US3660710A - Display device having cathodes and lead wires disposed in grooved base plate for positive insulation therebetween - Google Patents

Display device having cathodes and lead wires disposed in grooved base plate for positive insulation therebetween Download PDF

Info

Publication number
US3660710A
US3660710A US31456A US3660710DA US3660710A US 3660710 A US3660710 A US 3660710A US 31456 A US31456 A US 31456A US 3660710D A US3660710D A US 3660710DA US 3660710 A US3660710 A US 3660710A
Authority
US
United States
Prior art keywords
base plate
cathodes
grooves
display device
envelope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US31456A
Inventor
Kiyoshi Sasaki
Satoshi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okaya Electric Industry Co Ltd
Original Assignee
Okaya Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okaya Electric Industry Co Ltd filed Critical Okaya Electric Industry Co Ltd
Application granted granted Critical
Publication of US3660710A publication Critical patent/US3660710A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/48Cold-cathode tubes with more than one cathode or anode, e.g. sequence-discharge tube, counting tube, dekatron
    • H01J17/49Display panels, e.g. with crossed electrodes, e.g. making use of direct current
    • H01J17/491Display panels, e.g. with crossed electrodes, e.g. making use of direct current with electrodes arranged side by side and substantially in the same plane, e.g. for displaying alphanumeric characters

Definitions

  • a display device havlng a heat-proof Insulating base plate hav- [30] Foreign Application Pri it D t ing formed therein on one side a plurality of grooves, a plurali- 1 ty of cathodes disposed in the grooves in a manner not to pro- Sept. 30, 1967 Japan ..42/83305 ject out f the Surface f the base plate, an anode common to the cathodes and a transparent glass tube envelope having [52] U.S.Cl ..313/l09.5,313/108,313/331 enclosed therein a the elements mentioned above, and a [51] Int.
  • This invention relates to a display device, and more particularly to a display device adapted to display numerals and/or characters by means of electrodes disposed in predetermined relationship and a method of making the same.
  • This invention is to provide an electronic display device which is designed such that display cathodes are held in position in completely electrically insulated condition, the envelope is not blurred by sputtering of the cathodes and lead wires of the cathodes are attached to the envelope while being electrically insulated from one another and a method of making such a display device which allows base in manufacturing processes.
  • FIG. 2 is a perspective view illustrating one example of the display device of this invention.
  • FIG. 3 is a schematic diagram for explaining one example of a method for sealing the glass envelope of the display device
  • FIG. 4 is a cross-sectional view of the sealed portion of the glass envelope.
  • FIG. 5 is a longitudinal-sectional view of the glass envelope after sealed.
  • reference numeral 1 indicates a base plate made of an insulating material, for example, ceramic, which has a recess 2 formed in, for instance, the upper face in the drawing.
  • a plurality of grooves 3 of a predetermined shape, for example straight configuration in the illustrated example, are provided in the bottom of the recess 2 and cathode 4 formed of nickel or the like are placed in the grooves 3 in a manner not to project out therefrom. While, a mesh-like anode 5 common to the cathodes 4 is stretched over the recess 2 in opposing it but spaced relation to the cathodes 4.
  • the anode 5 is a mesh formed of a conductive material such as iron or the like and is stretched between a pair of supports 5' of iron or the like, which are, in turn, attached to the edges 2 of the recess 2 of the base plate 1.
  • the anode 5 may be a thin iron plate whose intermediate portion is formed to be mesh-like by means of, for example, etching.'
  • a plurality of grooves 6, seven grooves in the present example, corresponding to the grooves 3 and consequently the cathodes 4 are formed in the ceramic base plate I on the side of its underside in its lengthwise direction, as depicted in FIG. 1. Further, bores 6' are respectively formed in the base plate I through which each groove 3 is contiguous to each groove 6, and lead wires 7 are respectively connected to the cathodes 4, located in the grooves 3, through the grooves 6 and the bores 6'.
  • the cathodes 4 may be formed by bending one end portion of the lead wires 7.
  • the formation of the cathodes 4 may take place by means of vapor deposition or electrode position, by which the cathode 4 can be formed in a substantially semicylindrical shape to cause a decrease in a discharge supporting voltage due to the so-called follower effect.
  • Reference numeral 8 designates a lead wire of the anode 5.
  • the electrode assembly of such an arrangement as described above is housed in an airtight envelope, as shown in FIG. 2. That is, the electrode assembly is mounted on a substantially disc-like stem 9 formed of an insulating material such as ceramic or the like and is then sealed up in a transparent glass envelope 10. In order to provide enhanced airtightness of the envelope 10, the stem 9 is sealed up at the open end portion of the glass envelope 10 with, for example, glass 10'.
  • the envelope 10 is filled with a predetermined gas, for example, neon Ne, argon A or the like.
  • the application of a predetermined voltage to the cathodes 4 and the anode 5 through their lead wires 7 and 8 leads to the production of glow discharge of the cathodes 4 to display a numeral, character or the like (a numeral 8" in the illustrated example) of a predetermined shape.
  • a black paint on the surface and sides of the ceramic base plate 1 so as to provide clear display, or the use of a black base plate is more effective for the purpose.
  • the cathodes 4 are disposed in the grooves 3 formed in the base plate 1 in a manner not to project out from the surface thereof and this ensures insulation between the cathodes to eliminate bad insulation therebetween experienced in the past and removal of bad contact between the lead wires and the cathodes.
  • the cathodes 4 are merely placed in the grooves 3 and hence this allows ease in the manufacturing operations, and the base plate 1 can be utilized for supporting the cathodes 4.
  • sputtered cathode material is deposited only in the groove 3 and is hardly deposited on the surface of the base plate 1, which eliminates the possibility of bad insulation between the cathodes and blurring of the surface of the base plate due to sputtering of the cathodes, encountered in the prior art. Since the lead wires 7 of the cathodes 4 are led out through the bores 6' and the grooves 6, they can be held in position well insulated from one another. This completely removes the possibility of discharge between the lead wires and contact troubles thereof.
  • the insulation between the cathodes and between the lead wires is excellent, so that even if the ceramic base plate I is miniaturized, there is no possibility of causing bad insulation, and this permits of considerable miniaturization of the entire structure.
  • the device since the device is simple in construction, it is inexpensive, easy to manufacturing requiring less manufacturing operations and hence is suitable for mass production. Even if the cathodes 4 are embedded in the grooves 3, their glow discharge is produced swelling toward the anode, so that no troubles are introduced in the display.
  • an electrode assembly including display cathodes 102, a lead wire 103 and so on is placed in a glass envelope 101 having a gas exhaust pipe 101a in such a manner that a display portion 102 is located on the side of the exhaust pipe 101a.
  • the envelope 101 for example, mica is disposed in the envelope 101 for positioning of the display portion 102 of the electrode assembly. Then, a stem 104 formed of an insulating material such as ceramic or the like is inserted into the envelope 101, in which case the stem 104 has a plurality of apertures 104a formed therethrough at the center and the lead wire 103 is led outside of the envelope 101 through one of the apertures 104a.
  • infrared ray absorbing glass powder or piece or its mixture with black carbon and/or chrome oxide powder having light-absorbing property is packed into the envelope 101 between the free end face of the stern 104 and the open end portion of the envelope 101.
  • the black carbon, chrome oxide or like powder mixed in the infrared ray absorbing glass absorbs light and hence increases light absorbing efficiency, since it prevents transmission of light as in the case of the infrared ray absorbing glass only.
  • reference numeral 107 designates generally one example of an infrared radiation source for sealing the glass envelope, which employs an infrared ray lamp 108 such as a quartz iodine lamp and an elliptic mirror or reflector such as indicated by 109.
  • the elliptic mirror 109 has a curved face formed by cutting off vertically an elliptic plane formed by turning an ellipse about a line joining its two focuses relative to this line, and the curved interior surface of the elliptic plane is plated with, for example, gold.
  • the aforementioned lamp 108 is disposed at one focus, for instance, near the elliptic mirror 109 and the frit glass 105 is placed near the other focus remote from the mirror 109.
  • the light of the lamp 108 is reflected by the mirror 109 to be directed to the other focus, so that the portion including the frit glass 105 is subjected to strong light (heat). That is, the frit glass 105 is exposed irradiation of strong infrared ray and is thereby fused to easily seal the envelope.
  • the infrared ray absorbing glass is fully exposed to irradiation by infrared ray to cause it to be softened and fused to the stem 104 and envelope 101 before softening of the envelope.
  • the coefficient of expansion of the infrared ray absorbing glass is substantially equal to that of the glass envelope, and the coefficient of expansion of ceramic is also nearly equal thereto. Consequently, where these three materials are fused together, they do not introduce distortion and can be well fused.
  • One example of numerical values of a cold cathode discharge tube used under such conditions is such that the thickness of the envelope is 0.5 to 0.7 mm, its diameter is l0 mm the thickness of ceramic is 3 mm and the temperature of Infrared irradiation 18 l,200 C. to 1,600" C. at
  • the fusing operation can be effected with suitable adjustment of this temperature.
  • the fusing time is as short as about 15 seconds and the resulting envelopes are extremely uniform in thickness without producing distortion, and consequently the yield is very high. In this manner, the indicator tube envelope can be positively sealed with the cathodes held in position.
  • FIG. 5 is a cross-sectional view of a cold cathode discharge tube thus produced according to this invention, and the outer end of the fused glass is a little swelled out as indicated at a.
  • air in the envelope is evacuated through the exhaust pipe 101a on the opposite side from the sealed portion or neon, argon gas or the like is sealed in the envelope through the exhaust pipe 101a, afterwhich the exhaust pipe 101a is burned off, thus producing a desired discharge tube.
  • the present invention improves the complicated conventional method to allow ease in the fusing operation, shorten the time for sealing the elements of the display tube in the envelope and hence enhance the operating efficiency.
  • the glass envelope, the ceramic stem and the frit glass containing the infrared ray absorbing glass for sealing them are sufficiently fused together substantially without any distortion. Accordingly, there is no possibility that the display electrodes get out of position during the sealing operation of the envelope, and the yield is very high. That is, the method of the present invention is particular utility when employed in the sealing of cold cathode discharge tubes of the type described above.
  • a display device comprising:
  • a heat-proof insulating base plate having first and second sides, said base plate including first means defining a plurality of first grooves in said first side thereof and second means defining a plurality of second grooves in said second side thereof corresponding in number to the number of said first grooves, at least one end of each of said second grooves extending to one end of said base plate; a plurality of cathodes respectively disposed in said first grooves in a manner so as not to project above said first surface of said base plate; a plurality of holes in said base plate interconnecting said first and second grooves; a plurality of lead wires connected to said cathodes and extending from said base plate by way of said holes and said second grooves, said lead wires being disposed in said second grooves in such a manner so as not to project above said second surface of said base plate; a common anode disposed in opposing relation to all of said cathodes and spaced from said first surface of said base plate; a gas; and a transparent glass tube envelope enclo
  • a display device comprising a mesh of conductive material.
  • a display device comprising means for mounting said mesh in a spaced relation to said base plate including a pair of supports attached to the ends of said base plate and to said mesh for holding said mesh in a stretched condition.

Abstract

A display device having a heat-proof insulating base plate having formed therein on one side a plurality of grooves, a plurality of cathodes disposed in the grooves in a manner not to project out from the surface of the base plate, an anode common to the cathodes and a transparent glass tube envelope having enclosed therein all the elements mentioned above, and a method of sealing the glass tube envelope by the use of infrared ray absorbing glass of low melting point.

Description

0 United States Patent 1151 3,660,710 Sasaki et a1. 1 1 May 2, 1972 [54] DISPLAY DEVICE HAVING CATHODES [56] References Cltcd AND LEAD WIRES DISPOSED IN T TENT GROOVED BASE PLATE FOR POSITIVE 5 5 INSULATION THEREBETWEEN 2,833,949 5/1958 Driscoll "313/1095 3,231,776 1/1966 Britnell et al. ..3l3/109.S 1 Inventors! Klyoshl m Sflmshl Wmnabe. both of 3,327,153 6/1967 Bickmire et al... .....3l3/109.5 y Japan 3,418,509 12/1968 Frouws et =11. 13/1095 3,426 248 2/1969 Cistola ..315/169 R [73] Assignee. Okaya Denkl Sangyo Kabushlklkalsha,
shibuyzbku Tokyo. Japan 3,508,101 4/1970 Tany ..313/1()9.5
[22] Filed: Apr. 1, 1970 Primary I'.'.\'uminerROy Lalkc Ass/Mam Iivuminer- Palmer C. Demcu [2]] SL456 A!mrne v-Hi1l,Shermun,MerOni,GrOss& Simpson Related US. Application Data [57] ABSTRACT [62] Division of Ser. No. 733,660, May 31, 1968.
A display device havlng a heat-proof Insulating base plate hav- [30] Foreign Application Pri it D t ing formed therein on one side a plurality of grooves, a plurali- 1 ty of cathodes disposed in the grooves in a manner not to pro- Sept. 30, 1967 Japan ..42/83305 ject out f the Surface f the base plate, an anode common to the cathodes and a transparent glass tube envelope having [52] U.S.Cl ..313/l09.5,313/108,313/331 enclosed therein a the elements mentioned above, and a [51] Int. Cl .1101 61/66 h d f ealing the glass tube envelope by the use f i [58] Field of Search ..3 l 3/1095, 210, 108 R, 331; flared ray absorbing g|ass fl melting point 315/169 R, 169 TV 3 Claims, 5 Drawing Figures Patented May 2, 1972 2 Sheets-Sheet 1 Z m iiin INVENTORS qs/z/Saaak/ 662/0 H czfanabe W ATTORNEYS DISPLAY DEVICE HAVING CATI-IODES AND LEAD WIRES DISPOSED IN GROOVED BASE PLATE FOR POSITIVE INSULATION TIIEREBETWEEN CROSS-REFERENCE TO RELATED APPLICATION This application is a division of our pending application, Ser. No. 733,660 filed May 31,1968.
BACKGROUND OF THE INVENTION 1. Field ofthe Invention This invention relates to a display device, and more particularly to a display device adapted to display numerals and/or characters by means of electrodes disposed in predetermined relationship and a method of making the same.
2. Description of the Prior Art Conventional types of display devices present problems such as complexity in the provision of a plurality of display cathodes, possibilities of bad insulation between the display cathodes and bad contact thereof with their lead wires. Further, sputtering of the display cathodes blurs the glass tube envelope and also introduces bad insulation between the cathodes.
In addition, the prior art encounters difficulties in the fabrication of such display devices as it requires complicated operations for sealing up display cathodes within the glass envelope and involves a considerable amount of time therefor and allows non-uniformity in the sealing of the glass envelope.
SUMMARY OF THE INVENTION This invention is to provide an electronic display device which is designed such that display cathodes are held in position in completely electrically insulated condition, the envelope is not blurred by sputtering of the cathodes and lead wires of the cathodes are attached to the envelope while being electrically insulated from one another and a method of making such a display device which allows base in manufacturing processes.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is an enlarged perspective view, partly cut away, illustrating, by way of example, the principal part of the display device produced according to this invention;
FIG. 2 is a perspective view illustrating one example of the display device of this invention;
FIG. 3 is a schematic diagram for explaining one example of a method for sealing the glass envelope of the display device;
FIG. 4 is a cross-sectional view of the sealed portion of the glass envelope; and 4,
FIG. 5 is a longitudinal-sectional view of the glass envelope after sealed.
DESCRIPTION OF THE PREFERRED EMBODIMENTS With reference to the drawings the present invention will hereinafter be described in detail, by way of example.
In FIG. 1 reference numeral 1 indicates a base plate made of an insulating material, for example, ceramic, which has a recess 2 formed in, for instance, the upper face in the drawing. A plurality of grooves 3 of a predetermined shape, for example straight configuration in the illustrated example, are provided in the bottom of the recess 2 and cathode 4 formed of nickel or the like are placed in the grooves 3 in a manner not to project out therefrom. While, a mesh-like anode 5 common to the cathodes 4 is stretched over the recess 2 in opposing it but spaced relation to the cathodes 4. In the illustrated example the anode 5 is a mesh formed of a conductive material such as iron or the like and is stretched between a pair of supports 5' of iron or the like, which are, in turn, attached to the edges 2 of the recess 2 of the base plate 1. The anode 5 may be a thin iron plate whose intermediate portion is formed to be mesh-like by means of, for example, etching.'
A plurality of grooves 6, seven grooves in the present example, corresponding to the grooves 3 and consequently the cathodes 4 are formed in the ceramic base plate I on the side of its underside in its lengthwise direction, as depicted in FIG. 1. Further, bores 6' are respectively formed in the base plate I through which each groove 3 is contiguous to each groove 6, and lead wires 7 are respectively connected to the cathodes 4, located in the grooves 3, through the grooves 6 and the bores 6'. The cathodes 4 may be formed by bending one end portion of the lead wires 7. The formation of the cathodes 4 may take place by means of vapor deposition or electrode position, by which the cathode 4 can be formed in a substantially semicylindrical shape to cause a decrease in a discharge supporting voltage due to the so-called follower effect. Reference numeral 8 designates a lead wire of the anode 5.
The electrode assembly of such an arrangement as described above is housed in an airtight envelope, as shown in FIG. 2. That is, the electrode assembly is mounted on a substantially disc-like stem 9 formed of an insulating material such as ceramic or the like and is then sealed up in a transparent glass envelope 10. In order to provide enhanced airtightness of the envelope 10, the stem 9 is sealed up at the open end portion of the glass envelope 10 with, for example, glass 10'. The envelope 10 is filled with a predetermined gas, for example, neon Ne, argon A or the like.
With such an arrangement, the application of a predetermined voltage to the cathodes 4 and the anode 5 through their lead wires 7 and 8 leads to the production of glow discharge of the cathodes 4 to display a numeral, character or the like (a numeral 8" in the illustrated example) of a predetermined shape.
It is preferred to lay down a black paint on the surface and sides of the ceramic base plate 1 so as to provide clear display, or the use of a black base plate is more effective for the purpose.
In the device of this invention the cathodes 4 are disposed in the grooves 3 formed in the base plate 1 in a manner not to project out from the surface thereof and this ensures insulation between the cathodes to eliminate bad insulation therebetween experienced in the past and removal of bad contact between the lead wires and the cathodes. In addition, the cathodes 4 are merely placed in the grooves 3 and hence this allows ease in the manufacturing operations, and the base plate 1 can be utilized for supporting the cathodes 4.
Further, sputtered cathode material is deposited only in the groove 3 and is hardly deposited on the surface of the base plate 1, which eliminates the possibility of bad insulation between the cathodes and blurring of the surface of the base plate due to sputtering of the cathodes, encountered in the prior art. Since the lead wires 7 of the cathodes 4 are led out through the bores 6' and the grooves 6, they can be held in position well insulated from one another. This completely removes the possibility of discharge between the lead wires and contact troubles thereof.
In accordance with this invention the insulation between the cathodes and between the lead wires is excellent, so that even if the ceramic base plate I is miniaturized, there is no possibility of causing bad insulation, and this permits of considerable miniaturization of the entire structure. In addition, since the device is simple in construction, it is inexpensive, easy to manufacturing requiring less manufacturing operations and hence is suitable for mass production. Even if the cathodes 4 are embedded in the grooves 3, their glow discharge is produced swelling toward the anode, so that no troubles are introduced in the display.
Although the present invention has been described in connection with a case of displaying the numeral 8 by glow discharge, it is to be understood that various numerals, characters and the like can be displayed by various modifications of the shape and relative position of the grooves 3. It is also possible that various numerals, characters and the like can be displayed by one display device by applying input signals to selected electrodes disposed in grooves provided in the form of a matrix. Further, display of numerals, letters and the like can be effected not only by glow discharge but also by phosphor discharge with phosphor material deposited on the surface of the cathodes. The foregoing example is intended as being illustrative and not as limiting this invention specifically thereto, and various modifications may be effected when needed.
Referring now to FIGS. 3 to 5, a detailed description will hereinafter be given of one example of a method for sealing the electrode assembly in the glass envelope or the like. For convenience of description, the following description will be made in connection with the case of displaying a numeral 2."
As illustrated in FIG. 3, an electrode assembly including display cathodes 102, a lead wire 103 and so on is placed in a glass envelope 101 having a gas exhaust pipe 101a in such a manner that a display portion 102 is located on the side of the exhaust pipe 101a. In this case, an insulating member 106 of,
for example, mica is disposed in the envelope 101 for positioning of the display portion 102 of the electrode assembly. Then, a stem 104 formed of an insulating material such as ceramic or the like is inserted into the envelope 101, in which case the stem 104 has a plurality of apertures 104a formed therethrough at the center and the lead wire 103 is led outside of the envelope 101 through one of the apertures 104a.
Further, infrared ray absorbing glass powder or piece or its mixture with black carbon and/or chrome oxide powder having light-absorbing property is packed into the envelope 101 between the free end face of the stern 104 and the open end portion of the envelope 101. The black carbon, chrome oxide or like powder mixed in the infrared ray absorbing glass absorbs light and hence increases light absorbing efficiency, since it prevents transmission of light as in the case of the infrared ray absorbing glass only.
In FIG. 3 reference numeral 107 designates generally one example of an infrared radiation source for sealing the glass envelope, which employs an infrared ray lamp 108 such as a quartz iodine lamp and an elliptic mirror or reflector such as indicated by 109. As is well known, the elliptic mirror 109 has a curved face formed by cutting off vertically an elliptic plane formed by turning an ellipse about a line joining its two focuses relative to this line, and the curved interior surface of the elliptic plane is plated with, for example, gold. The aforementioned lamp 108 is disposed at one focus, for instance, near the elliptic mirror 109 and the frit glass 105 is placed near the other focus remote from the mirror 109. With an arrangement, the light of the lamp 108 is reflected by the mirror 109 to be directed to the other focus, so that the portion including the frit glass 105 is subjected to strong light (heat). That is, the frit glass 105 is exposed irradiation of strong infrared ray and is thereby fused to easily seal the envelope.
A description will be given in connection with one example of numerical values in the above-described sealing method.
The softening point of the infrared ray absorbing glass 105 is 625 1 5 C. and its coefficient of expansion is (89.5 t 1.5) X l' degf. On the other hand, the softening point of glass for usual electronic tube envelopes is 6841- C. and its coefficient of expansion is approximately (98 i 2) X l0' deg.' and further the coefficient of expansion of ceramic is approximately 91.5 X l0 deg. at a temperature ranging from C. to 400 C. It will be apparent from the foregoing that the softening point of the infrared ray glass is appreciably lower than that of the glass of the envelope. Accordingly, taking advantage of the difference in the softening point, the infrared ray absorbing glass is fully exposed to irradiation by infrared ray to cause it to be softened and fused to the stem 104 and envelope 101 before softening of the envelope.
In this case, the coefficient of expansion of the infrared ray absorbing glass is substantially equal to that of the glass envelope, and the coefficient of expansion of ceramic is also nearly equal thereto. Consequently, where these three materials are fused together, they do not introduce distortion and can be well fused. One example of numerical values of a cold cathode discharge tube used under such conditions is such that the thickness of the envelope is 0.5 to 0.7 mm, its diameter is l0 mm the thickness of ceramic is 3 mm and the temperature of Infrared irradiation 18 l,200 C. to 1,600" C. at
maximum. The fusing operation can be effected with suitable adjustment of this temperature. Where the thickness of the infrared ray absorbing glass is 2.5 to 3.0 mm, the fusing time is as short as about 15 seconds and the resulting envelopes are extremely uniform in thickness without producing distortion, and consequently the yield is very high. In this manner, the indicator tube envelope can be positively sealed with the cathodes held in position.
FIG. 5 is a cross-sectional view of a cold cathode discharge tube thus produced according to this invention, and the outer end of the fused glass is a little swelled out as indicated at a. After sealing the envelope air in the envelope is evacuated through the exhaust pipe 101a on the opposite side from the sealed portion or neon, argon gas or the like is sealed in the envelope through the exhaust pipe 101a, afterwhich the exhaust pipe 101a is burned off, thus producing a desired discharge tube.
As has been described in the foregoing, the present invention improves the complicated conventional method to allow ease in the fusing operation, shorten the time for sealing the elements of the display tube in the envelope and hence enhance the operating efficiency. In addition, the glass envelope, the ceramic stem and the frit glass containing the infrared ray absorbing glass for sealing them are sufficiently fused together substantially without any distortion. Accordingly, there is no possibility that the display electrodes get out of position during the sealing operation of the envelope, and the yield is very high. That is, the method of the present invention is particular utility when employed in the sealing of cold cathode discharge tubes of the type described above.
It will be apparent that many modifications and variations may be effected without departing from the scope of the novel concepts of this invention.
We claim as our invention:
1. A display device comprising:
a heat-proof insulating base plate having first and second sides, said base plate including first means defining a plurality of first grooves in said first side thereof and second means defining a plurality of second grooves in said second side thereof corresponding in number to the number of said first grooves, at least one end of each of said second grooves extending to one end of said base plate; a plurality of cathodes respectively disposed in said first grooves in a manner so as not to project above said first surface of said base plate; a plurality of holes in said base plate interconnecting said first and second grooves; a plurality of lead wires connected to said cathodes and extending from said base plate by way of said holes and said second grooves, said lead wires being disposed in said second grooves in such a manner so as not to project above said second surface of said base plate; a common anode disposed in opposing relation to all of said cathodes and spaced from said first surface of said base plate; a gas; and a transparent glass tube envelope enclosing and supporting said base plate and said anode within said gas.
2. A display device according to claim 1, wherein said anode comprises a mesh of conductive material.
3. A display device according to claim 2, comprising means for mounting said mesh in a spaced relation to said base plate including a pair of supports attached to the ends of said base plate and to said mesh for holding said mesh in a stretched condition.
III i 1' 8 k

Claims (3)

1. A display device comprising: a heat-proof insulating base plate having first and second sides, said base plate including first means defining a plurality of first grooves in said first side thereof and second meAns defining a plurality of second grooves in said second side thereof corresponding in number to the number of said first grooves, at least one end of each of said second grooves extending to one end of said base plate; a plurality of cathodes respectively disposed in said first grooves in a manner so as not to project above said first surface of said base plate; a plurality of holes in said base plate interconnecting said first and second grooves; a plurality of lead wires connected to said cathodes and extending from said base plate by way of said holes and said second grooves, said lead wires being disposed in said second grooves in such a manner so as not to project above said second surface of said base plate; a common anode disposed in opposing relation to all of said cathodes and spaced from said first surface of said base plate; a gas; and a transparent glass tube envelope enclosing and supporting said base plate and said anode within said gas.
2. A display device according to claim 1, wherein said anode comprises a mesh of conductive material.
3. A display device according to claim 2, comprising means for mounting said mesh in a spaced relation to said base plate including a pair of supports attached to the ends of said base plate and to said mesh for holding said mesh in a stretched condition.
US31456A 1967-09-30 1970-04-01 Display device having cathodes and lead wires disposed in grooved base plate for positive insulation therebetween Expired - Lifetime US3660710A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1967083305U JPS478844Y1 (en) 1967-09-30 1967-09-30

Publications (1)

Publication Number Publication Date
US3660710A true US3660710A (en) 1972-05-02

Family

ID=42906478

Family Applications (1)

Application Number Title Priority Date Filing Date
US31456A Expired - Lifetime US3660710A (en) 1967-09-30 1970-04-01 Display device having cathodes and lead wires disposed in grooved base plate for positive insulation therebetween

Country Status (2)

Country Link
US (1) US3660710A (en)
JP (1) JPS478844Y1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3784862A (en) * 1970-09-11 1974-01-08 Sony Corp Method and apparatus for electron tubes
US3798480A (en) * 1971-12-27 1974-03-19 Okaya Electric Industry Co Indicator discharge tube

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2833949A (en) * 1955-12-13 1958-05-06 Burroughs Corp Glow indicating tube
US3231776A (en) * 1962-09-28 1966-01-25 Sylvania Electric Prod Display device
US3327153A (en) * 1964-03-30 1967-06-20 Sylvania Electric Prod Compact glow discharge device having improved connection means for supplying electrical energy
US3418509A (en) * 1965-07-03 1968-12-24 Philips Corp Electrical discharge character indicator tube
US3426248A (en) * 1966-03-17 1969-02-04 Ibm Planar visual readout display devices
US3508101A (en) * 1967-03-27 1970-04-21 Ise Electronics Corp Character indicating electron tube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2833949A (en) * 1955-12-13 1958-05-06 Burroughs Corp Glow indicating tube
US3231776A (en) * 1962-09-28 1966-01-25 Sylvania Electric Prod Display device
US3327153A (en) * 1964-03-30 1967-06-20 Sylvania Electric Prod Compact glow discharge device having improved connection means for supplying electrical energy
US3418509A (en) * 1965-07-03 1968-12-24 Philips Corp Electrical discharge character indicator tube
US3426248A (en) * 1966-03-17 1969-02-04 Ibm Planar visual readout display devices
US3508101A (en) * 1967-03-27 1970-04-21 Ise Electronics Corp Character indicating electron tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3784862A (en) * 1970-09-11 1974-01-08 Sony Corp Method and apparatus for electron tubes
US3798480A (en) * 1971-12-27 1974-03-19 Okaya Electric Industry Co Indicator discharge tube

Also Published As

Publication number Publication date
JPS478844Y1 (en) 1972-04-04

Similar Documents

Publication Publication Date Title
US3726582A (en) Electric discharge lamp comprising container of densely sintered aluminum oxide
US4125390A (en) Method of vacuum-sealing vacuum articles
US3632324A (en) Method of sealing display cathodes in a glass envelope
GB743796A (en) Improvements in and relating to colour television tubes having apertured screen members
US2189322A (en) Photoelectric cathode
US3660710A (en) Display device having cathodes and lead wires disposed in grooved base plate for positive insulation therebetween
US2151785A (en) Electron discharge device
US3697797A (en) Process for manufacturing cold cathode gas discharge devices and the product thereof
US3665238A (en) Electric gas discharge tube having vacuum tight sealing means for a plurality of supply leads positioned close together
US4295073A (en) Microchannel plate-in-wall structure
GB2032681A (en) A fluorescent lamp
US4428764A (en) Method of making fusible spacer for display panel
US2845557A (en) Arc tube mounting
US3853374A (en) Method for the manufacture of photoelectron multipliers
JPH0992184A (en) Fluorescent display tube and manufacture thereof
US2167777A (en) Photoelectric tube
US3275878A (en) Lead-in seal for evacuated envelope of an electron discharge device for connecting electrodes located within said envelope to a voltage source positioned outside said envelope
US3590304A (en) Image intensifier
US3549229A (en) Method of assembling an image intensifier
US2171213A (en) Television transmitting tube and electrode structure
US3624442A (en) Individually hermetically sealed cathode-ray tubes connected by fiber optics array
US3188506A (en) Cathode ray tube with signal plate connected to contact ring having envelope diameter
US3692379A (en) Method of fabricating a photoconductive pickup tube
US2078776A (en) Glass-to-metal seal
US2050341A (en) Glow lamp