encapsulation process by simple coacervation using inorganic polymers
DE2134326A1 (en) * 1970-07-11 1972-01-13 Kureha Kagaku Kogyo K K , Tokio Microcapsules for carbon-free copier paper
US4003589A (en) * 1970-07-11 1977-01-18 Kureha Kagaku Kogyo Kabushiki Kaisha Carbonless copying paper
US3819398A (en) * 1970-07-17 1974-06-25 Champion Int Corp Process for production of pressure-sensitive copy sheet
JPS492124B1 (en) * 1970-08-17 1974-01-18
US3888689A (en) * 1970-10-01 1975-06-10 Fuji Photo Film Co Ltd Aqueous printing ink containing perfume-containing microcapsules
US3836383A (en) * 1970-10-27 1974-09-17 Fuji Photo Film Co Ltd Pressure sensitive recording paper
USRE33113E (en) * 1970-10-27 1989-11-14 Fuji Photo Film Co., Ltd. Pressure sensitive recording paper
US4039712A (en) * 1971-03-02 1977-08-02 Nippon Petrochemicals Company Ltd. Process for producing a solvent for use in microcapsule for pressure-sensitive copying paper
JPS5334527B1 (en) * 1971-03-02 1978-09-21
DE2210133A1 (en) * 1971-03-02 1972-10-26
USRE32162E (en) * 1971-03-02 1986-05-27 Nippon Petrochemicals Co., Ltd. Pressure sensitive record material employing diaryl alkane solvents
JPS5345725B1 (en) * 1971-03-06 1978-12-08
US3769045A (en) * 1971-06-22 1973-10-30 Ncr Co Process for producing liquid write crayon
US3852401A (en) * 1971-06-29 1974-12-03 Japan Exlan Co Ltd Method for producing artificial fibers containing microcapsules
US3865613A (en) * 1971-09-23 1975-02-11 Wiggins Teape Res Dev Pressure-sensitive copying systems
DE2251350A1 (en) * 1971-10-20 1973-04-26 Monsanto Co DYE SOLVENT FOR PRESSURE SENSITIVE RECORDING MATERIALS
US3900669A (en) * 1971-10-21 1975-08-19 Fuji Photo Film Co Ltd Pressure-sensitive recording sheet with microcapsules having polyurea walls
US4111874A (en) * 1971-12-22 1978-09-05 Canadian Patents And Development Limited Transparent pressure-sensitive coatings
US4187194A (en) * 1972-01-03 1980-02-05 Xerox Corporation Encapsulation process
US3968301A (en) * 1972-02-11 1976-07-06 Monsanto Company Pressure-sensitive record material and dye solvents therefor
US3852076A (en) * 1972-02-22 1974-12-03 Ryan J Aqueous method of microencapsulation and capsules
US3763347A (en) * 1972-04-13 1973-10-02 Ncr Co Vaporous lamp
US3872023A (en) * 1972-04-17 1975-03-18 Basf Ag Microcapsules having walls made of copolymer of methylmethacrylate and acetylacetates of mono(meth) acrylates of aliphatic diols
US3896033A (en) * 1972-07-03 1975-07-22 Colgate Palmolive Co Encapsulated fabric softener
US3939095A (en) * 1972-08-10 1976-02-17 Badische Anilin- & Soda-Fabrik Aktiengesellschaft Dye-containing microcapsules
JPS5738292Y2 (en) * 1973-02-20 1982-08-23
JPS49122906U (en) * 1973-02-20 1974-10-22
US4055358A (en) * 1973-05-21 1977-10-25 Ciba-Geigy Corporation Nitro-phthalides, their manufacture and their use in recording systems
US3914511A (en) * 1973-10-18 1975-10-21 Champion Int Corp Spot printing of color-forming microcapsules and co-reactant therefor
US4050945A (en) * 1974-07-08 1977-09-27 Yoshio Suzuki Heat-sensitive color-producing compositions and articles using same
JPS519079A (en) * 1974-07-10 1976-01-24 Ncr Co
US4087376A (en) * 1974-07-10 1978-05-02 Ncr Corporation Capsule manufacture
JPS5416949B2 (en) * 1974-07-10 1979-06-26
US4000087A (en) * 1974-07-29 1976-12-28 Moore Business Forms, Inc. Microcapsules useful in carbonless copying systems and process for their preparation
US4054697A (en) * 1974-12-16 1977-10-18 Imperial Chemical Industries Limited Decorative sheet material
DE2612036A1 (en) * 1975-03-24 1976-10-14 Moore Business Forms Inc CARBON-FREE MULTIPLE COPY SHEET SYSTEM
US4138362A (en) * 1975-03-24 1979-02-06 Champion International Corporation Formation of microcapsules by interfacial cross-linking, microcapsules produced, and microcapsular dispersion
US4070303A (en) * 1975-05-02 1978-01-24 Kureha Kagaku Kogyo Kabushiki Kaisha Solvent for dye used in pressure-sensitive copying paper
US4018688A (en) * 1975-07-21 1977-04-19 The Procter & Gamble Company Capsules, process of their preparation and fabric conditioning composition containing said capsules
US4208460A (en) * 1975-09-29 1980-06-17 Blockfabrik Lichtensteig, AG Process for producing paper having a coating of pressure-sensitive transfer copying material
US4221601A (en) * 1976-01-26 1980-09-09 Basf Farben & Fasern Ag Packaged pigment pastes and process for coloring and toning water-diluted coating agents
US4139218A (en) * 1976-05-07 1979-02-13 The Mead Corporation Process for producing pressure-sensitive carbonless manifolds
US4139392A (en) * 1976-05-07 1979-02-13 The Mead Corporation Chromogenic hot melt coating compositions
US4143890A (en) * 1976-05-07 1979-03-13 The Mead Corporation Pressure-sensitive carbonless transfer sheets using hot melt systems
US4137343A (en) * 1976-05-07 1979-01-30 The Mead Corporation Process for producing pressure-sensitive carbonless transfer sheets
DE2719914A1 (en) * 1976-05-07 1977-11-17 Mead Corp PRESSURE SENSITIVE, CARBON-FREE SHEETS OF CLEAN PAPER WITH NEW HOT MELTING SYSTEMS AND METHODS FOR THEIR PRODUCTION
US4063754A (en) * 1976-05-07 1977-12-20 The Mead Corporation Process for the production of pressure sensitive carbonless record sheets using novel hot melt systems and products thereof
US4219439A (en) * 1977-01-28 1980-08-26 Kanzaki Paper Manufacturing Co., Ltd. Method of making oil-containing microcapsules
US4200667A (en) * 1977-03-03 1980-04-29 The Mead Corporation Process for producing a pressure-sensitive carbonless copy sheet using microcapsules formed in situ in a radiation curable binder
US4191404A (en) * 1977-03-03 1980-03-04 The Mead Corporation Process for producing a pressure-sensitive carbonless copy sheet using microcapsules formed in situ in a radiation curable binder
US4171981A (en) * 1977-04-29 1979-10-23 The Mead Corporation Process for the production of hot melt coating compositions containing microcapsules
DE2820600A1 (en) * 1977-06-16 1978-12-21 Mead Corp METHOD FOR THE PRODUCTION OF MICROCAPSULA COATING COMPOSITIONS WITH PIGMENT ARTICLES AND COMPOSITIONS PRODUCED THEREOF
US4162165A (en) * 1977-06-16 1979-07-24 The Mead Corporation Process for the production of microcapsular coating compositions containing pigment particles and compositions produced thereby
US4209188A (en) * 1978-04-11 1980-06-24 Moore Business Forms, Inc. Microcapsules, method of making same, and carbonless copying system including said microcapsules
US4372581A (en) * 1978-04-21 1983-02-08 Hermann Schumacher Pressure sensitive copying material
DE2919838A1 (en) * 1978-05-17 1979-11-22 Minnesota Mining & Mfg DRY MICROCAPSULES AS A PRESSURE-SENSITIVE MARKING SUBSTANCE AND PRESSURE-SENSITIVE, CARBON-FREE PAPER
US4201404A (en) * 1978-05-17 1980-05-06 Minnesota Mining And Manufacturing Company Pressure-sensitive marking materials
EP0005921A1 (en) * 1978-05-31 1979-12-12 Monsanto Europe S.A./N.V. Mark-recording systems
US4235458A (en) * 1979-01-08 1980-11-25 The Mead Corporation Process for the production of hot melt coating compositions containing microcapsules
US4264365A (en) * 1979-02-14 1981-04-28 The Mead Corporation Production of pressure-sensitive carbonless record sheets using dioic acid hot melt systems and products thereof
US4339360A (en) * 1979-03-31 1982-07-13 Agency Of Industrial Science & Technology Particles of activated oxidized polysaccharide substance coated with inactive protective layer and method for manufacture thereof
US4406816A (en) * 1979-10-08 1983-09-27 Basf Aktiengesellschaft Process for the preparation of microcapsules, and the microcapsules obtained thereby
EP0037477A3 (en) * 1980-03-26 1982-05-26 Bayer Ag Copying system and method for its manufacture, and offset or printing dyes useful in this system
EP0037477A2 (en) * 1980-03-26 1981-10-14 Bayer Ag Copying system and method for its manufacture, and offset or printing dyes useful in this system
US4396670A (en) * 1980-04-08 1983-08-02 The Wiggins Teape Group Limited Process for the production of microcapsules
US4428978A (en) 1980-05-28 1984-01-31 Bayer Aktiengesellschaft Concentrated microcapsule suspensions for reaction copying papers
US4327939A (en) * 1980-06-16 1982-05-04 Frye Copysystems, Inc. Chemical carbonless copy paper and image receptor medium therefor
US5332584A (en) * 1980-10-30 1994-07-26 Zeneca Inc. Microcapsules
US4371634A (en) * 1980-11-24 1983-02-01 Basf Aktiengesellschaft Microcapsule-containing wax composition
EP0064204A1 (en) * 1981-04-30 1982-11-10 Bayer Ag Production of carbonless copying papers by flexography
US4497887A (en) * 1981-06-09 1985-02-05 Ricoh Compay, Ltd. Thermal development type diazo copying material with hydrophobic resin encapsulated coupler particle
FR2510480A1 (en) * 1981-08-01 1983-02-04 Mitsubishi Paper Mills Ltd POWDER COMPOSITION BASED ON MICROCAPSULES
US4399209A (en) * 1981-11-12 1983-08-16 The Mead Corporation Transfer imaging system
US4440846A (en) * 1981-11-12 1984-04-03 Mead Corporation Photocopy sheet employing encapsulated radiation sensitive composition and imaging process
US4933249A (en) * 1982-02-24 1990-06-12 Fuji Photo Film Co., Ltd. Electrostatographic pressure fixing process using encapsulated toner particles
DE3335174A1 (en) * 1982-10-01 1984-04-12 Mitsubishi Paper Mills, Ltd., Tokyo Process for the production of heat-fusible and cold-hardenable printing inks including microcapsules
US4495509A (en) * 1983-06-09 1985-01-22 Moore Business Forms, Inc. Microencapsulation by interchange of multiple emulsions
US4599271A (en) * 1983-06-09 1986-07-08 Moore Business Forms, Inc. Microencapsulation of polyisocyanates by interchange of multiple
US4487801A (en) * 1983-10-11 1984-12-11 Minnesota Mining And Manufacturing Company Fragrance-releasing pull-apart sheet
US4493869A (en) * 1983-10-11 1985-01-15 Minnesota Mining And Manufacturing Company Fragrance-releasing microcapsules on a see-through substrate
US4640847A (en) * 1984-01-17 1987-02-03 Kureha Kagaku Kogyo Kabushiki Kaisha Partially pressure-sensitive recording paper
US4956129A (en) * 1984-03-30 1990-09-11 Ici Americas Inc. Microencapsulation process
US4606956A (en) * 1984-12-21 1986-08-19 Minnesota Mining And Manufacturing Company On page fragrance sampling device
US4626471A (en) * 1985-02-25 1986-12-02 Moore Business Forms, Inc. Microencapsulation by in-situ polymerization of multifunctional epoxy resins
US4636818A (en) * 1985-06-05 1987-01-13 Moore Business Forms, Inc. Carbonless system including solvent-only microcapsules
US4822769A (en) * 1985-06-12 1989-04-18 Nashua Corporation High solids content coated back paper
US4822416A (en) * 1985-06-12 1989-04-18 Nashua Corporation High solids content CB coating
US4865943A (en) * 1985-08-28 1989-09-12 The Mead Corporation Method for forming images using free flowing photosensitive microcapsules
US4692188A (en) * 1985-10-15 1987-09-08 Xerox Corporation Preparation of ink jet compositions
US4729792A (en) * 1985-11-08 1988-03-08 The Standard Register Company Microcapsules, printing inks and their production
US4898780A (en) * 1985-11-08 1990-02-06 The Standard Register Company Production of microcapsules
US4620726A (en) * 1985-12-09 1986-11-04 General Foods Corporation Computer-assisted laboratory notebook kit
US4879175A (en) * 1985-12-11 1989-11-07 Minnesota Mining And Manufacturing Company Device for exposing colorant to be transferred
US4879174A (en) * 1986-01-10 1989-11-07 Minnesota Mining And Manufacturing Company Device for exposing colorant to be transferred
US4681806A (en) * 1986-02-13 1987-07-21 Minnesota Mining And Manufacturing Company Particles containing releasable fill material and method of making same
US4751165A (en) * 1986-02-26 1988-06-14 The Mead Corporation Imaging sheet useful in forming images on plain paper comprising photosensitive microcapsules and developer-containing
US4701397A (en) * 1986-02-26 1987-10-20 The Mead Corporation Method for forming images on plain paper and an imaging sheet useful therein
US4891245A (en) * 1986-03-21 1990-01-02 Koh-I-Noor Rapidograph, Inc. Electrophoretic display particles and a process for their preparation
USRE35862E (en) * 1986-08-18 1998-07-28 Emisphere Technologies, Inc. Delivery systems for pharmacological agents encapsulated with proteinoids
US4859561A (en) * 1986-09-09 1989-08-22 The Mead Corporation Developer sheet useful in providing transparencies or reproductions having a controlled gloss finish
US4945121A (en) * 1987-08-18 1990-07-31 Koh-I-Noor Radiograph, Inc. Thermosetting dyed latex colorant dispersions
US4889877A (en) * 1988-01-07 1989-12-26 The Standard Register Company High solids CB printing ink
US4940739A (en) * 1988-01-07 1990-07-10 The Standard Register Company Process for making a high solids CB printing ink
US4940738A (en) * 1988-01-07 1990-07-10 The Standard Register Company High solids CB printing ink containing a protective colloid blend
US5160530A (en) * 1989-01-24 1992-11-03 Griffin Corporation Microencapsulated polymorphic agriculturally active material
US5461027A (en) * 1989-01-24 1995-10-24 Griffin Corporation Microencapsulated pendimethalin and method of making and using same
GR900100217A (en) * 1989-03-24 1990-07-31 Nehezvegyipari Kutato Intezet Method for producing ecologic capsule of natural origin for products with controlled release of the active ingredient
US5178949A (en) * 1989-03-27 1993-01-12 Jujo Paper Co., Ltd. Color-former
US5248279A (en) * 1989-04-06 1993-09-28 Linden Gerald E Two-sided, self-replicating forms
US5154668A (en) * 1989-04-06 1992-10-13 Schubert Keith E Single paper sheet forming a two-sided copy of information entered on both sides thereof
US5224897A (en) * 1989-04-06 1993-07-06 Linden Gerald E Self-replicating duplex forms
US5395288A (en) * 1989-04-06 1995-03-07 Linden; Gerald E. Two-way-write type, single sheet, self-replicating forms
US5197922A (en) * 1989-04-06 1993-03-30 Schubert Keith E Method and apparatus for producing two-sided carbonless copies of both sides of an original document
US5050910A (en) * 1989-07-13 1991-09-24 Sheldon Schechter Fragrance-releasing insert for a magazine
US6280322B1 (en) 1989-11-13 2001-08-28 Gerald E. Linden Single sheet of paper for duplicating information entered on both surfaces thereof
US5137494A (en) * 1989-11-13 1992-08-11 Schubert Keith E Two-sided forms and methods of laying out, printing and filling out same
US5135437A (en) * 1989-11-13 1992-08-04 Schubert Keith E Form for making two-sided carbonless copies of information entered on both sides of an original sheet and methods of making and using same
WO1991015947A1 (en) * 1990-04-17 1991-10-31 Isp Investments Inc. Preparation of discrete microdroplets of an oil in water stabilized by in situ polymerization of a water-soluble vinyl monomer
US5102856A (en) * 1990-11-07 1992-04-07 The Standard Register Company High solids self-contained printing ink
US5084208A (en) * 1991-01-07 1992-01-28 Isp Investments Inc. Preparation of discrete microdroplets of a high viscosity oil in water
US5244768A (en) * 1991-02-15 1993-09-14 Fuji Xerox Co., Ltd. Manufacturing process for an electrophotographic toner
US5741591A (en) * 1991-03-28 1998-04-21 Dainippon Ink And Chemicals, Inc. Microcapsules, and encapsulation method therefor
US5556583A (en) * 1991-03-28 1996-09-17 Dainippon Ink And Chemicals, Inc. Encapsulation method
US5281266A (en) * 1991-06-18 1994-01-25 The Wiggins Teape Group Limited Solvent compositions for use in pressure-sensitive copying paper
US5472489A (en) * 1991-06-18 1995-12-05 The Wiggins Teape Group Limited Solvent compositions for use in pressure-sensitive copying paper
US5175071A (en) * 1991-06-25 1992-12-29 Xerox Corporation Encapsulated toner composition
US5223370A (en) * 1991-12-06 1993-06-29 Xerox Corporation Low gloss toner compositions and processes thereof
US5518981A (en) * 1992-03-06 1996-05-21 Nashua Corporation Xerographable carbonless forms
US5464803A (en) * 1992-06-04 1995-11-07 The Wiggins Teape Group Limited Pressure-sensitive record material
US5443841A (en) * 1992-06-15 1995-08-22 Emisphere Technologies, Inc. Proteinoid microspheres and methods for preparation and use thereof
US5578323A (en) * 1992-06-15 1996-11-26 Emisphere Technologies, Inc. Proteinoid carriers and methods for preparation and use thereof
US6413550B1 (en) 1992-06-15 2002-07-02 Emisphere Technologies, Inc. Proteinoid carriers and methods for preparation and use thereof
US6071538A (en) * 1992-06-15 2000-06-06 Emisphere Technologies, Inc. Oral delivery composition comprising supramolecular complex
US6099856A (en) * 1992-06-15 2000-08-08 Emisphere Technologies, Inc. Active agent transport systems
US5447728A (en) * 1992-06-15 1995-09-05 Emisphere Technologies, Inc. Desferrioxamine oral delivery system
US6221367B1 (en) 1992-06-15 2001-04-24 Emisphere Technologies, Inc. Active agent transport systems
US6245359B1 (en) 1992-06-15 2001-06-12 Emisphere Technologies, Inc. Active agent transport systems
US5811127A (en) * 1992-06-15 1998-09-22 Emisphere Technologies, Inc. Desferrioxamine oral delivery system
US6348207B1 (en) 1992-06-15 2002-02-19 Emisiphere Technologies, Inc. Orally deliverable supramolecular complex
US5714167A (en) * 1992-06-15 1998-02-03 Emisphere Technologies, Inc. Active agent transport systems
US5840340A (en) * 1992-06-15 1998-11-24 Emisphere Technologies, Inc. Proteinoid carriers and methods for preparation and use thereof
US5601846A (en) * 1992-06-15 1997-02-11 Emisphere Technologies, Inc. Proteinoid microspheres and methods for preparation and use thereof
US5478380A (en) * 1992-10-15 1995-12-26 The Wiggins Teape Group Limited Chromogenic composition for use in pressure-sensitive record material
EP0593192A3 (en) * 1992-10-15 1995-01-18 Wiggins Teape Group Ltd Chromogenic composition for use in pressure-sensitive record material.
EP0593192A2 (en) * 1992-10-15 1994-04-20 The Wiggins Teape Group Limited Chromogenic composition for use in pressure-sensitive record material
US5554323A (en) * 1992-11-05 1996-09-10 Fuji Photo Film Co., Ltd. Process for producing microcapsules
US6375872B1 (en) 1992-11-17 2002-04-23 Moore Business Forms Microencapsulated adhesive
US5401516A (en) * 1992-12-21 1995-03-28 Emisphere Technologies, Inc. Modified hydrolyzed vegetable protein microspheres and methods for preparation and use thereof
US5972387A (en) * 1992-12-21 1999-10-26 Emisphere Technologies, Inc. Modified hydrolyzed vegetable protein microspheres and methods for preparation and use thereof
US5540939A (en) * 1992-12-21 1996-07-30 Emisphere Technologies, Inc. Modified hydrolyzed vegetable protein microspheres and methods for preparation and use thereof
US5325721A (en) * 1993-02-17 1994-07-05 Minnesota Mining And Manufacturing Company System for indicating exposure to preselected temperatures or tampering
US5766633A (en) * 1993-04-22 1998-06-16 Emisphere Technologies, Inc. Oral drug delivery compositions and methods
US5643957A (en) * 1993-04-22 1997-07-01 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5958457A (en) * 1993-04-22 1999-09-28 Emisphere Technologies, Inc. Compositions for the delivery of antigens
US5955503A (en) * 1993-04-22 1999-09-21 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6100298A (en) * 1993-04-22 2000-08-08 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5709861A (en) * 1993-04-22 1998-01-20 Emisphere Technologies, Inc. Compositions for the delivery of antigens
US20060134130A1 (en) * 1993-04-22 2006-06-22 Emisphere Technologies, Inc. Oral drug delivery compositions and methods
US5476829A (en) * 1993-07-03 1995-12-19 The Wiggins Teape Group Limited Pressure-sensitive copying material
US20060121117A1 (en) * 1993-07-19 2006-06-08 Angiotech Pharmaceuticals, Inc. Anti-angiogenic compositions and methods of use
US7820193B2 (en) 1993-07-19 2010-10-26 Angiotech Pharmaceuticals, Inc. Anti-angiogenic compositions and methods of use
US20050123605A1 (en) * 1993-07-19 2005-06-09 Angiotech Pharmaceuticals, Inc. Anti-angiogenic compositions and methods of use
US20050208137A1 (en) * 1993-07-19 2005-09-22 Angiotech Pharmaceuticals, Inc. Anti-angiogenic compositions and methods of use
US5792451A (en) * 1994-03-02 1998-08-11 Emisphere Technologies, Inc. Oral drug delivery compositions and methods
US5629020A (en) * 1994-04-22 1997-05-13 Emisphere Technologies, Inc. Modified amino acids for drug delivery
US5541155A (en) * 1994-04-22 1996-07-30 Emisphere Technologies, Inc. Acids and acid salts and their use in delivery systems
US6180140B1 (en) 1994-04-22 2001-01-30 Emisphere Technologies, Inc. Modified amino acids for drug delivery
US5605874A (en) * 1994-07-20 1997-02-25 The Wiggins Teape Group Limited Pressure-sensitive copying material
EP0697292A1 (en) 1994-07-20 1996-02-21 The Wiggings Teape Group Limited Pressure-sensitive copying material
EP0697293A1 (en) 1994-07-26 1996-02-21 Copigraph New organic solvent for microcapsules useful notably for pressure-sensitive copy paper and pressure-sensitive copy coated with such microcapsules
US5693338A (en) * 1994-09-29 1997-12-02 Emisphere Technologies, Inc. Diketopiperazine-based delivery systems
US5976569A (en) * 1994-09-29 1999-11-02 Emisphere Technologies, Inc. Diketopiperazine-based delivery systems
US6331318B1 (en) 1994-09-30 2001-12-18 Emisphere Technologies Inc. Carbon-substituted diketopiperazine delivery systems
EP0714786A1 (en) 1994-12-02 1996-06-05 Copigraph New microcapsules comprising as solvent a terpene derivative or an abietic acid derivative, notably for chemical copy papers and messure sensitive papers coated with such microcapsules
US5989539A (en) * 1995-03-31 1999-11-23 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5866536A (en) * 1995-03-31 1999-02-02 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6001347A (en) * 1995-03-31 1999-12-14 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5650386A (en) * 1995-03-31 1997-07-22 Emisphere Technologies, Inc. Compositions for oral delivery of active agents
US6428780B2 (en) 1995-03-31 2002-08-06 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6071510A (en) * 1995-03-31 2000-06-06 Emisphere Technologies, Inc. Modified amino acids and compositions comprising the same for delivering active agents
US5965121A (en) * 1995-03-31 1999-10-12 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6346242B1 (en) 1995-03-31 2002-02-12 Emishpere Technologies, Inc. Compounds and compositions for delivering active agents
US6090958A (en) * 1995-03-31 2000-07-18 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5820881A (en) * 1995-04-28 1998-10-13 Emisphere Technologies, Inc. Microspheres of diamide-dicarboxylic acids
US5824345A (en) * 1995-06-07 1998-10-20 Emisphere Technologies, Inc. Fragrances and flavorants
US5667806A (en) * 1995-06-07 1997-09-16 Emisphere Technologies, Inc. Spray drying method and apparatus
US6100285A (en) * 1995-06-07 2000-08-08 Emisphere Technologies, Inc. Method of solubilizing itraconazole
US6461545B1 (en) 1995-06-07 2002-10-08 Emisphere Technologies, Inc. Method of solubilizing and encapsulating itraconazole
US6051258A (en) * 1995-06-07 2000-04-18 Emisphere Technologies, Inc. Proteinoid emulsions and methods for preparation and use thereof
US5750147A (en) * 1995-06-07 1998-05-12 Emisphere Technologies, Inc. Method of solubilizing and encapsulating itraconazole
US5607738A (en) * 1995-08-29 1997-03-04 Moore Business Forms, Inc. Multiple-part carbonless pressure seal business form assembly
US6084112A (en) * 1995-09-11 2000-07-04 Emisphere Technologies, Inc. Method for preparing ω-aminoalkanoic acid derivatives from cycloalkanones
US6207080B1 (en) * 1995-12-14 2001-03-27 Aimco Sa ( Automatic Instant Mesures Et Controle Optique) Composite material having reactant(s) homogeneously dispersed in fluid matrix
US5928126A (en) * 1995-12-14 1999-07-27 Aimco Sa (Automatic Instant Mesures Et Controle Optique) Process for homogeneously dispersing at least one reactant in a fluid matrix, and products obtained
US20050186176A1 (en) * 1996-03-29 2005-08-25 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US7417022B2 (en) 1996-03-29 2008-08-26 Mhr Institutional Partners Iia Lp Compounds and compositions for delivering active agents
US6375983B1 (en) 1996-06-14 2002-04-23 Emisphere Technologies, Inc. Microencapsulated fragrances and method for preparation
US5650566A (en) * 1996-08-12 1997-07-22 Chou; J. P. Pressure gauge showing a current and a preset pressure
US6313088B1 (en) 1997-02-07 2001-11-06 Emisphere Technologies, Inc. 8-[(2-hydroxy-4-methoxy benzoyl) amino]-octanoic acid compositions for delivering active agents
US5876710A (en) * 1997-02-07 1999-03-02 Emisphere Technologies Inc. Compounds and compositions for delivering active agents
US5804688A (en) * 1997-02-07 1998-09-08 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US8686154B2 (en) 1997-02-07 2014-04-01 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5939381A (en) * 1997-02-07 1999-08-17 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5879681A (en) * 1997-02-07 1999-03-09 Emisphere Technolgies Inc. Compounds and compositions for delivering active agents
US6060513A (en) * 1997-02-07 2000-05-09 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US20060166859A1 (en) * 1997-02-07 2006-07-27 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US6242495B1 (en) 1997-02-07 2001-06-05 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US7553872B2 (en) 1997-02-07 2009-06-30 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5990166A (en) * 1997-02-07 1999-11-23 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US20090324540A1 (en) * 1997-02-07 2009-12-31 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5863944A (en) * 1997-04-30 1999-01-26 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US5962710A (en) * 1997-05-09 1999-10-05 Emisphere Technologies, Inc. Method of preparing salicyloylamino acids
US6060084A (en) * 1997-08-28 2000-05-09 Cannon Chemical Company Method for preparing a core material containment system and the core material containment system prepared thereby
US6508604B1 (en) 1999-03-19 2003-01-21 The Procter & Gamble Company Article comprising a cell system
US6310002B1 (en) 2000-03-07 2001-10-30 Appleton Papers Inc. Record material
US9399081B2 (en) 2000-03-20 2016-07-26 Orlandi, Inc. Fragrance sampler insert
US20090050506A1 (en) * 2000-03-20 2009-02-26 Sven Dobler Fragrance sampler insert
US6562755B1 (en) 2000-10-31 2003-05-13 Ncr Corporation Thermal paper with security features
US6544926B1 (en) 2001-10-11 2003-04-08 Appleton Papers Inc. Microcapsules having improved printing and efficiency
US6858564B2 (en) 2001-12-21 2005-02-22 Ncr Corporation Thermal paper with preprinted indicia
US6803344B2 (en) 2001-12-21 2004-10-12 Ncr Corporation Thermal paper with preprinted indicia
US20040210289A1 (en) * 2002-03-04 2004-10-21 Xingwu Wang Novel nanomagnetic particles
US20050238676A1 (en) * 2002-06-26 2005-10-27 Gladman David Charles F Biliquid foam entrapment
US8034325B2 (en) * 2002-06-26 2011-10-11 Drug Delivery Solutions Limited Powder formed of particles of biliquid foam entrapped within polymeric matrix
AU2003236910B2 (en) * 2002-06-26 2009-07-02 Drug Delivery Solutions Limited Biliquid foam entrapment.
US20040254419A1 (en) * 2003-04-08 2004-12-16 Xingwu Wang Therapeutic assembly
US20060079399A1 (en) * 2004-10-13 2006-04-13 Ncr Corporation Thermal paper with security features
US7645719B2 (en) 2004-10-13 2010-01-12 Ncr Corporation Thermal paper with security features
US20070098148A1 (en) * 2005-10-14 2007-05-03 Sherman Kenneth N Aroma releasing patch on mobile telephones
US7914891B2 (en) 2005-12-28 2011-03-29 Kimberly-Clark Worldwide, Inc. Wipes including microencapsulated delivery vehicles and phase change materials
US20080272332A1 (en) * 2005-12-28 2008-11-06 Kimberly-Clark Worldwide, Inc. Microencapsulated heat delivery vehicles
US20070148198A1 (en) * 2005-12-28 2007-06-28 Kimberly-Clark Worldwide, Inc. Method of Manufacturing Self-Warming Products
US20070197670A1 (en) * 2006-02-23 2007-08-23 International Business Machines Corporation Rigidized compliant foam and method for implementing a rigidized compliant foam
US7497351B2 (en) 2006-05-30 2009-03-03 Kimberly-Clark Worldwide, Inc. Wet wipe dispensing system
US20070278242A1 (en) * 2006-05-30 2007-12-06 Kimberly-Clark Worldwide, Inc. Wet wipe dispensing system
US20070289988A1 (en) * 2006-05-30 2007-12-20 Kimberly-Clark Worldwide, Inc. Dispensing system for dispensing warm wet wipes
US7850041B2 (en) 2006-05-30 2010-12-14 John David Amundson Wet wipes dispensing system
US7654412B2 (en) * 2006-05-30 2010-02-02 Kimberly-Clark Worldwide, Inc. Wet wipe dispensing system for dispensing warm wet wipes
US20090065521A1 (en) * 2006-05-30 2009-03-12 Kimberly-Clark Worldwide, Inc. Wet wipes dispensing system
US20080087680A1 (en) * 2006-05-30 2008-04-17 Kimberly-Clark Worldwide, Inc. Wet wipe dispensing system for dispensing warm wet wipes
US7648046B2 (en) * 2006-05-30 2010-01-19 Kimberly-Clark Worldwide, Inc. Dispensing system for dispensing warm wet wipes
US7597954B2 (en) 2006-12-14 2009-10-06 Kimberly-Clark Worldwide, Inc. Supersaturated solutions using crystallization enthalpy to impact temperature change to wet wipes
US7517582B2 (en) 2006-12-14 2009-04-14 Kimberly-Clark Worldwide, Inc. Supersaturated solutions using crystallization enthalpy to impart temperature change to wet wipes
US20080145437A1 (en) * 2006-12-14 2008-06-19 Kimberly-Clark Worldwide, Inc. Reactive Chemistries For Warming Personal Care Products
US8192841B2 (en) 2006-12-14 2012-06-05 Kimberly-Clark Worldwide, Inc. Microencapsulated delivery vehicle having an aqueous core
US20080145644A1 (en) * 2006-12-14 2008-06-19 Kimberly-Clark Worldwide, Inc. Supersaturated Solutions Using Crystallization Enthalpy To Impact Temperature Change To Wet Wipes
US20080145663A1 (en) * 2006-12-14 2008-06-19 Kimberly-Clark Worldwide, Inc. Supersaturated Solutions Using Crystallization Enthalpy to Impact Temperature Change to Wet Wipes
US20090078918A1 (en) * 2007-09-25 2009-03-26 Cary Michael Huettner Methods and Structures With Fire Retardant Spheres for Implementing Enhanced Fire Protection
US20090215621A1 (en) * 2008-02-27 2009-08-27 Elmer's Products, Inc. Coloring system with encapsulated dyes
US8992898B2 (en) 2010-04-17 2015-03-31 Shannon Elizabeth Klingman Antiperspirants and deodorants
US9566223B2 (en) 2010-04-17 2017-02-14 Shannon Elizabeth Klingman Antiperspirants and deodorants
WO2013150085A1 (en) * 2012-04-05 2013-10-10 Basf Se Amino plastic containing porous particles
US9588114B2 (en) 2013-04-23 2017-03-07 Montecito Bio Sciences Ltd Flow through testing system with pressure indicator

Similar Documents

Publication Publication Date Title
US3016308A (en) Recording paper coated with microscopic capsules of coloring material, capsules and method of making
US3104980A (en) Pressure sensitive record and transfer sheet material
US4154462A (en) Transfer sheet coated with microcapsules and oil-absorptive particles
EP0861154B1 (en) Image-receptive coating
US4936916A (en) Ink composition containing microcapsules
US4138362A (en) Formation of microcapsules by interfacial cross-linking, microcapsules produced, and microcapsular dispersion
US2655453A (en) Manifold sheet having a crushresistant transfer film
US4162165A (en) Process for the production of microcapsular coating compositions containing pigment particles and compositions produced thereby
US5698296A (en) Business document having security features
US3036924A (en) Duplicating ink compositions and transfer elements prepared therefrom
GB1591361A (en) Pressure-sensitive carbonless sheet sets and processes for producing them
US3697323A (en) Pressure-sensitive record material
US3738857A (en) Pressure-sensitive record sheet and method of making
US4046404A (en) Carbonless paper for use in electrostatographic copiers
JPS61230982A (en) Space holder for copying paper
US3819398A (en) Process for production of pressure-sensitive copy sheet
JPH04269581A (en) No-carbon paper for ion jet printing
US4089547A (en) Manifold receptor sheets and processes therefor
US3337361A (en) Process of making pressure sensitive transfer sheet
EP0006599A1 (en) A self-contained color forming pressure sensitive record paper of the single coating type
US4347282A (en) Chemical carbonless copy paper and transfer medium therefor
CA1131910A (en) Sheet- and roll-shaped copying material, process for its production and its use in copying forms
US4327148A (en) Self-contained color forming pressure sensitive record paper of the single coating type
JPH03247484A (en) Stilt material and pressure sensitive layer therewith
KR900002358B1 (en) Ink coating microcapsules for pressure-sensitive copying paper