US5305203A - Computer-aided surgery apparatus - Google Patents

Computer-aided surgery apparatus Download PDF

Info

Publication number
US5305203A
US5305203A US07/593,469 US59346990A US5305203A US 5305203 A US5305203 A US 5305203A US 59346990 A US59346990 A US 59346990A US 5305203 A US5305203 A US 5305203A
Authority
US
United States
Prior art keywords
menu
sub
orientation
instrument
implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/593,469
Inventor
Simon Raab
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xenon Research Inc
Original Assignee
FARO MEDICAL TECHNOLOGIES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CA000557814A external-priority patent/CA1336451C/en
Priority to US07/593,469 priority Critical patent/US5305203A/en
Application filed by FARO MEDICAL TECHNOLOGIES Inc filed Critical FARO MEDICAL TECHNOLOGIES Inc
Assigned to FARO MEDICAL TECHNOLOGIES (U.S.) INC. reassignment FARO MEDICAL TECHNOLOGIES (U.S.) INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: FARO MEDICAL TECHNOLOGIES INC.
Assigned to FARO TECHNOLOGIES, INC. reassignment FARO TECHNOLOGIES, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: FARO TECHNOLOGIES (U.S.) INC.
Assigned to FARO SUBSIDIARY CORP. reassignment FARO SUBSIDIARY CORP. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: FARO TECHNOLOGIES, INC.
Assigned to FARO TECHNOLOGIES, INC. reassignment FARO TECHNOLOGIES, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: FARO SUBSIDIARY CORP.
Priority to US08/104,199 priority patent/US5748767A/en
Publication of US5305203A publication Critical patent/US5305203A/en
Application granted granted Critical
Assigned to XENON RESEARCH, INC. reassignment XENON RESEARCH, INC. NOTICE OF ASSIGNMENT OF PATENTS Assignors: FARO TECHNOLOGIES, INC.
Assigned to FARO TECHNOLOGIES, INC. reassignment FARO TECHNOLOGIES, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: XENON RESEARCH, INC., A FLORIDA CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00199Electrical control of surgical instruments with a console, e.g. a control panel with a display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00973Surgical instruments, devices or methods, e.g. tourniquets pedal-operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B46/00Surgical drapes
    • A61B46/10Surgical drapes specially adapted for instruments, e.g. microscopes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37459Reference on workpiece, moving workpiece moves reference point
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45123Electrogoniometer, neuronavigator, medical robot used by surgeon to operate

Definitions

  • the invention relates to a computer-aided surgery apparatus. More specifically, the invention relates to such an apparatus which aids a surgeon in accurately positioning surgical instruments for performing surgical procedures on a patient.
  • the invention also relates to a linkage mechanism for connecting a fixed point on a portion of interest of a patient (for example, a fixed point on a leg or arm of a patient) with a fixed point on the apparatus, and for maintaining a fixed separation between the fixed points, whereby, to maintain a fixed relationship between the portion of interest of the patient and the apparatus even when the portion of interest of the patient is being moved.
  • a linkage mechanism for connecting a fixed point on a portion of interest of a patient (for example, a fixed point on a leg or arm of a patient) with a fixed point on the apparatus, and for maintaining a fixed separation between the fixed points, whereby, to maintain a fixed relationship between the portion of interest of the patient and the apparatus even when the portion of interest of the patient is being moved.
  • fluroscopy is used to indicate to the surgeon the position and orientation of the surgical procedure. This has the disadvantage of exposing a patient and physician to radiation. In addition, the accuracy is less than adequate for precision requirements of the surgery.
  • 3-dimensional imaging as represented in the techniques of MRI (magnetic resinence imaging) and CAT scans (computer aided tomography) provide an abundance of 3-dimensional information concerning the locations of, for example, unexposed tumors, there is presently no interface between this information and the surgical processes which provide remedies.
  • an apparatus which can transpose the information of the 3-dimensional imaging systems from the reference system of the 3-dimensional imaging systems to a reference system of the apparatus.
  • U.S. Pat. No. 4,473,074, Vassiliadis, Sep. 25, 1984 teaches a device providing a laser beam in the performance of microsurgical procedures.
  • the apparatus of the '074 patent does not have the facilities for providing electronic feedback of 3-dimensional information from 3-dimensional imaging systems for the purposes of presentation and feedback to the surgeon to thereby complete a feedback loop necessary to make full use of the instrument in sophisticated procedures.
  • the device of the '074 patent can be used only to direct a laser beam at an exposed target, so that it is not applicable for surgical procedures on unexposed portions of a patient.
  • a computer-aided surgical device for aiding a surgeon in positioning a surgical instrument (power or manual) when performing surgery on unexposed and exposed portions of a patient.
  • FIG. 1 is a 3-dimensional view of the apparatus in relationship to a patient on an operating table
  • FIG. 2 illustrates the rolling upright stand, the monitor and the electrogoniometer
  • FIG. 3 illustrates one means for connecting surgical instruments to the electrogoniometer
  • FIG. 4 is a more detailed view of the reference block
  • FIGS. 5, 6, 7 and 8 illustrate how the Double Self Indexing Screw (DSIS) is attached to a bone of a patient
  • FIG. 8A illustrates an alternative to the DSIS
  • FIG. 9 illustrates the first link to the DSIS
  • FIG. 10 illustrates the complete link between the DSIS and the reference block of the apparatus
  • FIG. 11 is a cross-section through XI--XI of FIG. 9 (with the shaft removed);
  • FIG. 12 is a cross-section through XII--XII of FIG. 9 (with the shaft removed);
  • FIGS. 13 and 14 are examples of screen displays to aid in drilling procedures
  • FIGS. 15 and 16 are examples of screen displays to aid in sawing procedures
  • FIGS. 17 and 18 are examples of screen displays to aid in spinal curvature measurement procedures.
  • FIG. 19 is a screen display to aid in an implant placement procedure.
  • the apparatus in accordance with the invention is disposed for operation on a patient 3 lying on an operating table 5.
  • the apparatus includes an electrogoniometer 7 which is preferably of the type described in my U.S. Pat. No. 4,571,834.
  • the six degree of freedom electrogoniometer is designed to provide easy access to any part of the patient in the surgical venue. Surgical instruments are connected to the free end 7a of the electrogoniometer.
  • the other end of the electrogoniometer is connected to a reference block 9 which will be more fully discussed below.
  • the reference block and electrogoniometer are connected to a swinging balanced arm 11.
  • the other end of the balanced arm is connected to an upright post 13 of a rolling upright stand 15.
  • the upright post 13 also supports a monitor support arm 17 which carries a monitor, preferably a colour monitor, 19.
  • the swinging balanced arm 11 may consist of two portions, 10 and 12, which are pivotal relative to each other, and the portion 10 is pivotal relative to the upright post 13.
  • monitor support arm 17 is pivotal relative to the upright post 13 so that its position can be altered for better viewing by the surgeon.
  • Foot pedal switch 21 is provided for controlling the displays on the monitor 19, and remote computer 23 performs computations for providing the displays on the monitor.
  • the rolling upright stand 15 comprises rollers 25 to roll the apparatus into different positions alongside the operating table.
  • the electrogoniometer and the swinging balanced arm are covered by a tubular sterile barrier 27 to maintain the integrity of the sterile field around the patient.
  • Instruments which are attached to end 7a of the electrogoniometer are sterilizable in an autoclave to further maintain the integrity of the sterile field.
  • FIG. 3 One mechanism for attaching the surgical instrument to the end 7a of the electrogoniometer is illustrated in FIG. 3. As can be seen, this constitutes a V block 29 disposed within the tubular sterile barrier 27.
  • the instrument itself includes a mating V block 31, and the protruding V of 31 is inserted into the indented V of 29.
  • a pin, such as 32, extends through aligned openings in both 29 and 31. This type of connecting mechanism ensures that the position and orientation of the instrument relative to the electrogoniometer is fixed during the entire surgical procedure.
  • the reference block includes a reference backplate 33, reference top surfaces 35, reference holes 37 and a V-groove drill reference 39.
  • the purpose of these elements of the reference block is to determine the position, orientation and length of various ones of the surgical instruments, as well as the security of the installation of the instruments.
  • the reference block is connected to swinging balanced arm 11 by a ball support 41 which includes an internal ball joint so that spherical motion of the reference block relative to the arm 11 is possible.
  • the means for maintaining the fixed relationship constitute a mechanical linkage whereby, when the portion of the patient is moved, the reference block, and therefore the electrogoniometer, will move with it.
  • a Double Self Indexing Screw and mechanical linkage illustrated in FIGS. 5 to 12.
  • the Double Self Indexing Screw (DSIS) is illustrated in FIGS.
  • FIGS. 5 to 8 The procedure for mounting the DSIS on a portion of interest of the patient is illustrated in FIGS. 5 to 8.
  • the DSIS is to be mounted on, for example, a leg 51.
  • the recent advent of surgical techniques employing arthroscopy in order to minimize soft tissue trauma during surgery requires that the DSIS attachment be made through an incision no greater than 20 mm. Such an incision is shown on the leg 51 with a skin flap 53 lifted to expose bone 55. A first hole 57 is drilled, by drill 59, into the bone 55.
  • a drill guide 61 which includes holes 63 and 65 and guide pin 67, 63, 65 and 67 being in alignment, is then manipulated so that pin 67 is inserted into the hole 57.
  • a second hole is then drilled in bone 55 through, for example, hole 65 of drill guide 61.
  • a reference pin 69 (see FIG. 6) is then inserted into the second drilled hole through hole 65 of drill guide 61 as shown in FIG. 6.
  • a third hole is then drilled in the bone through hole 63. As holes 63, 65 and guide pin 67 are in alignment, the drilled holes will be in alignment as shown at 73, 57 and 71 in FIG. 7.
  • the DSIS is then connected to the bone by inserting screw 45 into hole 57, pin 47 into hole 73 and pin 49 into hole 71.
  • the screw 45 is screwed into hole 57 by rotation of screw handle 75 which rotates only the screw 45.
  • Cylindrical portion 143 is shown bent in FIG. 8A, although it could be straight as cylindrical portion 43 is shown in FIG. 8.
  • the bent portion of 143 includes an opening 147 through which screw 145 is passed. Accordingly, when screw 45 is screwed into a hole such as 57 in FIG. 7, the saw-tooth will be embedded in the surrounding bone so that the self-indexing screw will once again be restrained from rotary motion about its longitudinal axis.
  • the first link from the DSIS to the reference block is illustrated in FIG. 9 and comprises a linear spherical DSIS clamp illustrated generally at 77.
  • the DSIS clamp 77 includes a ball joint arrangement 79 and a clamping member 81.
  • the complete link includes a plurality of clamping members 81 interconnected by shafts 85.
  • Each clamping member includes at least one through hole 83 to receive a shaft 85.
  • the clamping members may also include two transverse through holes 83 as shown at 81a.
  • the clamping members may also be adapted to receive a shaft at the bottom end thereof as shown in 81b.
  • Each clamping member 81 includes a handle 87, and shaft 85b is insertable into an opening of T member 87 mounted on reference block 9.
  • clamping member 81 includes a screw 89 which is rotatable by handle 87 to move the screw upwardly or downwardly in the interior of the clamping member. Movement of the screw will cause similar movement of V block 91 which is disposed in opposition to V block 93 in the interior of the clamping member 81.
  • V blocks 91 and 93 as illustrated in FIG. 11, the cross-sectional shapes of the shafts 85 would be diamond shaped so that, when screw 89 is tightened, the shaft will be firmly grasped between V blocks 91 and 93.
  • shafts with different cross-sectional shapes could be used whereupon the shapes of blocks 91 and 93 would be appropriately altered.
  • the ball joint arrangement 79 includes a spherical ball bearing joint having a split outer race 95.
  • the head 44 of the DSOS 43 (see FIGS. 7 and 8) is inserted into opening 80 (see FIG. 9) of ball joint arrangement 79.
  • the spherical ball joint permits spherical rotation of the DSOS 43 relative to the ball joint arrangement 79.
  • handle 87 When handle 87 is rotated to move screw 89 downwardly, downward pressure will also be applied against block 93 to thereby close the split O-ring 95. Accordingly, the head 44 of the DSOS 43 will be firmly grasped in ball joint arrangement 79.
  • the apparatus is menu driven and the operation of the apparatus will be described in terms of various menus which are given as examples of how the apparatus may be used.
  • the Main Menu illustrated in Table 1 below, is divided into four main categories: Drilling Menu; Sawing Menu; Measurement Menu; Stereotaxic Misc. Menu.
  • the menu selections are made by depressing the right pedal of the foot switch 21, depressing the left pedal to confirm. Each time the right pedal is pressed, the pointer will move down one space. When the pointer is adjacent the required menu, then the left pedal is pressed. Selection of an item, for example, the Drill Menu, will result in the presentation of the Drill Menu.
  • the performance of drilling operations involves four basic steps, namely, digitizing the entry/exit points, installing the drill, installing the drill bit, and drilling the hole.
  • steps 2 and 3 the configuration, alignment and size of the drill and drill bit are defined.
  • a digitization tip is installed at end 7a of the electrogoniometer.
  • the digitization tip is then calibrated by inserting it into holes 37 of the reference block to verify the axis (orientation) of the digitization tip. It is noted that it is inserted into two holes so that the reproducibility is also confirmed.
  • the desired entry point is then digitized by placing the end of the digitizer tip at the desired entry position.
  • the desired exit point is similarly digitized.
  • the end 7a of the electrogoniometer can, of course, accept a variety of different surgical instruments including different drilling instruments.
  • a selected drilling tool is mounted at 7a.
  • a reference pin is then mounted in the drill bit and inserted into holes 37 of the reference block 9. Once again, this verifies the axis (orientation) as well as the security of the installation of the drill mounting on the electrogoniometer.
  • the reference pin is replaced with the desired drill bit, and the drill bit is then placed in the groove 39 of reference block 9 with the free end of the drill bit up against backstop 33 of the reference block whereby to determine the orientation and length of the drill bit.
  • the drilling target is displayed on monitor 19 with a penetration depth bar as illustrated in FIG. 13.
  • the penetration depth bar is illustrated at 97.
  • the target area is represented by the large circle 99 and the center of the target area 101 is represented by the junction of transverse diameters, or cross-hairs, 103 and 105.
  • the drill is identified by graphic objects 107 and 109.
  • the square 107 represents the tip of the drill and the circle 109 represents a point behind the tip of the drill, for example, 120 mm behind the tip of the drill, along the axis of the drill.
  • the depth bar is scaled to present the depth of penetration of the drill bit where full scale represents the distance between the entry and exit points as digitized with the procedure above.
  • the drill bit Before drilling begins, the drill bit should be moved on the surface of the patient until the square 107 is centered over center 101. The orientation of the drill is then manipulated until the circle 109 is centered in the square 107. When square 107 is centered around center 101, and circle 109 is centered in square 107, then the drill is in the correct position and orientation to proceed from the digitized entry to the exit. This is illustrated in FIG. 14.
  • a plane is defined by the selection of three points on the perimeter of the plane.
  • a plane is defined as being perpendicular to a predetermined axis.
  • the sawing applications range from tibial osteotomies to pre-arthroplasty surface preparation. The multiplanar problems of osteotomies are simply and effectively handled through the concurrent tool control and numerical feedback of the apparatus of the present application.
  • prompts will be provided to the user to digitize two points defining an axis which is perpendicular to the desired plane. For example, digitizing two points along the tibial crest will result in a saw cut perpendicular to the axis of the tibia.
  • prompts will appear on the screen of the monitor 19 to prompt the user to install a saw and saw blade, and to reference them on the surfaces 35 of reference block 9. As with the installation of the digitizer tip, the saw blade is referenced in two positions, namely, on each of the surfaces one at a time, in order to determine reproducibility and a secure installation.
  • the saw display represents a target similar to that of the drilling display except that the saw blade is not represented by a square and circle of the drill display but rather as a triangular plane 111 representing the flat upper surface of the saw blade.
  • the cross hairs 113 and 115 within the circle 117 represent the desired position of the saw cut while the orientation of the saw symbol 111 must be aligned with the horizontal cross hair 115 in such a manner that only a single line is visible (as shown in FIG. 16) rather than the surface of the saw blade. This assures that the saw blade is parallel to and aligned with the desired sawing plane in the correct position for sawing.
  • a sawing depth bar 119 represents the depth of penetration of the saw blade from its original entry point.
  • full scale of the depth bar is 100 mm.
  • the sawing depth bar is not scaled to a desired depth since very often this cannot be measured or is unknown.
  • the orientation of the saw blade with respect to the desired sawing plane is defined graphically by the triangle 111 and numerically by three numbers displayed about the target.
  • the vertical displacement of the saw blade above or below the desired line i.e. away from or towards the surgeon
  • the vertical displacement of the saw blade above or below the desired line is displayed at the top of the circle 117 while pitch is displayed below the vertical display and roll is displayed below the horizontal line 115.
  • the symbols permit the accurate definition of a cutting plane with respect to a premeasured cutting plane.
  • a precise cut of a specific angle with respect to a previous cut is the difference between a success or failure.
  • the ability to sustain a known cutting plane in three axes is imperative to the successful operation of a typical osteotomy.
  • the vertical position of the saw may be referenced by moving the saw blade up or down (away from or towards the surgeon) from the predetermined saw plane to a previously determined distance D as indicated on the sawing target. Under these circumstances, a second line llla, parallel to the horizontal line 115, will be displayed. Also, the numeral besides the vertical display will be changed to D. When the saw is now operated, a cut parallel to the first cut and at a distance D away from the first cut will be effected.
  • the Measurement Menu is selected by selecting item 3 of the Main Menu of Table 1.
  • the Measurement Menu is shown in Table 4.
  • the Measurement Menu may contain a number of generic and specific measurement applications of general use in various forms of surgery. Table 4 illustrates two such applications: Point to Point Distance and Spinal Curvature.
  • item 1 of the Measurement Menu When item 1 of the Measurement Menu is selected, the point to point distance screen will be displayed on the screen of the monitor 19.
  • the first step in this procedure is to calibrate the digitizer tip by inserting the digitizer tip into the reference holes of the reference block 9 as above-described with respect to the drilling procedure.
  • a live digital representation of the vector distance from the original reference point (of the reference block 19) to the current point (the first point) will be presented on the screen of the monitor 19.
  • the tip can be referenced simply by pressing the left half of the foot switch 21 at which time the current position of the digitizer tip becomes the reference point. The screen will then prompt the digitization of point 2.
  • Selection of item 2 of the Measurement Menu will result in the prompting for the performance of a spinal curvature measurement.
  • the measurement procedure is employed during surgical procedures relating to the correction of scoliosis curves in an effort to give a direct feedback to the surgeon as to the degree of curvature and correction which is obtained.
  • the system will first request that the digitizer tip be mounted and calibrated. The mounting and calibration steps are followed by a scan along the spine of predetermined length as determined by the selection of the starting and finishing vertebrae using the screen illustrated in FIG. 17.
  • the system will prompt the surgeon to define the vertebral levels between which the desired measurement is to occur. This is necessary since often limited exposure of the spine permits direct measurement of only a specific segment.
  • this system will prompt the surgeon to proceed with a scan of the vertebra. This scan is performed by placing the digitizer tip along the line defining the centers of the vertebral bodies. The system will then present a graphics representation of a generic spine with the curvature calculated as per the digitized points shown in FIG. 18. The numeric listing represents the estimated angle of each vertebra.
  • Stereotaxic Menu Selection of item 4 of the Main Menu of Table 1 will result in the presentation of the Stereotaxic Menu.
  • the primary application of the Stereotaxic Menu is the location and identification of unexposed parts such as hidden tumors, etc. and definition of their location with respect to a treatment instrument.
  • the Stereotaxic Menu is illustrated in Table 5 below.
  • This menu contains the five steps needed to locate a hidden object once identified in 3-dimensions by an imaging device such as a CAT scan.
  • the imaging data is stored in a data file which is read by selecting item 1 of the Object Location Menu.
  • Selection of item 1 of the Object Location Menu will result in the reading of an object file from the patient diskette of the computer 23.
  • the object file contains information typically obtained from CAT scans or MRI scans defining the location of an unexposed part with respect to three predetermined radiopaque markers which are still on the patient.
  • Selection of item 2 of the Object Location Menu will prompt the user to digitize the three radiopaque landmarks in order to define the system of orientation of the component with respect to the co-ordinate system of the apparatus.
  • the information from the object file which was read above is now converted to the new orientation with respect to the co-ordinate system of the apparatus.
  • the user is now requested to identify an entry point through which the access to the unexposed part is to be attempted.
  • Selection of item 3 of the Object Location Menu will result in the user being prompted to mount a probe holder at end 7a of the electrogoniometer 7, and selection of item 4 will prompt the user to mount a probe in the probe holder.
  • the probe will be calibrated and tested for orientation and reproducibility by insertion into holes 37 of reference block 9.
  • Selection of item 5 of the Object Location Menu will result in a target screen presentation on the screen of monitor 19 which is similar to the screen displayed for a drilling target as illustrated in Figure 13 herein except that the square and circle targeting symbols are of different colours.
  • the probe would then be manipulated to align the targeting symbols with the cross hair axis of the targeting screen, for example as shown in FIG. 14, and the probe can then be inserted along the desired axis to the depth as indicated by the depth bar illustrated at 97 in FIG. 13. Once the target is reached, the treatment may be completed.
  • locator data file may be created.
  • the location of a blind hole is performed in two steps: First, prior to the use of an orthopedic device, for example a femoral nail in which exists a cross hole at a distal end, the orientation and position of the hole is measured using a reference attachment in item 1 of the menu in Table 7. Once the surgical procedure is completed, the same reference attachment is used to redefine the hole using item 2 of the menu of Table 7. For convenience, the ability to drill this hole is then included in this menu in a manner similar to that found in the Drill Menu.
  • an orthopedic device for example a femoral nail in which exists a cross hole at a distal end
  • the Implant Orientation Menu item 3 of the Stereotaxic Menu of Table 5 and shown as Table 8 below, lists the various steps required for the measurement of skeletal features prior to the replacement in, for example, total joint arthroplasty and subsequently in the actual placement of these implants.
  • This menu is particularly generic, however, and was designed for demonstration purposes of the acetabulum of a total hip.
  • each type of implant can have its own particular protocol which can be selected from a library of surgical procedures and implant types.
  • the special attributes of revision surgery can be taken into consideration by special routines to assist in the removal of remaining bone cement amongst others.
  • the apparatus of the present application is unique with its ability to learn and grow with the field to which it is contributing.
  • body referencing is performed by the attachment of a reference jig using the DSIS attachment.
  • the skeletal points are then digitized.
  • the reference jig is redigitized. This step is performed to accommodate changes in patient body position which have occurred during the procedure. To obviate this step, a reference system could have been attached directly to the bone as illustrated in FIG. 10 herein.
  • the implant mounting takes place. Specialized implant holders are used to orient the implant. In this step, the mounting devices are oriented with respect to the electrogoniometer 7 of FIG. 1.
  • the implant can be oriented using a display on the monitor 19 as illustrated in FIG. 19. Specific orientation with respect to the original digitized skeletal shapes can be obtained by observing the tilt and displacement numbers displayed.
  • the Main Menu and sub-menus above-discussed are merely examples to illustrate the operation of the inventive apparatus. More items can be added to the Main Menu, or to the sub-menus of the Main Menu, for further surgical procedures as required. In addition, the menus can be amended to take into account changes in such surgical procedures. Accordingly, it can be seen that the apparatus of the present invention is flexible and has the ability to grow with additions and changes to surgical procedures.

Abstract

A computer-aided surgical device for aiding a surgeon in positioning a surgical instrument (power or manual) when performing surgery on unexposed and exposed portions of a patient.

Description

The present application is a divisional application of application Ser. No. 230,588 filed Aug. 10, 1988 now abandoned.
BACKGROUND OF INVENTION
1. Field of the Invention
The invention relates to a computer-aided surgery apparatus. More specifically, the invention relates to such an apparatus which aids a surgeon in accurately positioning surgical instruments for performing surgical procedures on a patient.
The invention also relates to a linkage mechanism for connecting a fixed point on a portion of interest of a patient (for example, a fixed point on a leg or arm of a patient) with a fixed point on the apparatus, and for maintaining a fixed separation between the fixed points, whereby, to maintain a fixed relationship between the portion of interest of the patient and the apparatus even when the portion of interest of the patient is being moved.
2. Description of Prior Art
Many surgical procedures, particularly in the fields of orthopedic surgery and neurosurgery, involve the careful placement and manipulation of probes, cutting tools, drills and saws amongst a variety of surgical instruments.
There are available mechanical apparatus which are used for different surgical procedures to help the surgeon guide the surgical instruments to ensure proper alignment. These alignment mechanisms must be referenced to certain anatomical landmarks and the set-up time for the various alignment jigs can represent a significant portion of the total surgical duration.
When surgical procedures are required on, for example, unexposed tumors or the like, fluroscopy is used to indicate to the surgeon the position and orientation of the surgical procedure. This has the disadvantage of exposing a patient and physician to radiation. In addition, the accuracy is less than adequate for precision requirements of the surgery.
In addition, in procedures relating to the cutting of boney parts for the purposes of joint replacement, fracture repair or deformity correction, among others, there is the problem of tool orientation such as drilling from point to point, sawing, locating planes in specific orientations with other planes of specific orientations, etc. The problems of 3-dimensional control of the surgical instruments becomes formidable. As above mentioned, some jigs exist for the performance of limited procedures permitting safe and reproducible orientation of tools. However, these have the disadvantage of being less than adaptable to variations that occur during surgical procedures. In addition, the limits of inaccuracy permissible for satisfactory results during surgery leave many of the currently accepted techniques for surgical instrument control unacceptable.
Although the field of 3-dimensional imaging as represented in the techniques of MRI (magnetic resinence imaging) and CAT scans (computer aided tomography) provide an abundance of 3-dimensional information concerning the locations of, for example, unexposed tumors, there is presently no interface between this information and the surgical processes which provide remedies. Required is an apparatus which can transpose the information of the 3-dimensional imaging systems from the reference system of the 3-dimensional imaging systems to a reference system of the apparatus.
U.S. Pat. No. 4,473,074, Vassiliadis, Sep. 25, 1984, teaches a device providing a laser beam in the performance of microsurgical procedures. The apparatus of the '074 patent does not have the facilities for providing electronic feedback of 3-dimensional information from 3-dimensional imaging systems for the purposes of presentation and feedback to the surgeon to thereby complete a feedback loop necessary to make full use of the instrument in sophisticated procedures. In addition, the device of the '074 patent can be used only to direct a laser beam at an exposed target, so that it is not applicable for surgical procedures on unexposed portions of a patient.
SUMMARY OF INVENTION
It is therefore an object of the invention to provide a computer-aided surgery apparatus which provides significant improvements over present technologies for aiding a surgeon in accurately positioning surgical instruments for performing surgical procedures on a patient such as hole drilling, bone sawing, distance measurement and site location (e.g. point to point distance, blind hole location), and stereotaxic aiming and locating.
It is a more specific object of the invention to provide such an apparatus which includes a computer driven precision instrumented linkage attached to a surgical instrument and providing the surgeon with instantaneous and continuous feedback on 3-dimensional orientation of the tool.
It is a still further object of the invention to provide such a linkage which can also be used as an independent anatomical point digitizer so that important reference landmarks can be located and subsequently used as points of reference for surgery.
It is a still further object of the invention to provide an apparatus which eliminates time-consuming set-up of jigs and other apparatus for guiding the surgical instruments and which apparatus is really an intelligent jig capable of adapting to the vageries and unexpected developments often confronted during surgery.
In accordance with the invention, there is provided a computer-aided surgical device for aiding a surgeon in positioning a surgical instrument (power or manual) when performing surgery on unexposed and exposed portions of a patient.
BRIEF DESCRIPTION OF DRAWINGS
The invention will be better understood by an examination of the following description, together with the accompanying drawings, in which:
FIG. 1 is a 3-dimensional view of the apparatus in relationship to a patient on an operating table;
FIG. 2 illustrates the rolling upright stand, the monitor and the electrogoniometer;
FIG. 3 illustrates one means for connecting surgical instruments to the electrogoniometer;
FIG. 4 is a more detailed view of the reference block;
FIGS. 5, 6, 7 and 8 illustrate how the Double Self Indexing Screw (DSIS) is attached to a bone of a patient;
FIG. 8A illustrates an alternative to the DSIS;
FIG. 9 illustrates the first link to the DSIS;
FIG. 10 illustrates the complete link between the DSIS and the reference block of the apparatus;
FIG. 11 is a cross-section through XI--XI of FIG. 9 (with the shaft removed);
FIG. 12 is a cross-section through XII--XII of FIG. 9 (with the shaft removed);
FIGS. 13 and 14 are examples of screen displays to aid in drilling procedures;
FIGS. 15 and 16 are examples of screen displays to aid in sawing procedures;
FIGS. 17 and 18 are examples of screen displays to aid in spinal curvature measurement procedures; and
FIG. 19 is a screen display to aid in an implant placement procedure.
DESCRIPTION OF PREFERRED EMBODIMENTS
Referring to FIG. 1, the apparatus in accordance with the invention, illustrated generally at 1, is disposed for operation on a patient 3 lying on an operating table 5. The apparatus includes an electrogoniometer 7 which is preferably of the type described in my U.S. Pat. No. 4,571,834. The six degree of freedom electrogoniometer is designed to provide easy access to any part of the patient in the surgical venue. Surgical instruments are connected to the free end 7a of the electrogoniometer. The other end of the electrogoniometer is connected to a reference block 9 which will be more fully discussed below.
In order to permit movement of the electrogoniometer and reference block to different positions along the patient, the reference block and electrogoniometer are connected to a swinging balanced arm 11. The other end of the balanced arm is connected to an upright post 13 of a rolling upright stand 15. The upright post 13 also supports a monitor support arm 17 which carries a monitor, preferably a colour monitor, 19.
The swinging balanced arm 11 may consist of two portions, 10 and 12, which are pivotal relative to each other, and the portion 10 is pivotal relative to the upright post 13. In a like manner, monitor support arm 17 is pivotal relative to the upright post 13 so that its position can be altered for better viewing by the surgeon.
Foot pedal switch 21 is provided for controlling the displays on the monitor 19, and remote computer 23 performs computations for providing the displays on the monitor.
Turning to FIG. 2, the rolling upright stand 15 comprises rollers 25 to roll the apparatus into different positions alongside the operating table. The electrogoniometer and the swinging balanced arm are covered by a tubular sterile barrier 27 to maintain the integrity of the sterile field around the patient. Instruments which are attached to end 7a of the electrogoniometer are sterilizable in an autoclave to further maintain the integrity of the sterile field.
One mechanism for attaching the surgical instrument to the end 7a of the electrogoniometer is illustrated in FIG. 3. As can be seen, this constitutes a V block 29 disposed within the tubular sterile barrier 27. The instrument itself includes a mating V block 31, and the protruding V of 31 is inserted into the indented V of 29. A pin, such as 32, extends through aligned openings in both 29 and 31. This type of connecting mechanism ensures that the position and orientation of the instrument relative to the electrogoniometer is fixed during the entire surgical procedure.
Turning now to FIG. 4, the reference block includes a reference backplate 33, reference top surfaces 35, reference holes 37 and a V-groove drill reference 39. The purpose of these elements of the reference block, as will be seen below, is to determine the position, orientation and length of various ones of the surgical instruments, as well as the security of the installation of the instruments.
It is also seen in FIG. 4 that the reference block is connected to swinging balanced arm 11 by a ball support 41 which includes an internal ball joint so that spherical motion of the reference block relative to the arm 11 is possible.
From a review of the above-referenced U.S. Pat. No. 4,571,834, it will be clear that the position 7a of the electrogoniometer relative to the reference block (or perhaps more accurately a point on the reference block) will constantly be calculated by the computer which receives inputs from the transducers connecting the various portions of the electrogoniometer. It will also be apparent that the dimensions of the surgical instrument, especially the location of the operating portion of the surgical instrument relative to the end 7a of the electrogoniometer, will both be known and verified by tests on the reference block as will be described below. Accordingly, the position of the operating portion of the surgical instrument will be constantly calculated by computer 23, as described in U.S. Pat. No. 4,571,834, and this position can therefore be continuously displayed on the monitor 19.
As the position and orientation of the surgical instrument is determined relative to the reference block, it is desirable to maintain a fixed separation and relationship between the portion of the patient on which operating procedures are to be performed and the reference block. As the portion on which surgical procedures are being performed may have to be moved from time to time during these surgical procedures, it is desirable that the means for maintaining the fixed relationship constitute a mechanical linkage whereby, when the portion of the patient is moved, the reference block, and therefore the electrogoniometer, will move with it. For this purpose, there is provided in accordance with an aspect of the invention, a Double Self Indexing Screw and mechanical linkage illustrated in FIGS. 5 to 12. The Double Self Indexing Screw (DSIS) is illustrated in FIGS. 7 and 8 at 42 and includes a cylindrical portion 43 and a top cap portion 44 as well as a bottom central screw 45 and bottom alignment pins 47 and 49. Screw 45 and pins 47 and 49 are in alignment with each other. The procedure for mounting the DSIS on a portion of interest of the patient is illustrated in FIGS. 5 to 8. Turning first to FIG. 5, the DSIS is to be mounted on, for example, a leg 51. The recent advent of surgical techniques employing arthroscopy in order to minimize soft tissue trauma during surgery requires that the DSIS attachment be made through an incision no greater than 20 mm. Such an incision is shown on the leg 51 with a skin flap 53 lifted to expose bone 55. A first hole 57 is drilled, by drill 59, into the bone 55. A drill guide 61, which includes holes 63 and 65 and guide pin 67, 63, 65 and 67 being in alignment, is then manipulated so that pin 67 is inserted into the hole 57. A second hole is then drilled in bone 55 through, for example, hole 65 of drill guide 61. A reference pin 69 (see FIG. 6) is then inserted into the second drilled hole through hole 65 of drill guide 61 as shown in FIG. 6. A third hole is then drilled in the bone through hole 63. As holes 63, 65 and guide pin 67 are in alignment, the drilled holes will be in alignment as shown at 73, 57 and 71 in FIG. 7.
The DSIS is then connected to the bone by inserting screw 45 into hole 57, pin 47 into hole 73 and pin 49 into hole 71. The screw 45 is screwed into hole 57 by rotation of screw handle 75 which rotates only the screw 45. With the DSIS mounted as shown in FIG. 8, the attachment is both firm and the DSIS is, because of the pins 47 and 49 being inserted in holes 73 and 71 respectively, restrained from rotary motion about its own longitudinal axis.
At times, it may be inconvenient or undersirable to drill holes 71 and 73 for the purpose of mounting the DSIS. Accordingly, an alternative means is provided to replace the DSIS. Specifically, a saw-tooth self-indexing screw is provided.
Referring to FIG. 8A, it can be seen that the alignment pins 47 and 49 have been eliminated and that the bottom end of the cylindrical portion 43 includes a saw-tooth arrangement 150. Cylindrical portion 143 is shown bent in FIG. 8A, although it could be straight as cylindrical portion 43 is shown in FIG. 8. The bent portion of 143 includes an opening 147 through which screw 145 is passed. Accordingly, when screw 45 is screwed into a hole such as 57 in FIG. 7, the saw-tooth will be embedded in the surrounding bone so that the self-indexing screw will once again be restrained from rotary motion about its longitudinal axis.
The first link from the DSIS to the reference block is illustrated in FIG. 9 and comprises a linear spherical DSIS clamp illustrated generally at 77. The DSIS clamp 77 includes a ball joint arrangement 79 and a clamping member 81.
As seen in FIG. 10, the complete link includes a plurality of clamping members 81 interconnected by shafts 85. Each clamping member includes at least one through hole 83 to receive a shaft 85. The clamping members may also include two transverse through holes 83 as shown at 81a. In addition, the clamping members may also be adapted to receive a shaft at the bottom end thereof as shown in 81b. Each clamping member 81 includes a handle 87, and shaft 85b is insertable into an opening of T member 87 mounted on reference block 9.
Referring now to FIG. 11, clamping member 81 includes a screw 89 which is rotatable by handle 87 to move the screw upwardly or downwardly in the interior of the clamping member. Movement of the screw will cause similar movement of V block 91 which is disposed in opposition to V block 93 in the interior of the clamping member 81. With the V blocks 91 and 93 as illustrated in FIG. 11, the cross-sectional shapes of the shafts 85 would be diamond shaped so that, when screw 89 is tightened, the shaft will be firmly grasped between V blocks 91 and 93. Obviously, shafts with different cross-sectional shapes could be used whereupon the shapes of blocks 91 and 93 would be appropriately altered.
Referring to FIG. 12, the ball joint arrangement 79 includes a spherical ball bearing joint having a split outer race 95. The head 44 of the DSOS 43 (see FIGS. 7 and 8) is inserted into opening 80 (see FIG. 9) of ball joint arrangement 79. The spherical ball joint permits spherical rotation of the DSOS 43 relative to the ball joint arrangement 79. When handle 87 is rotated to move screw 89 downwardly, downward pressure will also be applied against block 93 to thereby close the split O-ring 95. Accordingly, the head 44 of the DSOS 43 will be firmly grasped in ball joint arrangement 79.
With the linkage arrangement as illustrated in FIG. 10, there is therefore a fixed and firm relationship between a point on the patient's, for example, leg and the reference block 9. Any motion which is imparted to the leg will therefore also be imparted to the reference block. Thus, for example, if the surgeon should lift the leg while drilling a hole or sawing a plane on the knee, the orientation of the reference plane with respect to the bone will not be disturbed since the reference plane is freely following that bone during this minimum motion. Thus, the surgeon will be able to carry on surgical procedures in his normal customary fashion without disturbing the accuracy or verity of the apparatus.
The apparatus is menu driven and the operation of the apparatus will be described in terms of various menus which are given as examples of how the apparatus may be used.
The Main Menu, illustrated in Table 1 below, is divided into four main categories: Drilling Menu; Sawing Menu; Measurement Menu; Stereotaxic Misc. Menu.
              TABLE 1                                                     
______________________________________                                    
MAIN MENU                                                                 
______________________________________                                    
        *1  Drilling Menu                                                 
        2   Sawing Menu                                                   
        3   Measurement Menu                                              
        4   Stereotaxic Misc. Menu                                        
        5   Return to Master Menu                                         
______________________________________                                    
The menu selections are made by depressing the right pedal of the foot switch 21, depressing the left pedal to confirm. Each time the right pedal is pressed, the pointer will move down one space. When the pointer is adjacent the required menu, then the left pedal is pressed. Selection of an item, for example, the Drill Menu, will result in the presentation of the Drill Menu.
Considering now the Drill Menu, illustrated in Table 2 below, the performance of drilling operations involves four basic steps, namely, digitizing the entry/exit points, installing the drill, installing the drill bit, and drilling the hole. In steps 2 and 3, the configuration, alignment and size of the drill and drill bit are defined.
              TABLE 2                                                     
______________________________________                                    
DRILL MENU                                                                
______________________________________                                    
        *1  Digitize Entry/Exit Points                                    
        2   Install Drill                                                 
        3   Install Drill Bit                                             
        4   Drill Hole                                                    
        5   Return to Main Menu                                           
______________________________________                                    
To perform the digitization step (step 1) a digitization tip is installed at end 7a of the electrogoniometer. The digitization tip is then calibrated by inserting it into holes 37 of the reference block to verify the axis (orientation) of the digitization tip. It is noted that it is inserted into two holes so that the reproducibility is also confirmed.
The desired entry point is then digitized by placing the end of the digitizer tip at the desired entry position. The desired exit point is similarly digitized.
The end 7a of the electrogoniometer can, of course, accept a variety of different surgical instruments including different drilling instruments. A selected drilling tool is mounted at 7a. A reference pin is then mounted in the drill bit and inserted into holes 37 of the reference block 9. Once again, this verifies the axis (orientation) as well as the security of the installation of the drill mounting on the electrogoniometer. When the axis of the drill has been determined, the reference pin is replaced with the desired drill bit, and the drill bit is then placed in the groove 39 of reference block 9 with the free end of the drill bit up against backstop 33 of the reference block whereby to determine the orientation and length of the drill bit.
When item 4 of Table 2 is selected, the drilling target is displayed on monitor 19 with a penetration depth bar as illustrated in FIG. 13. In FIG. 13, the penetration depth bar is illustrated at 97. The target area is represented by the large circle 99 and the center of the target area 101 is represented by the junction of transverse diameters, or cross-hairs, 103 and 105.
The drill is identified by graphic objects 107 and 109. The square 107 represents the tip of the drill and the circle 109 represents a point behind the tip of the drill, for example, 120 mm behind the tip of the drill, along the axis of the drill. The depth bar is scaled to present the depth of penetration of the drill bit where full scale represents the distance between the entry and exit points as digitized with the procedure above.
Before drilling begins, the drill bit should be moved on the surface of the patient until the square 107 is centered over center 101. The orientation of the drill is then manipulated until the circle 109 is centered in the square 107. When square 107 is centered around center 101, and circle 109 is centered in square 107, then the drill is in the correct position and orientation to proceed from the digitized entry to the exit. This is illustrated in FIG. 14.
It is common that the surface where the entry hole must be made is at an acute angle to the desired axis of penetration. This would make it difficult to start a hole at the entry point in the correct orientation. To accommodate this, a re-referencing protocol is permitted in the drilling operation. The hole is started, at the entry point, but in an incorrect orientation, to provide a starting hole approximately 3 to 5 mm deep in a direction perpendicular to the surface at the entry point. This obviates the problem of drill slippage.
Once the starter hole has been made, the drill is simply redirected in the desired direction of the hole until the display is as illustrated in FIG. 14. Drilling is then continued until the exit point is reached. This procedure provides a simple and effective way of correcting the misalignment of a drilling process due to preliminary drill slippage.
When item 2 of the Main Menu in Table 1 is selected, the Sawing Menu will be displayed on the monitor 19. The Sawing Menu is shown below in Table 3.
              TABLE 3                                                     
______________________________________                                    
SAWING MENU                                                               
______________________________________                                    
        *1    Digitize Plane Periphery                                    
        2     Digitize Perp. to Plane                                     
        3     Install Saw and Saw Blade                                   
        4     Saw Plane                                                   
        5     Return to Main Menu                                         
______________________________________                                    
As can be seen, two forms of sawing protocol are defined in this Menu. In item 1 of the menu, a plane is defined by the selection of three points on the perimeter of the plane. In item 2, a plane is defined as being perpendicular to a predetermined axis. The sawing applications range from tibial osteotomies to pre-arthroplasty surface preparation. The multiplanar problems of osteotomies are simply and effectively handled through the concurrent tool control and numerical feedback of the apparatus of the present application.
When item 1 of the Sawing Menu is selected, prompts will be provided on the screen of the monitor 19 for the digitization of points around the perimeter of a desired cut. As in the drilling procedures, digitization of these points are preceded by the measurement of the digitizer tip in the reference holes. The system then prompts for the three points. These three points are then used to define the plane along which the saw cut is to occur.
If item 2 of the Sawing Menu is selected, prompts will be provided to the user to digitize two points defining an axis which is perpendicular to the desired plane. For example, digitizing two points along the tibial crest will result in a saw cut perpendicular to the axis of the tibia. When item 3 of the Sawing Menu is selected, prompts will appear on the screen of the monitor 19 to prompt the user to install a saw and saw blade, and to reference them on the surfaces 35 of reference block 9. As with the installation of the digitizer tip, the saw blade is referenced in two positions, namely, on each of the surfaces one at a time, in order to determine reproducibility and a secure installation.
Selection of item 4 of the Sawing Menu will result in the saw display as illustrated in FIGS. 15 and 16. The saw display represents a target similar to that of the drilling display except that the saw blade is not represented by a square and circle of the drill display but rather as a triangular plane 111 representing the flat upper surface of the saw blade. The cross hairs 113 and 115 within the circle 117 represent the desired position of the saw cut while the orientation of the saw symbol 111 must be aligned with the horizontal cross hair 115 in such a manner that only a single line is visible (as shown in FIG. 16) rather than the surface of the saw blade. This assures that the saw blade is parallel to and aligned with the desired sawing plane in the correct position for sawing.
A sawing depth bar 119 represents the depth of penetration of the saw blade from its original entry point. In one embodiment, full scale of the depth bar is 100 mm. The sawing depth bar is not scaled to a desired depth since very often this cannot be measured or is unknown.
The orientation of the saw blade with respect to the desired sawing plane is defined graphically by the triangle 111 and numerically by three numbers displayed about the target. The vertical displacement of the saw blade above or below the desired line (i.e. away from or towards the surgeon) is displayed at the top of the circle 117 while pitch is displayed below the vertical display and roll is displayed below the horizontal line 115. The symbols permit the accurate definition of a cutting plane with respect to a premeasured cutting plane. As is often the case in an osteotomy, a precise cut of a specific angle with respect to a previous cut is the difference between a success or failure. The ability to sustain a known cutting plane in three axes is imperative to the successful operation of a typical osteotomy.
To provide a second cut parallel to a first cut, the vertical position of the saw may be referenced by moving the saw blade up or down (away from or towards the surgeon) from the predetermined saw plane to a previously determined distance D as indicated on the sawing target. Under these circumstances, a second line llla, parallel to the horizontal line 115, will be displayed. Also, the numeral besides the vertical display will be changed to D. When the saw is now operated, a cut parallel to the first cut and at a distance D away from the first cut will be effected.
The Measurement Menu is selected by selecting item 3 of the Main Menu of Table 1. The Measurement Menu is shown in Table 4.
              TABLE 4                                                     
______________________________________                                    
MEASUREMENT MENU                                                          
______________________________________                                    
        *1  Point to Point Distance                                       
        2   Spinal Curvature                                              
        3   Return to Master Menu                                         
______________________________________                                    
The Measurement Menu may contain a number of generic and specific measurement applications of general use in various forms of surgery. Table 4 illustrates two such applications: Point to Point Distance and Spinal Curvature. When item 1 of the Measurement Menu is selected, the point to point distance screen will be displayed on the screen of the monitor 19. The first step in this procedure is to calibrate the digitizer tip by inserting the digitizer tip into the reference holes of the reference block 9 as above-described with respect to the drilling procedure.
When the first point is digitized, a live digital representation of the vector distance from the original reference point (of the reference block 19) to the current point (the first point) will be presented on the screen of the monitor 19. The tip can be referenced simply by pressing the left half of the foot switch 21 at which time the current position of the digitizer tip becomes the reference point. The screen will then prompt the digitization of point 2.
Selection of item 2 of the Measurement Menu will result in the prompting for the performance of a spinal curvature measurement. The measurement procedure is employed during surgical procedures relating to the correction of scoliosis curves in an effort to give a direct feedback to the surgeon as to the degree of curvature and correction which is obtained. As usual, the system will first request that the digitizer tip be mounted and calibrated. The mounting and calibration steps are followed by a scan along the spine of predetermined length as determined by the selection of the starting and finishing vertebrae using the screen illustrated in FIG. 17.
Once this procedure is complete, the frontal plane and orientation of the patient has been defined and the system will prompt the surgeon to define the vertebral levels between which the desired measurement is to occur. This is necessary since often limited exposure of the spine permits direct measurement of only a specific segment. Once the beginning and ending vertebrae are defined, this system will prompt the surgeon to proceed with a scan of the vertebra. This scan is performed by placing the digitizer tip along the line defining the centers of the vertebral bodies. The system will then present a graphics representation of a generic spine with the curvature calculated as per the digitized points shown in FIG. 18. The numeric listing represents the estimated angle of each vertebra.
Selection of item 4 of the Main Menu of Table 1 will result in the presentation of the Stereotaxic Menu. The primary application of the Stereotaxic Menu is the location and identification of unexposed parts such as hidden tumors, etc. and definition of their location with respect to a treatment instrument. The Stereotaxic Menu is illustrated in Table 5 below.
              TABLE 5                                                     
______________________________________                                    
STEREOTAXIC MENU                                                          
______________________________________                                    
         *1  Object Location Menu                                         
         2   Blind Hole Location                                          
         3   Implant Orientation                                          
         4   Return to Main Menu                                          
______________________________________                                    
Selection of item 1 of the Stereotaxic Menu will result in the presentation of the Object Location Menu shown in Table 6 below.
              TABLE 6                                                     
______________________________________                                    
OBJECT LOCATION MENU                                                      
______________________________________                                    
        *1  Read Object File                                              
        2   Global Digitization                                           
        3   Mount Probe Holder                                            
        4   Mount Probe                                                   
        5   Locate Object                                                 
        6   Create Locator Data File                                      
        7   Return to Main Menu                                           
______________________________________                                    
This menu contains the five steps needed to locate a hidden object once identified in 3-dimensions by an imaging device such as a CAT scan. The imaging data is stored in a data file which is read by selecting item 1 of the Object Location Menu.
Selection of item 1 of the Object Location Menu will result in the reading of an object file from the patient diskette of the computer 23. The object file contains information typically obtained from CAT scans or MRI scans defining the location of an unexposed part with respect to three predetermined radiopaque markers which are still on the patient.
Selection of item 2 of the Object Location Menu will prompt the user to digitize the three radiopaque landmarks in order to define the system of orientation of the component with respect to the co-ordinate system of the apparatus. The information from the object file which was read above is now converted to the new orientation with respect to the co-ordinate system of the apparatus. The user is now requested to identify an entry point through which the access to the unexposed part is to be attempted.
Selection of item 3 of the Object Location Menu will result in the user being prompted to mount a probe holder at end 7a of the electrogoniometer 7, and selection of item 4 will prompt the user to mount a probe in the probe holder. As usual, the probe will be calibrated and tested for orientation and reproducibility by insertion into holes 37 of reference block 9.
Selection of item 5 of the Object Location Menu will result in a target screen presentation on the screen of monitor 19 which is similar to the screen displayed for a drilling target as illustrated in Figure 13 herein except that the square and circle targeting symbols are of different colours. The probe would then be manipulated to align the targeting symbols with the cross hair axis of the targeting screen, for example as shown in FIG. 14, and the probe can then be inserted along the desired axis to the depth as indicated by the depth bar illustrated at 97 in FIG. 13. Once the target is reached, the treatment may be completed.
By selecting item 6 of the Object Location Menu, a locator data file may be created.
Selecting item 2 of the Stereotaxic Menu in Table 5 will result in a protocol menu for the location of blind holes as per Table 7 below.
              TABLE 7                                                     
______________________________________                                    
BLIND HOLE LOCATION                                                       
______________________________________                                    
        *1  Measure Hole                                                  
        2   Post-Proced. Hole Measure                                     
        3   Install Drill                                                 
        4   Install Drill Bit                                             
        5   Drill Hole                                                    
        6   Return to Main Menu                                           
______________________________________                                    
The location of a blind hole is performed in two steps: First, prior to the use of an orthopedic device, for example a femoral nail in which exists a cross hole at a distal end, the orientation and position of the hole is measured using a reference attachment in item 1 of the menu in Table 7. Once the surgical procedure is completed, the same reference attachment is used to redefine the hole using item 2 of the menu of Table 7. For convenience, the ability to drill this hole is then included in this menu in a manner similar to that found in the Drill Menu.
The Implant Orientation Menu, item 3 of the Stereotaxic Menu of Table 5 and shown as Table 8 below, lists the various steps required for the measurement of skeletal features prior to the replacement in, for example, total joint arthroplasty and subsequently in the actual placement of these implants. This menu is particularly generic, however, and was designed for demonstration purposes of the acetabulum of a total hip. It will of course be understood that each type of implant can have its own particular protocol which can be selected from a library of surgical procedures and implant types. For example, the special attributes of revision surgery can be taken into consideration by special routines to assist in the removal of remaining bone cement amongst others. The apparatus of the present application is unique with its ability to learn and grow with the field to which it is contributing.
              TABLE 8                                                     
______________________________________                                    
IMPLANT ORIENTATION                                                       
______________________________________                                    
*1        Body Reference                                                  
2         Post Procedure Body Reference                                   
3         Implant Mounting                                                
4         Implant Placement                                               
5         Return to Main Menu                                             
______________________________________                                    
In selecting item 1 of Table 8, body referencing is performed by the attachment of a reference jig using the DSIS attachment. The skeletal points are then digitized.
Once the surgical procedure has proceeded to the point prior to the implant placement, the reference jig is redigitized. This step is performed to accommodate changes in patient body position which have occurred during the procedure. To obviate this step, a reference system could have been attached directly to the bone as illustrated in FIG. 10 herein.
With the selection of item 3 of Table 8 the implant mounting takes place. Specialized implant holders are used to orient the implant. In this step, the mounting devices are oriented with respect to the electrogoniometer 7 of FIG. 1.
Selection of item 4 of Table 8 precedes the implant placement step. In this step, the implant can be oriented using a display on the monitor 19 as illustrated in FIG. 19. Specific orientation with respect to the original digitized skeletal shapes can be obtained by observing the tilt and displacement numbers displayed.
It is once again emphasized that the Main Menu and sub-menus above-discussed are merely examples to illustrate the operation of the inventive apparatus. More items can be added to the Main Menu, or to the sub-menus of the Main Menu, for further surgical procedures as required. In addition, the menus can be amended to take into account changes in such surgical procedures. Accordingly, it can be seen that the apparatus of the present invention is flexible and has the ability to grow with additions and changes to surgical procedures.
Although specific embodiments have been described, this was for the purpose of illustrating, but not limiting, the invention. Various modifications, which will come readily to the mind of one skilled in the art, are within the scope of the invention as defined in the appended claims.

Claims (10)

I claim:
1. A method for aiding a medical practitioner in positioning and orienting a surgical instrument or implant, which surgical instrument or implant is manipulated by said medical practitioner while performing medical procedures on a portion of a patient, the position and orientation of said instrument or implant being determined in a three-dimensional co-ordinate system relative to a reference point and the position and orientation of said portion being determined in said three-dimensional co-ordinate system relative to said reference point, said reference point being disposed outside of and apart from said patient:
comprising:
continuously electronically sensing, or determining by 2- or 3-dimensional imaging techniques, the position and orientation of said portion in said three-dimensional co-ordinate system to obtain three-dimensional target data of the position and orientation of said portion in said three-dimensional co-ordinate system relative to said reference point;
converting said target to target signals for presenting the position and orientation of said portion on a display means;
providing said target signals to a display device whereby a target display of the position and orientation of said portion is presented on said display device;
continuously electronically sensing the position and orientation of said surgical instrument or implant in said three-dimensional co-ordinate system to obtain three-dimensional instrument data of the position and orientation of said instrument or implement in said three-dimensional co-ordinate system relative to said reference point;
means for converting said instrument data to instrument signals for presenting the position and orientation of said instrument or implant on said display means;
providing said instrument signals to said display device whereby an instrument display of the position and orientation of said instrument or implant is presented on said display device;
wherein, as the instrument or implant is manipulated by said medical practitioner, said instrument data changes in accordance with changes in the position and orientation of said instrument, and said instrument display changes in accordance with the changes in said instrument data;
whereby, the position and orientation of said instrument or implant, relative to said portion, is dynamically displayed on said display device;
and further including the step of providing a known physical relationship between said portion on said patient and said reference point;
and still further including displaying a main menu on said display means, said main menu including a plurality of sub-menus;
selecting a sub-menu of interest, said sub-menu including a plurality of instruction steps; and
performing the steps as presented on the sub-menu.
2. A method as defined in claim 1 for performing a drilling operation, said surgical instrument comprising a drill, said sub-menu comprising a Drill Menu, said method comprising:
digitizing entry and exit points;
installing drill bit in said drill; and
drilling a hole from said entry to said exit points.
3. A method as defined in claim 1, for performing a sawing operation, said sub-menu comprising a Sawing Menu, said method comprising:
digitizing a plane periphery;
digitizing a perpendicular to said plane;
installing the saw and saw blade on said manipulating means;
sawing through said plane.
4. A method as defined in claim 1, for performing a measurement operation, said sub-menu comprising a Measurement Menu, said method comprising selecting a sub-sub-menu of said Measurement Menu.
5. A method as defined in claim 4 for performing the operation of measuring the distance from a first point to a second point, said sub-menu comprising a Point-to-Point Distance Menu, said method comprising:
digitizing one of said points;
digitizing the other one of said points; and
calculating said distance.
6. A method as defined in claim 4 for performing a spinal curvature measurement operation, said sub-sub-menu comprising a Spinal Curvature Menu, said method comprising:
displaying the starting and finishing vertebrae of the patient's spine on said display means and performing a scan along the patient's spine of predetermined length as determined by the selection of the starting and finishing vertebrae on said display means;
presenting graphics on the screen of a generic spine with the curvature calculated as per the digitized points.
7. A method as defined in claim 1 for performing a stereotaxic operation, said sub-menu comprising a Stereotaxic Menu, said method comprising selecting a sub-sub-menu of said Stereotaxic Menu.
8. A method as defined in claim 7 for performing an object location operation, said sub-sub-menu comprising an Object Location Menu, said method comprising:
providing data concerning said object as provided in 3-dimension by an imaging device such as a CAT scan;
providing three radiopaque landmarks on said patient, said data being related to said landmarks;
converting said data to the associated three-dimensional co-ordinate system of said device;
mounting a probe on said manipulating means;
disposing said probe at said object;
creating a locator file with the data provided when said probe is at said object.
9. A method as defined in claim 7 for performing a blind hole location operation, said sub-sub-menu comprising a Blind Hole Location Menu, said method comprising:
prior to the use of an orthopedic device, the orientation and position of the blind hole is measured; and
once the surgical procedure is completed, the blind hole is redefined.
10. A method as defined in claim 7 for performing an implant orientation operation, said sub-sub-menu comprising an Implant Orientation Menu, said method comprising:
attaching a reference jig to said patient and digitizing the skeletal points of said patient;
after a surgical procedure has proceeded, redigitizing said reference jig;
mounting said implant on specialized implant holders attached to said manipulating means; and
placing said implant using a display on said display means.
US07/593,469 1988-02-01 1990-10-02 Computer-aided surgery apparatus Expired - Lifetime US5305203A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US07/593,469 US5305203A (en) 1988-02-01 1990-10-02 Computer-aided surgery apparatus
US08/104,199 US5748767A (en) 1988-02-01 1993-08-10 Computer-aided surgery apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CA000557814A CA1336451C (en) 1988-02-01 1988-02-01 Computer-aided surgery apparatus
CA557814 1988-02-01
US23058888A 1988-08-10 1988-08-10
US07/593,469 US5305203A (en) 1988-02-01 1990-10-02 Computer-aided surgery apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US23058888A Division 1988-02-01 1988-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/104,199 Continuation US5748767A (en) 1988-02-01 1993-08-10 Computer-aided surgery apparatus

Publications (1)

Publication Number Publication Date
US5305203A true US5305203A (en) 1994-04-19

Family

ID=25671688

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/593,469 Expired - Lifetime US5305203A (en) 1988-02-01 1990-10-02 Computer-aided surgery apparatus

Country Status (3)

Country Link
US (1) US5305203A (en)
EP (1) EP0326768A3 (en)
JP (1) JP2930314B2 (en)

Cited By (341)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412880A (en) * 1993-02-23 1995-05-09 Faro Technologies Inc. Method of constructing a 3-dimensional map of a measurable quantity using three dimensional coordinate measuring apparatus
US5495410A (en) * 1994-08-12 1996-02-27 Minnesota Mining And Manufacturing Company Lead-through robot programming system
US5510977A (en) * 1994-08-02 1996-04-23 Faro Technologies Inc. Method and apparatus for measuring features of a part or item
US5631973A (en) * 1994-05-05 1997-05-20 Sri International Method for telemanipulation with telepresence
US5630431A (en) * 1991-06-13 1997-05-20 International Business Machines Corporation System and method for augmentation of surgery
US5638819A (en) * 1995-08-29 1997-06-17 Manwaring; Kim H. Method and apparatus for guiding an instrument to a target
US5657429A (en) * 1992-08-10 1997-08-12 Computer Motion, Inc. Automated endoscope system optimal positioning
US5682886A (en) * 1995-12-26 1997-11-04 Musculographics Inc Computer-assisted surgical system
USD387427S (en) * 1996-02-12 1997-12-09 Surgical Navigation Technologies, Inc. Ventriculostomy probe
US5697939A (en) * 1992-08-20 1997-12-16 Olympus Optical Co., Ltd. Apparatus for holding a medical instrument in place
US5754741A (en) * 1992-08-10 1998-05-19 Computer Motion, Inc. Automated endoscope for optimal positioning
WO1998031280A1 (en) * 1997-01-21 1998-07-23 Computer Aided Surgery, Inc. Surgical navigation system and method using audio feedback
US5794621A (en) * 1995-11-03 1998-08-18 Massachusetts Institute Of Technology System and method for medical imaging utilizing a robotic device, and robotic device for use in medical imaging
WO1998035625A1 (en) * 1997-02-18 1998-08-20 Jonathan Yi Yao Robotic simulation, planning and marking platform
US5814038A (en) * 1995-06-07 1998-09-29 Sri International Surgical manipulator for a telerobotic system
US5824007A (en) * 1996-12-03 1998-10-20 Simon Fraser University Adjustable surgical stand
EP0880007A2 (en) 1997-05-19 1998-11-25 Faro Technologies Inc. Fixation of the measuring arm for a coordinate measuring machine
US5848967A (en) * 1991-01-28 1998-12-15 Cosman; Eric R. Optically coupled frameless stereotactic system and method
US5851183A (en) 1990-10-19 1998-12-22 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US5871445A (en) 1993-04-26 1999-02-16 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US5880976A (en) * 1997-02-21 1999-03-09 Carnegie Mellon University Apparatus and method for facilitating the implantation of artificial components in joints
US5926782A (en) * 1996-11-12 1999-07-20 Faro Technologies Inc Convertible three dimensional coordinate measuring machine
DE19802341C1 (en) * 1998-01-22 1999-08-12 Siemens Ag Medical system
US6006126A (en) 1991-01-28 1999-12-21 Cosman; Eric R. System and method for stereotactic registration of image scan data
US6006750A (en) * 1996-04-30 1999-12-28 Medtronic, Inc. Position sensing system and method for using the same
US6007550A (en) * 1996-02-20 1999-12-28 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US6021343A (en) * 1997-11-20 2000-02-01 Surgical Navigation Technologies Image guided awl/tap/screwdriver
USD420132S (en) * 1997-11-03 2000-02-01 Surgical Navigation Technologies Drill guide
USD422706S (en) * 1997-04-30 2000-04-11 Surgical Navigation Technologies Biopsy guide tube
WO2000047103A2 (en) 1999-02-10 2000-08-17 Surgical Insights, Inc. Computer assisted targeting device for use in orthopaedic surgery
US6118845A (en) * 1998-06-29 2000-09-12 Surgical Navigation Technologies, Inc. System and methods for the reduction and elimination of image artifacts in the calibration of X-ray imagers
US6132368A (en) * 1996-12-12 2000-10-17 Intuitive Surgical, Inc. Multi-component telepresence system and method
US6146390A (en) 1992-04-21 2000-11-14 Sofamor Danek Holdings, Inc. Apparatus and method for photogrammetric surgical localization
US6167295A (en) 1991-01-28 2000-12-26 Radionics, Inc. Optical and computer graphic stereotactic localizer
US6167145A (en) 1996-03-29 2000-12-26 Surgical Navigation Technologies, Inc. Bone navigation system
US6205411B1 (en) 1997-02-21 2001-03-20 Carnegie Mellon University Computer-assisted surgery planner and intra-operative guidance system
US6226418B1 (en) 1997-11-07 2001-05-01 Washington University Rapid convolution based large deformation image matching via landmark and volume imagery
US6226548B1 (en) 1997-09-24 2001-05-01 Surgical Navigation Technologies, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US6235038B1 (en) 1999-10-28 2001-05-22 Medtronic Surgical Navigation Technologies System for translation of electromagnetic and optical localization systems
US6236875B1 (en) 1994-10-07 2001-05-22 Surgical Navigation Technologies Surgical navigation systems including reference and localization frames
US6267769B1 (en) 1997-05-15 2001-07-31 Regents Of The Universitiy Of Minnesota Trajectory guide method and apparatus for use in magnetic resonance and computerized tomographic scanners
US6282437B1 (en) 1998-08-12 2001-08-28 Neutar, Llc Body-mounted sensing system for stereotactic surgery
US6298262B1 (en) 1998-04-21 2001-10-02 Neutar, Llc Instrument guidance for stereotactic surgery
US6298259B1 (en) 1998-10-16 2001-10-02 Univ Minnesota Combined magnetic resonance imaging and magnetic stereotaxis surgical apparatus and processes
US6296613B1 (en) 1997-08-22 2001-10-02 Synthes (U.S.A.) 3D ultrasound recording device
US6309403B1 (en) 1998-06-01 2001-10-30 Board Of Trustees Operating Michigan State University Dexterous articulated linkage for surgical applications
US6331181B1 (en) 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US20010053879A1 (en) * 2000-04-07 2001-12-20 Mills Gerald W. Robotic trajectory guide
US6340363B1 (en) 1998-10-09 2002-01-22 Surgical Navigation Technologies, Inc. Image guided vertebral distractor and method for tracking the position of vertebrae
US6347240B1 (en) 1990-10-19 2002-02-12 St. Louis University System and method for use in displaying images of a body part
US6348058B1 (en) 1997-12-12 2002-02-19 Surgical Navigation Technologies, Inc. Image guided spinal surgery guide, system, and method for use thereof
US6351659B1 (en) 1995-09-28 2002-02-26 Brainlab Med. Computersysteme Gmbh Neuro-navigation system
US6351662B1 (en) 1998-08-12 2002-02-26 Neutar L.L.C. Movable arm locator for stereotactic surgery
US6355049B1 (en) 1987-12-02 2002-03-12 Sherwood Services Ag Head fixation apparatus
US6366831B1 (en) 1993-02-23 2002-04-02 Faro Technologies Inc. Coordinate measurement machine with articulated arm and software interface
US20020045905A1 (en) * 1998-12-08 2002-04-18 Gerbi Craig Richard Tool guide and method for introducing an end effector to a surgical site in minimally invasive surgery
US6379302B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies Inc. Navigation information overlay onto ultrasound imagery
US6381485B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies, Inc. Registration of human anatomy integrated for electromagnetic localization
US6402737B1 (en) * 1998-03-19 2002-06-11 Hitachi, Ltd. Surgical apparatus
US6405072B1 (en) 1991-01-28 2002-06-11 Sherwood Services Ag Apparatus and method for determining a location of an anatomical target with reference to a medical apparatus
US6408107B1 (en) 1996-07-10 2002-06-18 Michael I. Miller Rapid convolution based large deformation image matching via landmark and volume imagery
US6409686B1 (en) 1994-01-24 2002-06-25 Sherwood Services Ag Virtual probe for a stereotactic digitizer for use in surgery
US20020082612A1 (en) * 1998-11-20 2002-06-27 Intuitive Surgical, Inc. Arm cart for telerobotic surgical system
US6434507B1 (en) 1997-09-05 2002-08-13 Surgical Navigation Technologies, Inc. Medical instrument and method for use with computer-assisted image guided surgery
WO2002062248A1 (en) 2001-02-06 2002-08-15 Cedara Software Corp. Computer-assisted surgical positioning method and system
US20020109705A1 (en) * 1999-05-03 2002-08-15 Robert Hofstetter System and method for preparing an image corrected for the presence of a gravity induced distortion
US6436107B1 (en) 1996-02-20 2002-08-20 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US6463361B1 (en) 1994-09-22 2002-10-08 Computer Motion, Inc. Speech interface for an automated endoscopic system
US6470207B1 (en) 1999-03-23 2002-10-22 Surgical Navigation Technologies, Inc. Navigational guidance via computer-assisted fluoroscopic imaging
US20020156372A1 (en) * 2000-04-07 2002-10-24 Image-Guided Neurologics, Inc. Deep organ access device and method
US6477400B1 (en) 1998-08-20 2002-11-05 Sofamor Danek Holdings, Inc. Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US6474341B1 (en) 1999-10-28 2002-11-05 Surgical Navigation Technologies, Inc. Surgical communication and power system
US6482182B1 (en) 1998-09-03 2002-11-19 Surgical Navigation Technologies, Inc. Anchoring system for a brain lead
US20020183610A1 (en) * 1994-10-07 2002-12-05 Saint Louis University And Surgical Navigation Technologies, Inc. Bone navigation system
US6491699B1 (en) 1999-04-20 2002-12-10 Surgical Navigation Technologies, Inc. Instrument guidance method and system for image guided surgery
US20020191814A1 (en) * 2001-06-14 2002-12-19 Ellis Randy E. Apparatuses and methods for surgical navigation
US6499488B1 (en) 1999-10-28 2002-12-31 Winchester Development Associates Surgical sensor
US6529765B1 (en) 1998-04-21 2003-03-04 Neutar L.L.C. Instrumented and actuated guidance fixture for sterotactic surgery
FR2829016A1 (en) * 2001-09-03 2003-03-07 Bertin Virgile Claude Nahum SURGICAL DEVICE FOR GUIDING MILLING, DRILLING, BORING OR CUTTING BONE TISSUE INSTRUMENTS
US6535756B1 (en) 2000-04-07 2003-03-18 Surgical Navigation Technologies, Inc. Trajectory storage apparatus and method for surgical navigation system
US6540656B2 (en) 2000-05-18 2003-04-01 Integrated Implant Systems Llc Targeting fixture for a grid template
US6546277B1 (en) 1998-04-21 2003-04-08 Neutar L.L.C. Instrument guidance system for spinal and other surgery
US20030069591A1 (en) * 2001-02-27 2003-04-10 Carson Christopher Patrick Computer assisted knee arthroplasty instrumentation, systems, and processes
US6551275B2 (en) 2000-05-18 2003-04-22 Integrated Implant Systems, Llc Grid sheath for medical instrument
US6585651B2 (en) 1999-04-20 2003-07-01 Synthes Ag Chur Method and device for percutaneous determination of points associated with the surface of an organ
US6589157B2 (en) * 2000-05-18 2003-07-08 Integrated Implant Systems, L.L.C. Drive mechanism for medical instrument
US6592508B1 (en) 1995-12-18 2003-07-15 Integrated Implant Systems, Llc Fiberoptic-guided interstitial seed manual applicator and seed cartridge
US6599232B2 (en) 2000-05-18 2003-07-29 Integrated Implant Systems, Llc Needle spin for medical instrument
US20030158463A1 (en) * 1999-11-09 2003-08-21 Intuitive Surgical, Inc. Endoscopic beating-heart stabilizer and vessel occlusion fastener
US20030163038A1 (en) * 2002-02-28 2003-08-28 Simon David A. Method and apparatus for perspective inversion
US6616594B2 (en) 2000-05-18 2003-09-09 Integrated Implant Systems, L.L.C. Cartridge-moveable shield
US20030181918A1 (en) * 2002-02-11 2003-09-25 Crista Smothers Image-guided fracture reduction
US6629960B2 (en) 2000-05-18 2003-10-07 Integrated Implant Systems, Ll.C. Needle hub for medical instrument
US20030191455A1 (en) * 2001-05-01 2003-10-09 Dan Sanchez Pivot point arm for a robotic system used to perform a surgical procedure
US20030191394A1 (en) * 2002-04-04 2003-10-09 Simon David A. Method and apparatus for virtual digital subtraction angiography
US6633686B1 (en) 1998-11-05 2003-10-14 Washington University Method and apparatus for image registration using large deformation diffeomorphisms on a sphere
US20030195663A1 (en) * 2001-09-07 2003-10-16 Yulun Wang Modularity system for computer assisted surgery
US6646541B1 (en) 1996-06-24 2003-11-11 Computer Motion, Inc. General purpose distributed operating room control system
US20030220698A1 (en) * 2000-04-26 2003-11-27 Dana Mears Method and apparatus for performing a minimally invasive total hip arthroplasty
US6665554B1 (en) 1998-11-18 2003-12-16 Steve T. Charles Medical manipulator for use with an imaging device
US6675040B1 (en) 1991-01-28 2004-01-06 Sherwood Services Ag Optical object tracking system
US6676706B1 (en) 2000-04-26 2004-01-13 Zimmer Technology, Inc. Method and apparatus for performing a minimally invasive total hip arthroplasty
US6676669B2 (en) 2001-01-16 2004-01-13 Microdexterity Systems, Inc. Surgical manipulator
US6684129B2 (en) 1997-09-19 2004-01-27 Intuitive Surgical, Inc. Master having redundant degrees of freedom
US20040019265A1 (en) * 2002-07-29 2004-01-29 Mazzocchi Rudy A. Fiducial marker devices, tools, and methods
US20040024385A1 (en) * 1999-11-12 2004-02-05 Microdexterity Systems, Inc. Manipulator
US20040030236A1 (en) * 2002-07-29 2004-02-12 Mazzocchi Rudy A. Fiducial marker devices, tools, and methods
US20040030237A1 (en) * 2002-07-29 2004-02-12 Lee David M. Fiducial marker devices and methods
US6694168B2 (en) 1998-06-22 2004-02-17 Synthes (U.S.A.) Fiducial matching using fiducial implants
US6699177B1 (en) 1996-02-20 2004-03-02 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US20040054355A1 (en) * 2001-05-31 2004-03-18 Intuitive Surgical, Inc. Tool guide and method for introducing an end effector to a surgical site in minimally invasive surgery
US6714841B1 (en) 1995-09-15 2004-03-30 Computer Motion, Inc. Head cursor control interface for an automated endoscope system for optimal positioning
US6723106B1 (en) 1998-11-23 2004-04-20 Microdexterity Systems, Inc. Surgical manipulator
US6725080B2 (en) 2000-03-01 2004-04-20 Surgical Navigation Technologies, Inc. Multiple cannula image guided tool for image guided procedures
US6725082B2 (en) 1999-03-17 2004-04-20 Synthes U.S.A. System and method for ligament graft placement
US20040076259A1 (en) * 2000-08-26 2004-04-22 Jensen Vernon Thomas Integrated fluoroscopic surgical navigation and workstation with command protocol
US6726699B1 (en) 2000-08-15 2004-04-27 Computer Motion, Inc. Instrument guide
US20040116803A1 (en) * 2001-06-04 2004-06-17 Bradley Jascob Method and apparatus for electromagnetic navigation of a surgical probe near a metal object
US6752812B1 (en) 1997-05-15 2004-06-22 Regent Of The University Of Minnesota Remote actuation of trajectory guide
US20040122305A1 (en) * 2002-12-20 2004-06-24 Grimm James E. Surgical instrument and method of positioning same
US20040122446A1 (en) * 2002-12-20 2004-06-24 Solar Matthew S. Organ access device and method
US20040124964A1 (en) * 1996-08-06 2004-07-01 Computer Motion, Inc. General purpose distributed operating room control system
US6764445B2 (en) 1998-11-20 2004-07-20 Intuitive Surgical, Inc. Stabilizer for robotic beating-heart surgery
US20040152970A1 (en) * 2003-01-30 2004-08-05 Mark Hunter Six degree of freedom alignment display for medical procedures
US20040152955A1 (en) * 2003-02-04 2004-08-05 Mcginley Shawn E. Guidance system for rotary surgical instrument
US6782288B2 (en) 1998-10-08 2004-08-24 Regents Of The University Of Minnesota Method and apparatus for positioning a device in a body
US20040167654A1 (en) * 2003-02-04 2004-08-26 Zimmer Technology, Inc. Implant registration device for surgical navigation system
US20040167542A1 (en) * 2003-02-20 2004-08-26 Solar Matthew S. Target depth locators for trajectory guide for introducing an instrument
US20040167391A1 (en) * 2003-02-25 2004-08-26 Solar Matthew S. Fiducial marker devices, tools, and methods
US20040167543A1 (en) * 2003-02-20 2004-08-26 Mazzocchi Rudy A. Trajectory guide with angled or patterned lumens or height adjustment
US6783524B2 (en) 2001-04-19 2004-08-31 Intuitive Surgical, Inc. Robotic surgical tool with ultrasound cauterizing and cutting instrument
US20040171930A1 (en) * 2003-02-04 2004-09-02 Zimmer Technology, Inc. Guidance system for rotary surgical instrument
US20040172044A1 (en) * 2002-12-20 2004-09-02 Grimm James E. Surgical instrument and method of positioning same
US6786896B1 (en) 1997-09-19 2004-09-07 Massachusetts Institute Of Technology Robotic apparatus
US6793653B2 (en) 2001-12-08 2004-09-21 Computer Motion, Inc. Multifunctional handle for a medical robotic system
US20040236352A1 (en) * 1997-09-22 2004-11-25 Yulun Wang Method and apparatus for performing minimally invasive cardiac procedures
US20040260301A1 (en) * 2003-06-19 2004-12-23 David Lionberger Cutting guide apparatus and surgical method for use in knee arthroplasty
US20040267284A1 (en) * 2000-08-17 2004-12-30 Image-Guided Neurologics, Inc. Trajectory guide with instrument immobilizer
US20040267242A1 (en) * 2003-06-24 2004-12-30 Grimm James E. Detachable support arm for surgical navigation system reference array
US6839612B2 (en) 2001-12-07 2005-01-04 Institute Surgical, Inc. Microwrist system for surgical procedures
US6840938B1 (en) 2000-12-29 2005-01-11 Intuitive Surgical, Inc. Bipolar cauterizing instrument
US6847336B1 (en) 1996-10-02 2005-01-25 Jerome H. Lemelson Selectively controllable heads-up display system
US20050021037A1 (en) * 2003-05-29 2005-01-27 Mccombs Daniel L. Image-guided navigated precision reamers
US6852107B2 (en) 2002-01-16 2005-02-08 Computer Motion, Inc. Minimally invasive surgical training using robotics and tele-collaboration
US6858003B2 (en) 1998-11-20 2005-02-22 Intuitive Surgical, Inc. Performing cardiac surgery without cardioplegia
US20050043810A1 (en) * 2000-04-26 2005-02-24 Dana Mears Method and apparatus for performing a minimally invasive total hip arthroplasty
US20050043717A1 (en) * 1999-10-01 2005-02-24 Computer Motion, Inc. Heart stabilizer
US6860877B1 (en) 2000-09-29 2005-03-01 Computer Motion, Inc. Heart stabilizer support arm
US20050049486A1 (en) * 2003-08-28 2005-03-03 Urquhart Steven J. Method and apparatus for performing stereotactic surgery
US20050065658A1 (en) * 1992-01-21 2005-03-24 Sri International Flexible robotic surgery system and method
US20050080335A1 (en) * 2003-09-24 2005-04-14 Stryker Trauma Gmbh Locking nail and stereotaxic apparatus therefor
US20050124988A1 (en) * 2003-10-06 2005-06-09 Lauralan Terrill-Grisoni Modular navigated portal
US6905491B1 (en) 1996-02-20 2005-06-14 Intuitive Surgical, Inc. Apparatus for performing minimally invasive cardiac procedures with a robotic arm that has a passive joint and system which can decouple the robotic arm from the input device
US20050131426A1 (en) * 2003-12-10 2005-06-16 Moctezuma De La Barrera Jose L. Adapter for surgical navigation trackers
US20050143746A1 (en) * 2003-12-26 2005-06-30 Steffensmeier Scott J. Adjustable resection guide
US20050149041A1 (en) * 2003-11-14 2005-07-07 Mcginley Brian J. Adjustable surgical cutting systems
US20050154288A1 (en) * 1996-06-24 2005-07-14 Computer Motion, Inc. Method and apparatus for accessing medical data over a network
US6925339B2 (en) 2003-02-04 2005-08-02 Zimmer Technology, Inc. Implant registration device for surgical navigation system
US20050182319A1 (en) * 2004-02-17 2005-08-18 Glossop Neil D. Method and apparatus for registration, verification, and referencing of internal organs
US20050192594A1 (en) * 2002-09-17 2005-09-01 Skakoon James G. Low profile instrument immobilizer
US20050209605A1 (en) * 2002-12-20 2005-09-22 Grimm James E Navigated orthopaedic guide and method
US20050209598A1 (en) * 2004-03-08 2005-09-22 Grimm James E Navigated orthopaedic guide and method
US6951535B2 (en) 2002-01-16 2005-10-04 Intuitive Surgical, Inc. Tele-medicine system that transmits an entire state of a subsystem
US20050242919A1 (en) * 1996-08-06 2005-11-03 Intuitive Surgical, Inc. General purpose distributed operating room control system
US20050251110A1 (en) * 2004-05-04 2005-11-10 Intuitive Surgical, Inc. Tool grip calibration for robotic surgery
US20050288575A1 (en) * 2003-12-10 2005-12-29 De La Barrera Jose Luis M Surgical navigation tracker, system and method
US7029477B2 (en) 2002-12-20 2006-04-18 Zimmer Technology, Inc. Surgical instrument and positioning method
US20060122618A1 (en) * 2004-03-08 2006-06-08 Zimmer Technology, Inc. Navigated cut guide locator
US20060122629A1 (en) * 2004-12-04 2006-06-08 Skakoon James G Multiple instrument retaining assembly and methods therefor
US20060122497A1 (en) * 2004-11-12 2006-06-08 Glossop Neil D Device and method for ensuring the accuracy of a tracking device in a volume
US20060122627A1 (en) * 2004-12-04 2006-06-08 Miller Thomas I Multi-lumen instrument guide
EP1667574A2 (en) * 2003-02-04 2006-06-14 Z-Kat, Inc. System and method for providing computer assistance with spinal fixation procedures
US7074179B2 (en) 1992-08-10 2006-07-11 Intuitive Surgical Inc Method and apparatus for performing minimally invasive cardiac procedures
US20060173269A1 (en) * 2004-11-12 2006-08-03 Glossop Neil D Integrated skin-mounted multifunction device for use in image-guided surgery
US20060173291A1 (en) * 2005-01-18 2006-08-03 Glossop Neil D Electromagnetically tracked K-wire device
US20060178559A1 (en) * 1998-11-20 2006-08-10 Intuitive Surgical Inc. Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures
US20060184016A1 (en) * 2005-01-18 2006-08-17 Glossop Neil D Method and apparatus for guiding an instrument to a target in the lung
US20060179979A1 (en) * 2005-02-01 2006-08-17 Dees Roger R Jr Lockable orientation stylus
US20060200025A1 (en) * 2004-12-02 2006-09-07 Scott Elliott Systems, methods, and apparatus for automatic software flow using instrument detection during computer-aided surgery
US20060241404A1 (en) * 2005-02-04 2006-10-26 De La Barrera Jose Luis M Enhanced shape characterization device and method
US20060247647A1 (en) * 2002-11-27 2006-11-02 Zimmer Technology, Inc. Method and apparatus for achieving correct limb alignment in unicondylar knee arthroplasty
US20060262631A1 (en) * 2004-11-12 2006-11-23 Samsung Electronics Co., Ltd. Bank selection signal control circuit for use in semiconductor memory device, and bank selection control method
US20060290813A1 (en) * 2005-06-28 2006-12-28 Fujitsu Component Limited Remote console unit and remote display apparatus
US20070005045A1 (en) * 2005-06-30 2007-01-04 Intuitive Surgical Inc. Indicator for tool state and communication in multi-arm robotic telesurgery
US7166114B2 (en) 2002-09-18 2007-01-23 Stryker Leibinger Gmbh & Co Kg Method and system for calibrating a surgical tool and adapter thereof
US20070055128A1 (en) * 2005-08-24 2007-03-08 Glossop Neil D System, method and devices for navigated flexible endoscopy
US20070100325A1 (en) * 2005-11-03 2007-05-03 Sebastien Jutras Multifaceted tracker device for computer-assisted surgery
US20070096863A1 (en) * 2005-10-31 2007-05-03 Benito Valencia Avila System for protecting circuitry in high-temperature environments
US20070149977A1 (en) * 2005-11-28 2007-06-28 Zimmer Technology, Inc. Surgical component positioner
US20070156157A1 (en) * 2004-06-15 2007-07-05 Zimmer Gmbh Imageless robotized device and method for surgical tool guidance
US20070167787A1 (en) * 2005-06-21 2007-07-19 Glossop Neil D Device and method for a trackable ultrasound
US20070173849A1 (en) * 2006-01-09 2007-07-26 Zimmer Technology, Inc. Adjustable surgical support base with integral hinge
US20070173850A1 (en) * 2006-01-10 2007-07-26 Zimmer Technology, Inc. Bone resection guide and method
US20070173854A1 (en) * 2006-01-23 2007-07-26 Berger Richard A Bone resection apparatus and method for knee surgery
US20070239153A1 (en) * 2006-02-22 2007-10-11 Hodorek Robert A Computer assisted surgery system using alternative energy technology
US20070239203A1 (en) * 2002-12-06 2007-10-11 Intuitive Surgical, Inc. Flexible wrist for surgical tool
US20070250078A1 (en) * 2001-01-16 2007-10-25 Microdexterity Systems, Inc. Surgical manipulator
US20080033293A1 (en) * 2006-05-08 2008-02-07 C. R. Bard, Inc. User interface and methods for sonographic display device
US20080071215A1 (en) * 2004-11-05 2008-03-20 Traxtal Technologies Inc. Access System
US20080147072A1 (en) * 2006-12-18 2008-06-19 Ilwhan Park Arthroplasty devices and related methods
US7445594B1 (en) 1995-09-20 2008-11-04 Medtronic, Inc. Method and apparatus for temporarily immobilizing a local area of tissue
US7458977B2 (en) 2003-02-04 2008-12-02 Zimmer Technology, Inc. Surgical navigation instrument useful in marking anatomical structures
US7477926B2 (en) 2004-03-31 2009-01-13 Smith & Nephew, Inc. Methods and apparatuses for providing a reference array input device
US20090043556A1 (en) * 2007-08-07 2009-02-12 Axelson Stuart L Method of and system for planning a surgery
US20090110498A1 (en) * 2007-10-25 2009-04-30 Ilwhan Park Arthroplasty systems and devices, and related methods
US20090131941A1 (en) * 2002-05-15 2009-05-21 Ilwhan Park Total joint arthroplasty system
US20090138020A1 (en) * 2007-11-27 2009-05-28 Otismed Corporation Generating mri images usable for the creation of 3d bone models employed to make customized arthroplasty jigs
USRE40852E1 (en) 1995-06-14 2009-07-14 Medtronic Navigation, Inc. Method and system for navigating a catheter probe
US20100010506A1 (en) * 2004-01-16 2010-01-14 Murphy Stephen B Method of Computer-Assisted Ligament Balancing and Component Placement in Total Knee Arthroplasty
US20100023015A1 (en) * 2008-07-23 2010-01-28 Otismed Corporation System and method for manufacturing arthroplasty jigs having improved mating accuracy
WO2010031111A1 (en) 2008-09-17 2010-03-25 Robert Lye A surgical orientation system and associated method
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US20100095542A1 (en) * 2008-10-16 2010-04-22 Romer, Inc. Articulating measuring arm with laser scanner
US7751865B2 (en) 2003-10-17 2010-07-06 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7753913B2 (en) 2002-10-03 2010-07-13 Virginia Polytechnic Institute And State University Magnetic targeting device
US7764985B2 (en) 2003-10-20 2010-07-27 Smith & Nephew, Inc. Surgical navigation system component fault interfaces and related processes
US7794387B2 (en) 2006-04-26 2010-09-14 Medtronic, Inc. Methods and devices for stabilizing tissue
US7797032B2 (en) 1999-10-28 2010-09-14 Medtronic Navigation, Inc. Method and system for navigating a catheter probe in the presence of field-influencing objects
US20100234857A1 (en) * 1998-11-20 2010-09-16 Intuitve Surgical Operations, Inc. Medical robotic system with operatively couplable simulator unit for surgeon training
US20100234850A1 (en) * 2005-02-01 2010-09-16 Smith And Nephew, Inc. Lockable Orientation Instrument Assembly
US7799084B2 (en) 2002-10-23 2010-09-21 Mako Surgical Corp. Modular femoral component for a total knee joint replacement for minimally invasive implantation
US20100249782A1 (en) * 2002-10-03 2010-09-30 Durham Alfred A Intramedullary nail targeting device
US20100261998A1 (en) * 2007-11-19 2010-10-14 Stiehl James B Hip implant registration in computer assisted surgery
US20100275718A1 (en) * 2009-04-29 2010-11-04 Microdexterity Systems, Inc. Manipulator
US7831082B2 (en) 2000-06-14 2010-11-09 Medtronic Navigation, Inc. System and method for image based sensor calibration
US7835778B2 (en) 2003-10-16 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US7835784B2 (en) 2005-09-21 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for positioning a reference frame
US7840253B2 (en) 2003-10-17 2010-11-23 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7850456B2 (en) 2003-07-15 2010-12-14 Simbionix Ltd. Surgical simulation device, system and method
US7862570B2 (en) 2003-10-03 2011-01-04 Smith & Nephew, Inc. Surgical positioners
US7898353B2 (en) 2009-05-15 2011-03-01 Freescale Semiconductor, Inc. Clock conditioning circuit
US20110088500A1 (en) * 2007-02-23 2011-04-21 Microdexterity Systems, Inc. Manipulator
US20110107614A1 (en) * 2009-11-06 2011-05-12 Hexagon Metrology Ab Enhanced position detection for a cmm
US7953471B2 (en) 2004-05-03 2011-05-31 Medtronic Navigation, Inc. Method and apparatus for implantation between two vertebral bodies
US7974677B2 (en) 2003-01-30 2011-07-05 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
US7998062B2 (en) 2004-03-29 2011-08-16 Superdimension, Ltd. Endoscope structures and techniques for navigating to a target in branched structure
US8005571B2 (en) 2002-08-13 2011-08-23 Neuroarm Surgical Ltd. Microsurgical robot system
US8060185B2 (en) 2002-11-19 2011-11-15 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US8112292B2 (en) 2006-04-21 2012-02-07 Medtronic Navigation, Inc. Method and apparatus for optimizing a therapy
US8109942B2 (en) 2004-04-21 2012-02-07 Smith & Nephew, Inc. Computer-aided methods, systems, and apparatuses for shoulder arthroplasty
US20120059360A1 (en) * 2010-09-06 2012-03-08 Olympus Corporation Surgical power transmission adapter and medical manipulator system
US8165658B2 (en) 2008-09-26 2012-04-24 Medtronic, Inc. Method and apparatus for positioning a guide relative to a base
US8167888B2 (en) 2004-08-06 2012-05-01 Zimmer Technology, Inc. Tibial spacer blocks and femoral cutting guide
US8175681B2 (en) 2008-12-16 2012-05-08 Medtronic Navigation Inc. Combination of electromagnetic and electropotential localization
US8177788B2 (en) 2005-02-22 2012-05-15 Smith & Nephew, Inc. In-line milling system
US20120143198A1 (en) * 2009-06-30 2012-06-07 Blue Ortho Adjustable guide in computer assisted orthopaedic surgery
US8200314B2 (en) 1992-08-14 2012-06-12 British Telecommunications Public Limited Company Surgical navigation
US8239001B2 (en) 2003-10-17 2012-08-07 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
USRE43952E1 (en) 1989-10-05 2013-01-29 Medtronic Navigation, Inc. Interactive system for local intervention inside a non-homogeneous structure
US8452068B2 (en) 2008-06-06 2013-05-28 Covidien Lp Hybrid registration method
US8473026B2 (en) 1994-09-15 2013-06-25 Ge Medical Systems Global Technology Company System for monitoring a position of a medical instrument with respect to a patient's body
US8473032B2 (en) 2008-06-03 2013-06-25 Superdimension, Ltd. Feature-based registration method
US8480679B2 (en) 2008-04-29 2013-07-09 Otismed Corporation Generation of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices
US8483469B2 (en) 2008-04-30 2013-07-09 Otismed Corporation System and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US8494613B2 (en) 2009-08-31 2013-07-23 Medtronic, Inc. Combination localization system
US8494614B2 (en) 2009-08-31 2013-07-23 Regents Of The University Of Minnesota Combination localization system
US8500451B2 (en) 2007-01-16 2013-08-06 Simbionix Ltd. Preoperative surgical simulation
US8532361B2 (en) 2008-04-30 2013-09-10 Otismed Corporation System and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US8543338B2 (en) 2007-01-16 2013-09-24 Simbionix Ltd. System and method for performing computerized simulations for image-guided procedures using a patient specific model
USD691719S1 (en) 2007-10-25 2013-10-15 Otismed Corporation Arthroplasty jig blank
US8611984B2 (en) 2009-04-08 2013-12-17 Covidien Lp Locatable catheter
US8617171B2 (en) 2007-12-18 2013-12-31 Otismed Corporation Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
US8617175B2 (en) 2008-12-16 2013-12-31 Otismed Corporation Unicompartmental customized arthroplasty cutting jigs and methods of making the same
US8632461B2 (en) 2005-06-21 2014-01-21 Koninklijke Philips N.V. System, method and apparatus for navigated therapy and diagnosis
US8644907B2 (en) 1999-10-28 2014-02-04 Medtronic Navigaton, Inc. Method and apparatus for surgical navigation
US8660635B2 (en) 2006-09-29 2014-02-25 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
US8663088B2 (en) 2003-09-15 2014-03-04 Covidien Lp System of accessories for use with bronchoscopes
US20140106325A1 (en) * 2009-05-13 2014-04-17 Medtronic Navigation, Inc. Method And Apparatus For Identifying An Instrument Location Based On Measuring A Characteristic
US8715291B2 (en) 2007-12-18 2014-05-06 Otismed Corporation Arthroplasty system and related methods
WO2014074676A2 (en) 2012-11-09 2014-05-15 Blue Belt Technologies, Inc. Systems and methods for navigation and control of an implant positioning device
US8734455B2 (en) 2008-02-29 2014-05-27 Otismed Corporation Hip resurfacing surgical guide tool
US8737700B2 (en) 2007-12-18 2014-05-27 Otismed Corporation Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
US8764725B2 (en) 2004-02-09 2014-07-01 Covidien Lp Directional anchoring mechanism, method and applications thereof
US8845681B2 (en) 1996-11-22 2014-09-30 Intuitive Surgical Operations, Inc. Rigidly-linked articulating wrist with decoupled motion transmission
US8894634B2 (en) 2005-06-30 2014-11-25 Intuitive Surgical Operations, Inc. Indicator for tool state and communication in multi-arm robotic telesurgery
US8905920B2 (en) 2007-09-27 2014-12-09 Covidien Lp Bronchoscope adapter and method
US8911428B2 (en) 2001-06-29 2014-12-16 Intuitive Surgical Operations, Inc. Apparatus for pitch and yaw rotation
US8932207B2 (en) 2008-07-10 2015-01-13 Covidien Lp Integrated multi-functional endoscopic tool
US8968320B2 (en) 2007-12-18 2015-03-03 Otismed Corporation System and method for manufacturing arthroplasty jigs
US8998930B2 (en) 2005-12-20 2015-04-07 Intuitive Surgical Operations, Inc. Disposable sterile surgical adaptor
US8998799B2 (en) 1996-12-12 2015-04-07 Intuitive Surgical Operations, Inc. Sterile surgical adaptor
US9005112B2 (en) 2001-06-29 2015-04-14 Intuitive Surgical Operations, Inc. Articulate and swapable endoscope for a surgical robot
US9017336B2 (en) 2006-02-15 2015-04-28 Otismed Corporation Arthroplasty devices and related methods
US9055881B2 (en) 2004-04-26 2015-06-16 Super Dimension Ltd. System and method for image-based alignment of an endoscope
US20150164600A1 (en) * 2009-10-01 2015-06-18 Mako Surgical Corp. Surgical system for positioning prosthetic component and/or for constraining movement of surgical tool
US9089343B2 (en) 2005-10-03 2015-07-28 Smith & Nephew, Inc. Locking instrument assembly
US9168102B2 (en) 2006-01-18 2015-10-27 Medtronic Navigation, Inc. Method and apparatus for providing a container to a sterile environment
US20150359706A1 (en) * 2011-07-27 2015-12-17 Zoll Medical Corporation Method and Apparatus for Monitoring Manual Chest Compression Efficiency During CPR
US9216015B2 (en) 2004-10-28 2015-12-22 Vycor Medical, Inc. Apparatus and methods for performing brain surgery
US9216048B2 (en) 2009-03-18 2015-12-22 Integrated Spinal Concepts, Inc. Image-guided minimal-step placement of screw into bone
US9307969B2 (en) 2005-06-17 2016-04-12 Vycor Medical, Inc. Tissue retractor apparatus and methods
US9320568B2 (en) 1997-11-21 2016-04-26 Intuitive Surgical Operations, Inc. Sterile surgical drape
US9402637B2 (en) 2012-10-11 2016-08-02 Howmedica Osteonics Corporation Customized arthroplasty cutting guides and surgical methods using the same
US9439732B2 (en) 1996-12-12 2016-09-13 Intuitive Surgical Operations, Inc. Instrument interface of a robotic surgical system
US9501955B2 (en) 2001-05-20 2016-11-22 Simbionix Ltd. Endoscopic ultrasonography simulation
US9532849B2 (en) 1997-11-21 2017-01-03 Intuitive Surgical Operations, Inc. Surgical accessory clamp and system
US9554411B1 (en) 2015-12-30 2017-01-24 DePuy Synthes Products, Inc. Systems and methods for wirelessly powering or communicating with sterile-packed devices
US9575140B2 (en) 2008-04-03 2017-02-21 Covidien Lp Magnetic interference detection system and method
US9579043B2 (en) 2014-08-28 2017-02-28 DePuy Synthes Products, Inc. Systems and methods for intraoperatively measuring anatomical orientation
US9649170B2 (en) 2007-12-18 2017-05-16 Howmedica Osteonics Corporation Arthroplasty system and related methods
US9655628B2 (en) 2009-05-06 2017-05-23 Blue Ortho Reduced invasivity fixation system for trackers in computer assisted surgery
US9737287B2 (en) 2014-05-13 2017-08-22 Vycor Medical, Inc. Guidance system mounts for surgical introducers
US9808262B2 (en) 2006-02-15 2017-11-07 Howmedica Osteonics Corporation Arthroplasty devices and related methods
US20170340353A1 (en) * 2015-02-18 2017-11-30 Prabhat Kumar Ahluwalia Systems and methods for a dynamic manipulator holder
US9999448B2 (en) 2013-03-14 2018-06-19 DePuy Synthes Products, Inc. Methods and devices for polyaxial screw alignment
US10036627B2 (en) 2014-09-19 2018-07-31 Hexagon Metrology, Inc. Multi-mode portable coordinate measuring machine
US10045824B2 (en) 2013-10-18 2018-08-14 Medicrea International Methods, systems, and devices for designing and manufacturing a rod to support a vertebral column of a patient
US10086193B2 (en) 2004-02-13 2018-10-02 Medtronic, Inc. Apparatus for securing a therapy delivery device within a burr hole and method for making same
US10292770B2 (en) 2017-04-21 2019-05-21 Medicrea International Systems, methods, and devices for developing patient-specific spinal treatments, operations, and procedures
US10318655B2 (en) 2013-09-18 2019-06-11 Medicrea International Method making it possible to produce the ideal curvature of a rod of vertebral osteosynthesis material designed to support a patient's vertebral column
US10335241B2 (en) 2015-12-30 2019-07-02 DePuy Synthes Products, Inc. Method and apparatus for intraoperative measurements of anatomical orientation
US10376258B2 (en) 2016-11-07 2019-08-13 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
US10418705B2 (en) 2016-10-28 2019-09-17 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10426555B2 (en) 2015-06-03 2019-10-01 Covidien Lp Medical instrument with sensor for use in a system and method for electromagnetic navigation
US10446931B2 (en) 2016-10-28 2019-10-15 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10456211B2 (en) 2015-11-04 2019-10-29 Medicrea International Methods and apparatus for spinal reconstructive surgery and measuring spinal length and intervertebral spacing, tension and rotation
CN110430836A (en) * 2017-03-15 2019-11-08 安托踏实公司 For the system in spinal surgery relative to object axis guidance Surigical tool
US10478254B2 (en) 2016-05-16 2019-11-19 Covidien Lp System and method to access lung tissue
US10517505B2 (en) 2016-10-28 2019-12-31 Covidien Lp Systems, methods, and computer-readable media for optimizing an electromagnetic navigation system
US10543016B2 (en) 2016-11-07 2020-01-28 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
US10582834B2 (en) 2010-06-15 2020-03-10 Covidien Lp Locatable expandable working channel and method
US10615500B2 (en) 2016-10-28 2020-04-07 Covidien Lp System and method for designing electromagnetic navigation antenna assemblies
US10638952B2 (en) 2016-10-28 2020-05-05 Covidien Lp Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system
US10722311B2 (en) 2016-10-28 2020-07-28 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US10751126B2 (en) 2016-10-28 2020-08-25 Covidien Lp System and method for generating a map for electromagnetic navigation
US10792106B2 (en) 2016-10-28 2020-10-06 Covidien Lp System for calibrating an electromagnetic navigation system
US10820835B2 (en) 2016-09-12 2020-11-03 Medos International Sarl Systems and methods for anatomical alignment
US10918422B2 (en) 2017-12-01 2021-02-16 Medicrea International Method and apparatus for inhibiting proximal junctional failure
US10952593B2 (en) 2014-06-10 2021-03-23 Covidien Lp Bronchoscope adapter
US11006914B2 (en) 2015-10-28 2021-05-18 Medtronic Navigation, Inc. Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient
US11089975B2 (en) 2017-03-31 2021-08-17 DePuy Synthes Products, Inc. Systems, devices and methods for enhancing operative accuracy using inertial measurement units
US11219489B2 (en) 2017-10-31 2022-01-11 Covidien Lp Devices and systems for providing sensors in parallel with medical tools
US11304769B2 (en) * 2006-06-13 2022-04-19 Intuitive Surgical Operations, Inc. Side looking minimally invasive surgery instrument assembly
US11331126B2 (en) * 2019-03-13 2022-05-17 Curexo, Inc. Surgical tool handle device
US11331150B2 (en) 1999-10-28 2022-05-17 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US11464596B2 (en) 2016-02-12 2022-10-11 Medos International Sarl Systems and methods for intraoperatively measuring anatomical orientation
US11523852B1 (en) * 2021-08-26 2022-12-13 University Of Utah Research Foundation Active compression bone screw
US11612436B2 (en) 2016-12-12 2023-03-28 Medicrea International Systems, methods, and devices for developing patient-specific medical treatments, operations, and procedures
US11769251B2 (en) 2019-12-26 2023-09-26 Medicrea International Systems and methods for medical image analysis
US11877801B2 (en) 2019-04-02 2024-01-23 Medicrea International Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures
US11925417B2 (en) 2019-04-02 2024-03-12 Medicrea International Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures

Families Citing this family (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0326768A3 (en) * 1988-02-01 1991-01-23 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US5251127A (en) * 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
EP0415417A3 (en) * 1989-09-01 1991-05-29 Andronic Devices Ltd. Holder for surgical instruments
US5086401A (en) * 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
ATE126994T1 (en) * 1990-07-31 1995-09-15 Faro Medical Technologies Inc COMPUTER-ASSISTED SURGICAL DEVICE.
FI93607C (en) * 1991-05-24 1995-05-10 John Koivukangas Cutting Remedy
US5441042A (en) * 1991-08-05 1995-08-15 Putman; John M. Endoscope instrument holder
US5597146A (en) * 1991-08-05 1997-01-28 Putman; J. Michael Rail-mounted stabilizer for surgical instrument
CA2078295C (en) * 1991-08-05 1995-11-21 John Michael Putman Endoscope stabilizer
FR2691093B1 (en) * 1992-05-12 1996-06-14 Univ Joseph Fourier ROBOT FOR GUIDANCE OF GESTURES AND CONTROL METHOD.
US5524180A (en) * 1992-08-10 1996-06-04 Computer Motion, Inc. Automated endoscope system for optimal positioning
DE4304570A1 (en) * 1993-02-16 1994-08-18 Mdc Med Diagnostic Computing Device and method for preparing and supporting surgical procedures
DE4304571A1 (en) * 1993-02-16 1994-08-18 Mdc Med Diagnostic Computing Procedures for planning and controlling a surgical procedure
CA2165980C (en) * 1993-06-21 2001-02-20 Mark Nicholas Dance Method and apparatus for locating functional structures of the lower leg during knee surgery
EP0705075B1 (en) * 1993-06-21 1999-04-21 Osteonics Corp. Apparatus for aligning knee prostheses
US5601566A (en) * 1994-02-22 1997-02-11 Osteonics Corp. Method and apparatus for the alignment of a femoral knee prosthesis
US5964724A (en) * 1996-01-31 1999-10-12 Medtronic Electromedics, Inc. Apparatus and method for blood separation
AT405126B (en) * 1997-07-10 1999-05-25 Graf Reinhard COORDINATE GUIDE SYSTEM AND REFERENCE POSITIONING SYSTEM
AU2204200A (en) 1998-12-23 2000-07-31 Image Guided Technologies, Inc. A hybrid 3-d probe tracked by multiple sensors
US8944070B2 (en) 1999-04-07 2015-02-03 Intuitive Surgical Operations, Inc. Non-force reflecting method for providing tool force information to a user of a telesurgical system
US20010034530A1 (en) 2000-01-27 2001-10-25 Malackowski Donald W. Surgery system
US6497134B1 (en) 2000-03-15 2002-12-24 Image Guided Technologies, Inc. Calibration of an instrument
WO2003092523A1 (en) 2002-05-02 2003-11-13 Gmp Surgical Solutions, Inc. Apparatus for positioning a medical instrument
US20040044295A1 (en) 2002-08-19 2004-03-04 Orthosoft Inc. Graphical user interface for computer-assisted surgery
WO2004028343A2 (en) * 2002-09-26 2004-04-08 Depuy Products, Inc. Method and apparatus for controlling a surgical burr in the performance of an orthopaedic procedure
GB0319257D0 (en) * 2003-08-15 2003-09-17 Finsbury Dev Ltd Surgical instruments and computer programs for use therewith
WO2005107622A1 (en) * 2004-05-06 2005-11-17 Nanyang Technological University Mechanical manipulator for hifu transducers
US8290570B2 (en) 2004-09-10 2012-10-16 Stryker Leibinger Gmbh & Co., Kg System for ad hoc tracking of an object
US8007448B2 (en) 2004-10-08 2011-08-30 Stryker Leibinger Gmbh & Co. Kg. System and method for performing arthroplasty of a joint and tracking a plumb line plane
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US8298237B2 (en) 2006-06-09 2012-10-30 Biomet Manufacturing Corp. Patient-specific alignment guide for multiple incisions
US8591516B2 (en) 2006-02-27 2013-11-26 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US8603180B2 (en) 2006-02-27 2013-12-10 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US7967868B2 (en) 2007-04-17 2011-06-28 Biomet Manufacturing Corp. Patient-modified implant and associated method
US8407067B2 (en) 2007-04-17 2013-03-26 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US20150335438A1 (en) 2006-02-27 2015-11-26 Biomet Manufacturing, Llc. Patient-specific augments
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US8070752B2 (en) 2006-02-27 2011-12-06 Biomet Manufacturing Corp. Patient specific alignment guide and inter-operative adjustment
US8535387B2 (en) 2006-02-27 2013-09-17 Biomet Manufacturing, Llc Patient-specific tools and implants
US8608749B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US8092465B2 (en) 2006-06-09 2012-01-10 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US8241293B2 (en) 2006-02-27 2012-08-14 Biomet Manufacturing Corp. Patient specific high tibia osteotomy
US8282646B2 (en) 2006-02-27 2012-10-09 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US9918740B2 (en) 2006-02-27 2018-03-20 Biomet Manufacturing, Llc Backup surgical instrument system and method
US8608748B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient specific guides
US8473305B2 (en) 2007-04-17 2013-06-25 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US8858561B2 (en) 2006-06-09 2014-10-14 Blomet Manufacturing, LLC Patient-specific alignment guide
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US8568487B2 (en) 2006-02-27 2013-10-29 Biomet Manufacturing, Llc Patient-specific hip joint devices
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US10278711B2 (en) 2006-02-27 2019-05-07 Biomet Manufacturing, Llc Patient-specific femoral guide
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US8864769B2 (en) 2006-02-27 2014-10-21 Biomet Manufacturing, Llc Alignment guides with patient-specific anchoring elements
US8377066B2 (en) 2006-02-27 2013-02-19 Biomet Manufacturing Corp. Patient-specific elbow guides and associated methods
US8133234B2 (en) 2006-02-27 2012-03-13 Biomet Manufacturing Corp. Patient specific acetabular guide and method
US9907659B2 (en) 2007-04-17 2018-03-06 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9718190B2 (en) 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US10008017B2 (en) 2006-06-29 2018-06-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US20090192523A1 (en) 2006-06-29 2009-07-30 Intuitive Surgical, Inc. Synthetic representation of a surgical instrument
US10258425B2 (en) 2008-06-27 2019-04-16 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US9089256B2 (en) 2008-06-27 2015-07-28 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US9084623B2 (en) 2009-08-15 2015-07-21 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US9469034B2 (en) 2007-06-13 2016-10-18 Intuitive Surgical Operations, Inc. Method and system for switching modes of a robotic system
US8620473B2 (en) 2007-06-13 2013-12-31 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US9138129B2 (en) 2007-06-13 2015-09-22 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US8265949B2 (en) 2007-09-27 2012-09-11 Depuy Products, Inc. Customized patient surgical plan
CN102670275B (en) 2007-09-30 2016-01-20 德普伊产品公司 The patient-specific orthopaedic surgical instrumentation of customization
US8357111B2 (en) 2007-09-30 2013-01-22 Depuy Products, Inc. Method and system for designing patient-specific orthopaedic surgical instruments
US9265589B2 (en) 2007-11-06 2016-02-23 Medtronic Navigation, Inc. System and method for navigated drill guide
US8864652B2 (en) 2008-06-27 2014-10-21 Intuitive Surgical Operations, Inc. Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip
US8170641B2 (en) 2009-02-20 2012-05-01 Biomet Manufacturing Corp. Method of imaging an extremity of a patient
DE102009028503B4 (en) 2009-08-13 2013-11-14 Biomet Manufacturing Corp. Resection template for the resection of bones, method for producing such a resection template and operation set for performing knee joint surgery
US9492927B2 (en) 2009-08-15 2016-11-15 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US8918211B2 (en) 2010-02-12 2014-12-23 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US8632547B2 (en) 2010-02-26 2014-01-21 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US9066727B2 (en) 2010-03-04 2015-06-30 Materialise Nv Patient-specific computed tomography guides
CN103140185A (en) 2010-07-23 2013-06-05 洛桑联邦理工学院 Adjustable fixation system for neurosurgical devices
US9271744B2 (en) 2010-09-29 2016-03-01 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US9968376B2 (en) 2010-11-29 2018-05-15 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9241745B2 (en) 2011-03-07 2016-01-26 Biomet Manufacturing, Llc Patient-specific femoral version guide
US8715289B2 (en) 2011-04-15 2014-05-06 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US9675400B2 (en) 2011-04-19 2017-06-13 Biomet Manufacturing, Llc Patient-specific fracture fixation instrumentation and method
US8956364B2 (en) 2011-04-29 2015-02-17 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US8668700B2 (en) 2011-04-29 2014-03-11 Biomet Manufacturing, Llc Patient-specific convertible guides
US8532807B2 (en) 2011-06-06 2013-09-10 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US9084618B2 (en) 2011-06-13 2015-07-21 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US8764760B2 (en) 2011-07-01 2014-07-01 Biomet Manufacturing, Llc Patient-specific bone-cutting guidance instruments and methods
US20130001121A1 (en) 2011-07-01 2013-01-03 Biomet Manufacturing Corp. Backup kit for a patient-specific arthroplasty kit assembly
US8597365B2 (en) 2011-08-04 2013-12-03 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9386993B2 (en) 2011-09-29 2016-07-12 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
KR20130046337A (en) 2011-10-27 2013-05-07 삼성전자주식회사 Multi-view device and contol method thereof, display apparatus and contol method thereof, and display system
EP2770918B1 (en) 2011-10-27 2017-07-19 Biomet Manufacturing, LLC Patient-specific glenoid guides
US9554910B2 (en) 2011-10-27 2017-01-31 Biomet Manufacturing, Llc Patient-specific glenoid guide and implants
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
US9237950B2 (en) 2012-02-02 2016-01-19 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9060788B2 (en) 2012-12-11 2015-06-23 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9204977B2 (en) 2012-12-11 2015-12-08 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US10507066B2 (en) 2013-02-15 2019-12-17 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9579107B2 (en) 2013-03-12 2017-02-28 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9826981B2 (en) 2013-03-13 2017-11-28 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US9498233B2 (en) 2013-03-13 2016-11-22 Biomet Manufacturing, Llc. Universal acetabular guide and associated hardware
US9517145B2 (en) 2013-03-15 2016-12-13 Biomet Manufacturing, Llc Guide alignment system and method
US20150112349A1 (en) 2013-10-21 2015-04-23 Biomet Manufacturing, Llc Ligament Guide Registration
US10282488B2 (en) 2014-04-25 2019-05-07 Biomet Manufacturing, Llc HTO guide with optional guided ACL/PCL tunnels
US9408616B2 (en) 2014-05-12 2016-08-09 Biomet Manufacturing, Llc Humeral cut guide
US9561040B2 (en) 2014-06-03 2017-02-07 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9839436B2 (en) 2014-06-03 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9826994B2 (en) 2014-09-29 2017-11-28 Biomet Manufacturing, Llc Adjustable glenoid pin insertion guide
US9833245B2 (en) 2014-09-29 2017-12-05 Biomet Sports Medicine, Llc Tibial tubercule osteotomy
US9820868B2 (en) 2015-03-30 2017-11-21 Biomet Manufacturing, Llc Method and apparatus for a pin apparatus
US10226262B2 (en) 2015-06-25 2019-03-12 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10568647B2 (en) 2015-06-25 2020-02-25 Biomet Manufacturing, Llc Patient-specific humeral guide designs
CN105726126B (en) * 2016-04-11 2017-06-23 深圳市六联科技有限公司 A kind of manipulator
US10722310B2 (en) 2017-03-13 2020-07-28 Zimmer Biomet CMF and Thoracic, LLC Virtual surgery planning system and method
US11678946B2 (en) 2017-04-24 2023-06-20 Think Surgical, Inc. Magnetic coupling and method for calibrating a robotic system
US11051829B2 (en) 2018-06-26 2021-07-06 DePuy Synthes Products, Inc. Customized patient-specific orthopaedic surgical instrument

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058114A (en) * 1974-09-11 1977-11-15 Siemens Aktiengesellschaft Ultrasonic arrangement for puncturing internal body organs, vessels and the like
US4068156A (en) * 1977-03-01 1978-01-10 Martin Marietta Corporation Rate control system for manipulator arms
US4457311A (en) * 1982-09-03 1984-07-03 Medtronic, Inc. Ultrasound imaging system for scanning the human back
US4473074A (en) * 1981-09-28 1984-09-25 Xanar, Inc. Microsurgical laser device
EP0155857A2 (en) * 1984-02-17 1985-09-25 Faro Medical Technologies Inc. Knee laxity evaluator and motion module/digitizer arrangement
US4571834A (en) * 1984-02-17 1986-02-25 Orthotronics Limited Partnership Knee laxity evaluator and motion module/digitizer arrangement
US4602622A (en) * 1979-12-05 1986-07-29 Siemens Aktiengesellschaft Medical examination installation
US4659971A (en) * 1984-08-16 1987-04-21 Seiko Instruments & Electronics Ltd. Robot controlling system
US4674057A (en) * 1984-02-14 1987-06-16 Lockheed Corporation Ultrasonic ranging control system for industrial robots
US4698777A (en) * 1983-05-26 1987-10-06 Fanuc Ltd. Industrial robot circular arc control method for controlling the angle of a tool
US4733661A (en) * 1987-04-27 1988-03-29 Palestrant Aubrey M Guidance device for C.T. guided drainage and biopsy procedures
US4742815A (en) * 1986-01-02 1988-05-10 Ninan Champil A Computer monitoring of endoscope
US4762016A (en) * 1987-03-27 1988-08-09 The Regents Of The University Of California Robotic manipulator having three degrees of freedom
US4776749A (en) * 1986-03-25 1988-10-11 Northrop Corporation Robotic device
WO1988009151A1 (en) * 1987-05-27 1988-12-01 Schloendorff Georg Process and device for optical representation of surgical operations
US4791934A (en) * 1986-08-07 1988-12-20 Picker International, Inc. Computer tomography assisted stereotactic surgery system and method
US4805615A (en) * 1985-07-02 1989-02-21 Carol Mark P Method and apparatus for performing stereotactic surgery
US4821206A (en) * 1984-11-27 1989-04-11 Photo Acoustic Technology, Inc. Ultrasonic apparatus for positioning a robot hand
US4835710A (en) * 1987-07-17 1989-05-30 Cincinnati Milacron Inc. Method of moving and orienting a tool along a curved path
EP0322363A1 (en) * 1987-12-16 1989-06-28 Protek AG Positioning device for total condylar knee prostheses
EP0326768A2 (en) * 1988-02-01 1989-08-09 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US4933843A (en) * 1986-11-06 1990-06-12 Storz Instrument Company Control system for ophthalmic surgical instruments
US4943296A (en) * 1986-03-28 1990-07-24 Life Technology Research Foundation Robot for surgical operation
US4961422A (en) * 1983-01-21 1990-10-09 Marchosky J Alexander Method and apparatus for volumetric interstitial conductive hyperthermia
US5078140A (en) * 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7986682A (en) * 1981-02-12 1982-08-19 New York University Apparatus for stereotactic surgery

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058114A (en) * 1974-09-11 1977-11-15 Siemens Aktiengesellschaft Ultrasonic arrangement for puncturing internal body organs, vessels and the like
US4068156A (en) * 1977-03-01 1978-01-10 Martin Marietta Corporation Rate control system for manipulator arms
US4602622A (en) * 1979-12-05 1986-07-29 Siemens Aktiengesellschaft Medical examination installation
US4473074A (en) * 1981-09-28 1984-09-25 Xanar, Inc. Microsurgical laser device
US4457311A (en) * 1982-09-03 1984-07-03 Medtronic, Inc. Ultrasound imaging system for scanning the human back
US4961422A (en) * 1983-01-21 1990-10-09 Marchosky J Alexander Method and apparatus for volumetric interstitial conductive hyperthermia
US4698777A (en) * 1983-05-26 1987-10-06 Fanuc Ltd. Industrial robot circular arc control method for controlling the angle of a tool
US4674057A (en) * 1984-02-14 1987-06-16 Lockheed Corporation Ultrasonic ranging control system for industrial robots
US4571834A (en) * 1984-02-17 1986-02-25 Orthotronics Limited Partnership Knee laxity evaluator and motion module/digitizer arrangement
EP0155857A2 (en) * 1984-02-17 1985-09-25 Faro Medical Technologies Inc. Knee laxity evaluator and motion module/digitizer arrangement
US4659971A (en) * 1984-08-16 1987-04-21 Seiko Instruments & Electronics Ltd. Robot controlling system
US4821206A (en) * 1984-11-27 1989-04-11 Photo Acoustic Technology, Inc. Ultrasonic apparatus for positioning a robot hand
US4955891A (en) * 1985-07-02 1990-09-11 Ohio Medical Instrument Company, Inc. Method and apparatus for performing stereotactic surgery
US4805615A (en) * 1985-07-02 1989-02-21 Carol Mark P Method and apparatus for performing stereotactic surgery
US4742815A (en) * 1986-01-02 1988-05-10 Ninan Champil A Computer monitoring of endoscope
US4776749A (en) * 1986-03-25 1988-10-11 Northrop Corporation Robotic device
US4943296A (en) * 1986-03-28 1990-07-24 Life Technology Research Foundation Robot for surgical operation
US5078140A (en) * 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
US4791934A (en) * 1986-08-07 1988-12-20 Picker International, Inc. Computer tomography assisted stereotactic surgery system and method
US4933843A (en) * 1986-11-06 1990-06-12 Storz Instrument Company Control system for ophthalmic surgical instruments
US4762016A (en) * 1987-03-27 1988-08-09 The Regents Of The University Of California Robotic manipulator having three degrees of freedom
US4733661A (en) * 1987-04-27 1988-03-29 Palestrant Aubrey M Guidance device for C.T. guided drainage and biopsy procedures
WO1988009151A1 (en) * 1987-05-27 1988-12-01 Schloendorff Georg Process and device for optical representation of surgical operations
US4835710A (en) * 1987-07-17 1989-05-30 Cincinnati Milacron Inc. Method of moving and orienting a tool along a curved path
EP0322363A1 (en) * 1987-12-16 1989-06-28 Protek AG Positioning device for total condylar knee prostheses
EP0326768A2 (en) * 1988-02-01 1989-08-09 Faro Medical Technologies Inc. Computer-aided surgery apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Brown, "A Stereotactic Head Frame for Use with CT Body Scanners", Aug.`79, 300-304.
Brown, A Stereotactic Head Frame for Use with CT Body Scanners , Aug. 79, 300 304. *

Cited By (782)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355049B1 (en) 1987-12-02 2002-03-12 Sherwood Services Ag Head fixation apparatus
USRE43952E1 (en) 1989-10-05 2013-01-29 Medtronic Navigation, Inc. Interactive system for local intervention inside a non-homogeneous structure
US6678545B2 (en) 1990-10-19 2004-01-13 Saint Louis University System for determining the position in a scan image corresponding to the position of an imaging probe
US6347240B1 (en) 1990-10-19 2002-02-12 St. Louis University System and method for use in displaying images of a body part
US6434415B1 (en) 1990-10-19 2002-08-13 St. Louis University System for use in displaying images of a body part
US5851183A (en) 1990-10-19 1998-12-22 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US20020087075A1 (en) * 1990-10-19 2002-07-04 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US6076008A (en) 1990-10-19 2000-06-13 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US6490467B1 (en) 1990-10-19 2002-12-03 Surgical Navigation Technologies, Inc. Surgical navigation systems including reference and localization frames
US5891034A (en) 1990-10-19 1999-04-06 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US6463319B1 (en) 1990-10-19 2002-10-08 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US6374135B1 (en) 1990-10-19 2002-04-16 Saint Louis University System for indicating the position of a surgical probe within a head on an image of the head
US6662036B2 (en) 1991-01-28 2003-12-09 Sherwood Services Ag Surgical positioning system
US6275725B1 (en) 1991-01-28 2001-08-14 Radionics, Inc. Stereotactic optical navigation
US6167295A (en) 1991-01-28 2000-12-26 Radionics, Inc. Optical and computer graphic stereotactic localizer
US6675040B1 (en) 1991-01-28 2004-01-06 Sherwood Services Ag Optical object tracking system
US6405072B1 (en) 1991-01-28 2002-06-11 Sherwood Services Ag Apparatus and method for determining a location of an anatomical target with reference to a medical apparatus
US5848967A (en) * 1991-01-28 1998-12-15 Cosman; Eric R. Optically coupled frameless stereotactic system and method
US6006126A (en) 1991-01-28 1999-12-21 Cosman; Eric R. System and method for stereotactic registration of image scan data
US6351661B1 (en) 1991-01-28 2002-02-26 Sherwood Services Ag Optically coupled frameless stereotactic space probe
US5950629A (en) * 1991-06-13 1999-09-14 International Business Machines Corporation System for assisting a surgeon during surgery
US6547782B1 (en) 1991-06-13 2003-04-15 International Business Machines, Corp. System and method for augmentation of surgery
US5630431A (en) * 1991-06-13 1997-05-20 International Business Machines Corporation System and method for augmentation of surgery
US6231526B1 (en) 1991-06-13 2001-05-15 International Business Machines Corporation System and method for augmentation of surgery
US6574355B2 (en) 1992-01-21 2003-06-03 Intuitive Surigical, Inc. Method and apparatus for transforming coordinate systems in a telemanipulation system
US8068649B2 (en) 1992-01-21 2011-11-29 Sri International, Inc. Method and apparatus for transforming coordinate systems in a telemanipulation system
US6999852B2 (en) 1992-01-21 2006-02-14 Sri International Flexible robotic surgery system and method
US7333642B2 (en) 1992-01-21 2008-02-19 Sri International, Inc. Method and apparatus for transforming coordinate systems in a telemanipulation system
US20090082905A1 (en) * 1992-01-21 2009-03-26 Sri International. Inc Method and apparatus for transforming coordinate systems in a telemanipulation system
US6259806B1 (en) 1992-01-21 2001-07-10 Sri International Method and apparatus for transforming coordinate systems in a telemanipulation system
US20050065658A1 (en) * 1992-01-21 2005-03-24 Sri International Flexible robotic surgery system and method
US7006895B2 (en) 1992-01-21 2006-02-28 Sri International Computed pivotal center surgical robotic system and method
US20050065657A1 (en) * 1992-01-21 2005-03-24 Sri International Computed pivotal center surgical robotic system and method
US6165181A (en) 1992-04-21 2000-12-26 Sofamor Danek Holdings, Inc. Apparatus and method for photogrammetric surgical localization
US6491702B2 (en) 1992-04-21 2002-12-10 Sofamor Danek Holdings, Inc. Apparatus and method for photogrammetric surgical localization
US6146390A (en) 1992-04-21 2000-11-14 Sofamor Danek Holdings, Inc. Apparatus and method for photogrammetric surgical localization
US7390325B2 (en) 1992-08-10 2008-06-24 Intuitive Surgical, Inc. Apparatus for performing minimally invasive cardiac procedures with a robotic arm that has a passive joint and system which can decouple the robotic arm from the input device
US7785320B2 (en) 1992-08-10 2010-08-31 Intuitive Surgical Operations, Inc. Method for operating a medical robotic system by stopping movement of a surgical instrument about a pivot point or issuing a warning if the pivot point moves beyond a threshold value
US20050234433A1 (en) * 1992-08-10 2005-10-20 Intuitive Surgical, Inc. Apparatus for performing surgical procedures with a passively flexing robotic assembly
US7027892B2 (en) 1992-08-10 2006-04-11 Intuitive Surgical Method and apparatus for performing minimally invasive cardiac procedures
US6804581B2 (en) 1992-08-10 2004-10-12 Computer Motion, Inc. Automated endoscope system for optimal positioning
US20060142881A1 (en) * 1992-08-10 2006-06-29 Intuitive Surgical Inc. Method and apparatus for performing minimally invasive cardiac procedures with a robotic arm that has a passive joint and system which can decouple the robotic arm from the input device
US5754741A (en) * 1992-08-10 1998-05-19 Computer Motion, Inc. Automated endoscope for optimal positioning
US5657429A (en) * 1992-08-10 1997-08-12 Computer Motion, Inc. Automated endoscope system optimal positioning
US7074179B2 (en) 1992-08-10 2006-07-11 Intuitive Surgical Inc Method and apparatus for performing minimally invasive cardiac procedures
US8200314B2 (en) 1992-08-14 2012-06-12 British Telecommunications Public Limited Company Surgical navigation
US5697939A (en) * 1992-08-20 1997-12-16 Olympus Optical Co., Ltd. Apparatus for holding a medical instrument in place
US5412880A (en) * 1993-02-23 1995-05-09 Faro Technologies Inc. Method of constructing a 3-dimensional map of a measurable quantity using three dimensional coordinate measuring apparatus
US6535794B1 (en) 1993-02-23 2003-03-18 Faro Technologoies Inc. Method of generating an error map for calibration of a robot or multi-axis machining center
US6366831B1 (en) 1993-02-23 2002-04-02 Faro Technologies Inc. Coordinate measurement machine with articulated arm and software interface
US6606539B2 (en) 1993-02-23 2003-08-12 Faro Technologies, Inc. Portable coordinate measurement machine with pre-stressed bearings
US5871445A (en) 1993-04-26 1999-02-16 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US6409686B1 (en) 1994-01-24 2002-06-25 Sherwood Services Ag Virtual probe for a stereotactic digitizer for use in surgery
US5631973A (en) * 1994-05-05 1997-05-20 Sri International Method for telemanipulation with telepresence
US5859934A (en) * 1994-05-05 1999-01-12 Sri International Method and apparatus for transforming coordinate systems in a telemanipulation system
US8526737B2 (en) 1994-05-05 2013-09-03 Sri International Method and apparatus for transforming coordinate systems in a telemanipulation system
US5510977A (en) * 1994-08-02 1996-04-23 Faro Technologies Inc. Method and apparatus for measuring features of a part or item
US5880956A (en) * 1994-08-12 1999-03-09 Minnesota Mining And Manufacturing Company Lead-through robot programming system
US5495410A (en) * 1994-08-12 1996-02-27 Minnesota Mining And Manufacturing Company Lead-through robot programming system
US8473026B2 (en) 1994-09-15 2013-06-25 Ge Medical Systems Global Technology Company System for monitoring a position of a medical instrument with respect to a patient's body
US6463361B1 (en) 1994-09-22 2002-10-08 Computer Motion, Inc. Speech interface for an automated endoscopic system
US6965812B2 (en) 1994-09-22 2005-11-15 Computer Motion, Inc. Speech interface for an automated endoscopic system
US20060220784A1 (en) * 1994-09-22 2006-10-05 Intuitive Surgical, Inc., A Delaware Corporation General purpose distributed operating room control system
US20060122483A1 (en) * 1994-10-07 2006-06-08 Surgical Navigation Technologies, Inc. System for use in displaying images of a body part
US20020183610A1 (en) * 1994-10-07 2002-12-05 Saint Louis University And Surgical Navigation Technologies, Inc. Bone navigation system
US6236875B1 (en) 1994-10-07 2001-05-22 Surgical Navigation Technologies Surgical navigation systems including reference and localization frames
US8046053B2 (en) 1994-10-07 2011-10-25 Foley Kevin T System and method for modifying images of a body part
US6620174B2 (en) 1995-06-07 2003-09-16 Sri International Surgical manipulator for a telerobotic system
US20050273086A1 (en) * 1995-06-07 2005-12-08 Sri International Surgical manipulator for a telerobotic system
US8500753B2 (en) 1995-06-07 2013-08-06 Sri International Surgical manipulator for a telerobotic system
US20100160930A1 (en) * 1995-06-07 2010-06-24 Sri International Surgical manipulator for a telerobotic system
US8840628B2 (en) 1995-06-07 2014-09-23 Intuitive Surgical Operations, Inc. Surgical manipulator for a telerobotic system
US8048088B2 (en) 1995-06-07 2011-11-01 Sri International Surgical manipulator for a telerobotic system
US6413264B1 (en) 1995-06-07 2002-07-02 Sri International Surgical manipulator for a telerobotic system
US7648513B2 (en) 1995-06-07 2010-01-19 Sri International Surgical manipulator for a telerobotic system
US5814038A (en) * 1995-06-07 1998-09-29 Sri International Surgical manipulator for a telerobotic system
USRE40852E1 (en) 1995-06-14 2009-07-14 Medtronic Navigation, Inc. Method and system for navigating a catheter probe
USRE43750E1 (en) 1995-06-14 2012-10-16 Medtronic Navigation, Inc. Method for navigating a catheter probe
US5638819A (en) * 1995-08-29 1997-06-17 Manwaring; Kim H. Method and apparatus for guiding an instrument to a target
US6714841B1 (en) 1995-09-15 2004-03-30 Computer Motion, Inc. Head cursor control interface for an automated endoscope system for optimal positioning
US7445594B1 (en) 1995-09-20 2008-11-04 Medtronic, Inc. Method and apparatus for temporarily immobilizing a local area of tissue
US6351659B1 (en) 1995-09-28 2002-02-26 Brainlab Med. Computersysteme Gmbh Neuro-navigation system
US20050203374A1 (en) * 1995-09-28 2005-09-15 Stefan Vilsmeier Neuro-navigation system
US6859660B2 (en) 1995-09-28 2005-02-22 Brainlab Ag Neuro-navigation system
US7558617B2 (en) 1995-09-28 2009-07-07 Brainlab Ag Neuro-navigation system
US5794621A (en) * 1995-11-03 1998-08-18 Massachusetts Institute Of Technology System and method for medical imaging utilizing a robotic device, and robotic device for use in medical imaging
US6592508B1 (en) 1995-12-18 2003-07-15 Integrated Implant Systems, Llc Fiberoptic-guided interstitial seed manual applicator and seed cartridge
US5682886A (en) * 1995-12-26 1997-11-04 Musculographics Inc Computer-assisted surgical system
US5871018A (en) * 1995-12-26 1999-02-16 Delp; Scott L. Computer-assisted surgical method
USD387427S (en) * 1996-02-12 1997-12-09 Surgical Navigation Technologies, Inc. Ventriculostomy probe
US6699177B1 (en) 1996-02-20 2004-03-02 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US6905491B1 (en) 1996-02-20 2005-06-14 Intuitive Surgical, Inc. Apparatus for performing minimally invasive cardiac procedures with a robotic arm that has a passive joint and system which can decouple the robotic arm from the input device
US20060167441A1 (en) * 1996-02-20 2006-07-27 Intuitive Surgical Inc. Method and apparatus for performing minimally invasive cardiac procedures
US6007550A (en) * 1996-02-20 1999-12-28 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US7083571B2 (en) 1996-02-20 2006-08-01 Intuitive Surgical Medical robotic arm that is attached to an operating table
US20080228196A1 (en) * 1996-02-20 2008-09-18 Intuitive Surgical, Inc. Surgical robotic system for performing minimally invasive surgical procedures
US6436107B1 (en) 1996-02-20 2002-08-20 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US7507199B2 (en) 1996-02-20 2009-03-24 Intuitive Surgical, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US20040186345A1 (en) * 1996-02-20 2004-09-23 Computer Motion, Inc. Medical robotic arm that is attached to an operating table
US7695481B2 (en) 1996-02-20 2010-04-13 Intuitive Surgical, Inc. Medical robotic system with different scaling factors
US7118582B1 (en) 1996-02-20 2006-10-10 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US20080215065A1 (en) * 1996-02-20 2008-09-04 Intuitive Surgical Medical robotic arm that is attached to an operating table
US7914521B2 (en) 1996-02-20 2011-03-29 Intuitive Surgical Operations, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US6167145A (en) 1996-03-29 2000-12-26 Surgical Navigation Technologies, Inc. Bone navigation system
US6006750A (en) * 1996-04-30 1999-12-28 Medtronic, Inc. Position sensing system and method for using the same
US20060241575A1 (en) * 1996-06-24 2006-10-26 Yulun Wang Multi-functional surgical control system switching interface
US6646541B1 (en) 1996-06-24 2003-11-11 Computer Motion, Inc. General purpose distributed operating room control system
US20050154288A1 (en) * 1996-06-24 2005-07-14 Computer Motion, Inc. Method and apparatus for accessing medical data over a network
US20040172011A1 (en) * 1996-06-24 2004-09-02 Yulun Wang Multi-functional surgical control system and switching interface
US6408107B1 (en) 1996-07-10 2002-06-18 Michael I. Miller Rapid convolution based large deformation image matching via landmark and volume imagery
US20050242919A1 (en) * 1996-08-06 2005-11-03 Intuitive Surgical, Inc. General purpose distributed operating room control system
US20040124964A1 (en) * 1996-08-06 2004-07-01 Computer Motion, Inc. General purpose distributed operating room control system
US6847336B1 (en) 1996-10-02 2005-01-25 Jerome H. Lemelson Selectively controllable heads-up display system
US20050206583A1 (en) * 1996-10-02 2005-09-22 Lemelson Jerome H Selectively controllable heads-up display system
US5926782A (en) * 1996-11-12 1999-07-20 Faro Technologies Inc Convertible three dimensional coordinate measuring machine
US9402619B2 (en) 1996-11-22 2016-08-02 Intuitive Surgical Operation, Inc. Rigidly-linked articulating wrist with decoupled motion transmission
US8845681B2 (en) 1996-11-22 2014-09-30 Intuitive Surgical Operations, Inc. Rigidly-linked articulating wrist with decoupled motion transmission
US5824007A (en) * 1996-12-03 1998-10-20 Simon Fraser University Adjustable surgical stand
US6866671B2 (en) 1996-12-12 2005-03-15 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US20050021050A1 (en) * 1996-12-12 2005-01-27 Intuitive Surgical, Inc. Multi-component telepresence system and method
US7357774B2 (en) 1996-12-12 2008-04-15 Intuitive Surgical Inc. Multi-component telepresence system and method
US9795453B2 (en) 1996-12-12 2017-10-24 Intuitive Surgical Operations, Inc. Surgical robotic tools, data architecture, and use
US20070012135A1 (en) * 1996-12-12 2007-01-18 Intuitive Surgical Inc. Surgical robotic tools, data architecture, and use
US9724163B2 (en) 1996-12-12 2017-08-08 Intuitive Surgical Operations, Inc. Disposable sterile surgical adaptor
US20110028990A1 (en) * 1996-12-12 2011-02-03 Intuitive Surgical Operations, Inc. Multi-Component Telepresence System and Method
US6346072B1 (en) 1996-12-12 2002-02-12 Intuitive Surgical, Inc. Multi-component telepresence system and method
US9949802B2 (en) 1996-12-12 2018-04-24 Intuitive Surgical Operations, Inc. Multi-component telepresence system and method
US6132368A (en) * 1996-12-12 2000-10-17 Intuitive Surgical, Inc. Multi-component telepresence system and method
US20110066161A1 (en) * 1996-12-12 2011-03-17 Intuitive Surgical Operations, Inc. Multi-Component Telepresence System and Method
US8608773B2 (en) 1996-12-12 2013-12-17 Intuitive Surgical Operations, Inc. Surgical robotic tools, data architecture, and use
US8998799B2 (en) 1996-12-12 2015-04-07 Intuitive Surgical Operations, Inc. Sterile surgical adaptor
US7819885B2 (en) 1996-12-12 2010-10-26 Intuitive Surgical Operations, Inc. Multi-component telepresence system and method
US9439732B2 (en) 1996-12-12 2016-09-13 Intuitive Surgical Operations, Inc. Instrument interface of a robotic surgical system
US6083163A (en) * 1997-01-21 2000-07-04 Computer Aided Surgery, Inc. Surgical navigation system and method using audio feedback
WO1998031280A1 (en) * 1997-01-21 1998-07-23 Computer Aided Surgery, Inc. Surgical navigation system and method using audio feedback
WO1998035625A1 (en) * 1997-02-18 1998-08-20 Jonathan Yi Yao Robotic simulation, planning and marking platform
US5880976A (en) * 1997-02-21 1999-03-09 Carnegie Mellon University Apparatus and method for facilitating the implantation of artificial components in joints
US6205411B1 (en) 1997-02-21 2001-03-20 Carnegie Mellon University Computer-assisted surgery planner and intra-operative guidance system
US6002859A (en) * 1997-02-21 1999-12-14 Carnegie Mellon University Apparatus and method facilitating the implantation of artificial components in joints
US5995738A (en) * 1997-02-21 1999-11-30 Carnegie Mellon University Apparatus and method for facilitating the implantation of artificial components in joints
USD422706S (en) * 1997-04-30 2000-04-11 Surgical Navigation Technologies Biopsy guide tube
US6267769B1 (en) 1997-05-15 2001-07-31 Regents Of The Universitiy Of Minnesota Trajectory guide method and apparatus for use in magnetic resonance and computerized tomographic scanners
US6752812B1 (en) 1997-05-15 2004-06-22 Regent Of The University Of Minnesota Remote actuation of trajectory guide
EP0880007A2 (en) 1997-05-19 1998-11-25 Faro Technologies Inc. Fixation of the measuring arm for a coordinate measuring machine
US6296613B1 (en) 1997-08-22 2001-10-02 Synthes (U.S.A.) 3D ultrasound recording device
US6434507B1 (en) 1997-09-05 2002-08-13 Surgical Navigation Technologies, Inc. Medical instrument and method for use with computer-assisted image guided surgery
US20050043718A1 (en) * 1997-09-19 2005-02-24 Intuitive Surgical, Inc. Robotic apparatus
US6684129B2 (en) 1997-09-19 2004-01-27 Intuitive Surgical, Inc. Master having redundant degrees of freedom
US20090030429A1 (en) * 1997-09-19 2009-01-29 Massachusetts Institute Of Technology Robotic apparatus
US6786896B1 (en) 1997-09-19 2004-09-07 Massachusetts Institute Of Technology Robotic apparatus
US20090012534A1 (en) * 1997-09-19 2009-01-08 Massachusetts Institute Of Technology Robotic apparatus
US8123740B2 (en) 1997-09-19 2012-02-28 Massachusetts Institute Of Technology Robotic apparatus
US20040236352A1 (en) * 1997-09-22 2004-11-25 Yulun Wang Method and apparatus for performing minimally invasive cardiac procedures
USRE44305E1 (en) 1997-09-24 2013-06-18 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE45509E1 (en) 1997-09-24 2015-05-05 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US6226548B1 (en) 1997-09-24 2001-05-01 Surgical Navigation Technologies, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE42226E1 (en) 1997-09-24 2011-03-15 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE42194E1 (en) 1997-09-24 2011-03-01 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USD420132S (en) * 1997-11-03 2000-02-01 Surgical Navigation Technologies Drill guide
US6226418B1 (en) 1997-11-07 2001-05-01 Washington University Rapid convolution based large deformation image matching via landmark and volume imagery
US6021343A (en) * 1997-11-20 2000-02-01 Surgical Navigation Technologies Image guided awl/tap/screwdriver
USRE43328E1 (en) 1997-11-20 2012-04-24 Medtronic Navigation, Inc Image guided awl/tap/screwdriver
USRE46422E1 (en) 1997-11-20 2017-06-06 Medtronic Navigation, Inc. Image guided awl/tap/screwdriver
USRE45484E1 (en) 1997-11-20 2015-04-21 Medtronic Navigation, Inc. Image guided awl/tap/screwdriver
USRE46409E1 (en) 1997-11-20 2017-05-23 Medtronic Navigation, Inc. Image guided awl/tap/screwdriver
US9320568B2 (en) 1997-11-21 2016-04-26 Intuitive Surgical Operations, Inc. Sterile surgical drape
US9532849B2 (en) 1997-11-21 2017-01-03 Intuitive Surgical Operations, Inc. Surgical accessory clamp and system
US20020151894A1 (en) * 1997-12-12 2002-10-17 Tony Melkent Image guided spinal surgery guide, system, and method for use thereof
US6348058B1 (en) 1997-12-12 2002-02-19 Surgical Navigation Technologies, Inc. Image guided spinal surgery guide, system, and method for use thereof
US6796988B2 (en) 1997-12-12 2004-09-28 Surgical Navigation Technologies, Inc. Image guided spinal surgery guide, system, and method for use thereof
US8105339B2 (en) 1997-12-12 2012-01-31 Sofamor Danek Holdings, Inc. Image guided spinal surgery guide system and method for use thereof
US7763035B2 (en) 1997-12-12 2010-07-27 Medtronic Navigation, Inc. Image guided spinal surgery guide, system and method for use thereof
DE19802341C1 (en) * 1998-01-22 1999-08-12 Siemens Ag Medical system
US6402737B1 (en) * 1998-03-19 2002-06-11 Hitachi, Ltd. Surgical apparatus
US6529765B1 (en) 1998-04-21 2003-03-04 Neutar L.L.C. Instrumented and actuated guidance fixture for sterotactic surgery
US6546277B1 (en) 1998-04-21 2003-04-08 Neutar L.L.C. Instrument guidance system for spinal and other surgery
US6298262B1 (en) 1998-04-21 2001-10-02 Neutar, Llc Instrument guidance for stereotactic surgery
US20030187351A1 (en) * 1998-04-21 2003-10-02 Neutar L.L.C., A Maine Corporation Instrument guidance system for spinal and other surgery
US6309403B1 (en) 1998-06-01 2001-10-30 Board Of Trustees Operating Michigan State University Dexterous articulated linkage for surgical applications
US6694168B2 (en) 1998-06-22 2004-02-17 Synthes (U.S.A.) Fiducial matching using fiducial implants
US6370224B1 (en) 1998-06-29 2002-04-09 Sofamor Danek Group, Inc. System and methods for the reduction and elimination of image artifacts in the calibration of x-ray imagers
US6118845A (en) * 1998-06-29 2000-09-12 Surgical Navigation Technologies, Inc. System and methods for the reduction and elimination of image artifacts in the calibration of X-ray imagers
US6351662B1 (en) 1998-08-12 2002-02-26 Neutar L.L.C. Movable arm locator for stereotactic surgery
US6282437B1 (en) 1998-08-12 2001-08-28 Neutar, Llc Body-mounted sensing system for stereotactic surgery
US8768437B2 (en) 1998-08-20 2014-07-01 Sofamor Danek Holdings, Inc. Fluoroscopic image guided surgery system with intraoperative registration
US20030060703A1 (en) * 1998-08-20 2003-03-27 Barrick Earl Frederick Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US6477400B1 (en) 1998-08-20 2002-11-05 Sofamor Danek Holdings, Inc. Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US6482182B1 (en) 1998-09-03 2002-11-19 Surgical Navigation Technologies, Inc. Anchoring system for a brain lead
US6782288B2 (en) 1998-10-08 2004-08-24 Regents Of The University Of Minnesota Method and apparatus for positioning a device in a body
US6340363B1 (en) 1998-10-09 2002-01-22 Surgical Navigation Technologies, Inc. Image guided vertebral distractor and method for tracking the position of vertebrae
US6298259B1 (en) 1998-10-16 2001-10-02 Univ Minnesota Combined magnetic resonance imaging and magnetic stereotaxis surgical apparatus and processes
US6633686B1 (en) 1998-11-05 2003-10-14 Washington University Method and apparatus for image registration using large deformation diffeomorphisms on a sphere
US6665554B1 (en) 1998-11-18 2003-12-16 Steve T. Charles Medical manipulator for use with an imaging device
US6659939B2 (en) 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
US20050033270A1 (en) * 1998-11-20 2005-02-10 Intuitive Surgical, Inc. Stabilizer for robotic beating-heart surgery
US8666544B2 (en) 1998-11-20 2014-03-04 Intuitive Surgical Operations, Inc. Cooperative minimally invasive telesurgical system
US8504201B2 (en) 1998-11-20 2013-08-06 Intuitive Sugrical Operations, Inc. Cooperative minimally invasive telesurgical system
US8527094B2 (en) 1998-11-20 2013-09-03 Intuitive Surgical Operations, Inc. Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures
US6837883B2 (en) 1998-11-20 2005-01-04 Intuitive Surgical, Inc. Arm cart for telerobotic surgical system
US9271798B2 (en) 1998-11-20 2016-03-01 Intuitive Surgical Operations, Inc. Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures
US20020082612A1 (en) * 1998-11-20 2002-06-27 Intuitive Surgical, Inc. Arm cart for telerobotic surgical system
US8489235B2 (en) 1998-11-20 2013-07-16 Intuitive Surgical Operations, Inc. Cooperative minimally invasive telesurgical system
US7865266B2 (en) 1998-11-20 2011-01-04 Intuitive Surgical Operations, Inc. Cooperative minimally invasive telesurgical system
US9867671B2 (en) 1998-11-20 2018-01-16 Intuitive Surgical Operations, Inc. Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures
US20110137322A1 (en) * 1998-11-20 2011-06-09 Intuitive Surgical Operations Cooperative Minimally Invasive Telesurgical System
US6764445B2 (en) 1998-11-20 2004-07-20 Intuitive Surgical, Inc. Stabilizer for robotic beating-heart surgery
US9119654B2 (en) 1998-11-20 2015-09-01 Intuitive Surgical Operations, Inc. Stabilizer for robotic beating-heart surgery
US6858003B2 (en) 1998-11-20 2005-02-22 Intuitive Surgical, Inc. Performing cardiac surgery without cardioplegia
US8914150B2 (en) 1998-11-20 2014-12-16 Intuitive Surgical Operations, Inc. Cooperative minimally invasive telesurgical system
US20030216715A1 (en) * 1998-11-20 2003-11-20 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
US20060178559A1 (en) * 1998-11-20 2006-08-10 Intuitive Surgical Inc. Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures
US9666101B2 (en) 1998-11-20 2017-05-30 Intuitive Surgical Operations, Inc. Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures
US9636186B2 (en) 1998-11-20 2017-05-02 Intuitive Surgical Operations, Inc. Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures
US20100234857A1 (en) * 1998-11-20 2010-09-16 Intuitve Surgical Operations, Inc. Medical robotic system with operatively couplable simulator unit for surgeon training
US8105235B2 (en) 1998-11-20 2012-01-31 Intuitive Surgical Operations, Inc. Stabilizer for robotic beating-heart surgery
US8600551B2 (en) * 1998-11-20 2013-12-03 Intuitive Surgical Operations, Inc. Medical robotic system with operatively couplable simulator unit for surgeon training
US20050107808A1 (en) * 1998-11-20 2005-05-19 Intuitive Surgical, Inc. Performing cardiac surgery without cardioplegia
US6723106B1 (en) 1998-11-23 2004-04-20 Microdexterity Systems, Inc. Surgical manipulator
US8142447B2 (en) 1998-12-08 2012-03-27 Intuitive Surgical Operations Inc. Mechanical actuator interface system for robotic surgical tools
US7524320B2 (en) 1998-12-08 2009-04-28 Intuitive Surgical, Inc. Mechanical actuator interface system for robotic surgical tools
US20020032452A1 (en) * 1998-12-08 2002-03-14 Tierney Michael J. Surgical robotic tools, data architecture, and use
US8758352B2 (en) 1998-12-08 2014-06-24 Intuitive Surgical Operations, Inc. Mechanical actuator interface system for robotic surgical tools
US6491701B2 (en) 1998-12-08 2002-12-10 Intuitive Surgical, Inc. Mechanical actuator interface system for robotic surgical tools
US6331181B1 (en) 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US6620173B2 (en) * 1998-12-08 2003-09-16 Intuitive Surgical, Inc. Method for introducing an end effector to a surgical site in minimally invasive surgery
US7048745B2 (en) 1998-12-08 2006-05-23 Intuitive Surgical Surgical robotic tools, data architecture, and use
US20030083673A1 (en) * 1998-12-08 2003-05-01 Intuitive Surgical, Inc. Mechanical actuator interface system for robotic surgical tools
US20020045905A1 (en) * 1998-12-08 2002-04-18 Gerbi Craig Richard Tool guide and method for introducing an end effector to a surgical site in minimally invasive surgery
WO2000047103A2 (en) 1999-02-10 2000-08-17 Surgical Insights, Inc. Computer assisted targeting device for use in orthopaedic surgery
US6285902B1 (en) 1999-02-10 2001-09-04 Surgical Insights, Inc. Computer assisted targeting device for use in orthopaedic surgery
US6697664B2 (en) 1999-02-10 2004-02-24 Ge Medical Systems Global Technology Company, Llc Computer assisted targeting device for use in orthopaedic surgery
US6725082B2 (en) 1999-03-17 2004-04-20 Synthes U.S.A. System and method for ligament graft placement
US7996064B2 (en) 1999-03-23 2011-08-09 Medtronic Navigation, Inc. System and method for placing and determining an appropriately sized surgical implant
US6470207B1 (en) 1999-03-23 2002-10-22 Surgical Navigation Technologies, Inc. Navigational guidance via computer-assisted fluoroscopic imaging
US8845655B2 (en) 1999-04-20 2014-09-30 Medtronic Navigation, Inc. Instrument guide system
US6585651B2 (en) 1999-04-20 2003-07-01 Synthes Ag Chur Method and device for percutaneous determination of points associated with the surface of an organ
US6491699B1 (en) 1999-04-20 2002-12-10 Surgical Navigation Technologies, Inc. Instrument guidance method and system for image guided surgery
US20020109705A1 (en) * 1999-05-03 2002-08-15 Robert Hofstetter System and method for preparing an image corrected for the presence of a gravity induced distortion
US7217240B2 (en) 1999-10-01 2007-05-15 Intuitive Surgical, Inc. Heart stabilizer
US20050043717A1 (en) * 1999-10-01 2005-02-24 Computer Motion, Inc. Heart stabilizer
US6669635B2 (en) 1999-10-28 2003-12-30 Surgical Navigation Technologies, Inc. Navigation information overlay onto ultrasound imagery
US9504530B2 (en) 1999-10-28 2016-11-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US6381485B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies, Inc. Registration of human anatomy integrated for electromagnetic localization
US8057407B2 (en) 1999-10-28 2011-11-15 Medtronic Navigation, Inc. Surgical sensor
US6474341B1 (en) 1999-10-28 2002-11-05 Surgical Navigation Technologies, Inc. Surgical communication and power system
US6379302B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies Inc. Navigation information overlay onto ultrasound imagery
US7797032B2 (en) 1999-10-28 2010-09-14 Medtronic Navigation, Inc. Method and system for navigating a catheter probe in the presence of field-influencing objects
US6402762B2 (en) 1999-10-28 2002-06-11 Surgical Navigation Technologies, Inc. System for translation of electromagnetic and optical localization systems
US6499488B1 (en) 1999-10-28 2002-12-31 Winchester Development Associates Surgical sensor
US11331150B2 (en) 1999-10-28 2022-05-17 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7152608B2 (en) 1999-10-28 2006-12-26 Surgical Navigation Technologies, Inc. Surgical communication and power system
US8644907B2 (en) 1999-10-28 2014-02-04 Medtronic Navigaton, Inc. Method and apparatus for surgical navigation
US20030078003A1 (en) * 1999-10-28 2003-04-24 Hunter Mark W. Surgical communication and power system
US8074662B2 (en) 1999-10-28 2011-12-13 Medtronic Navigation, Inc. Surgical communication and power system
US8548565B2 (en) 1999-10-28 2013-10-01 Medtronic Navigation, Inc. Registration of human anatomy integrated for electromagnetic localization
US8290572B2 (en) 1999-10-28 2012-10-16 Medtronic Navigation, Inc. Method and system for navigating a catheter probe in the presence of field-influencing objects
US6235038B1 (en) 1999-10-28 2001-05-22 Medtronic Surgical Navigation Technologies System for translation of electromagnetic and optical localization systems
US7657300B2 (en) 1999-10-28 2010-02-02 Medtronic Navigation, Inc. Registration of human anatomy integrated for electromagnetic localization
US7250028B2 (en) 1999-11-09 2007-07-31 Intuitive Surgical Inc Endoscopic beating-heart stabilizer and vessel occlusion fastener
US8870900B2 (en) 1999-11-09 2014-10-28 Intuitive Surgical Operations, Inc. Endoscopic beating-heart stabilizer and vessel occlusion fastener
US20030158463A1 (en) * 1999-11-09 2003-08-21 Intuitive Surgical, Inc. Endoscopic beating-heart stabilizer and vessel occlusion fastener
US20070208223A1 (en) * 1999-11-09 2007-09-06 Intuitive Surgical, Inc. Endoscopic beating-heart stabilizer and vessel occlusion fastener
US6702805B1 (en) 1999-11-12 2004-03-09 Microdexterity Systems, Inc. Manipulator
US20040024385A1 (en) * 1999-11-12 2004-02-05 Microdexterity Systems, Inc. Manipulator
US6725080B2 (en) 2000-03-01 2004-04-20 Surgical Navigation Technologies, Inc. Multiple cannula image guided tool for image guided procedures
US10898153B2 (en) 2000-03-01 2021-01-26 Medtronic Navigation, Inc. Multiple cannula image guided tool for image guided procedures
US7881770B2 (en) 2000-03-01 2011-02-01 Medtronic Navigation, Inc. Multiple cannula image guided tool for image guided procedures
US6535756B1 (en) 2000-04-07 2003-03-18 Surgical Navigation Technologies, Inc. Trajectory storage apparatus and method for surgical navigation system
US7853305B2 (en) 2000-04-07 2010-12-14 Medtronic Navigation, Inc. Trajectory storage apparatus and method for surgical navigation systems
US8911452B2 (en) 2000-04-07 2014-12-16 Medtronic, Inc. Device for immobilizing a primary instrument and method therefor
US7815651B2 (en) 2000-04-07 2010-10-19 Medtronic, Inc. Device for immobilizing a primary instrument and method therefor
US7833231B2 (en) 2000-04-07 2010-11-16 Medtronic, Inc. Device for immobilizing a primary instrument and method therefor
US20080039869A1 (en) * 2000-04-07 2008-02-14 Mills Gerald W Robotic Trajectory Guide
US8083753B2 (en) 2000-04-07 2011-12-27 Medtronic, Inc. Robotic trajectory guide
US20080082108A1 (en) * 2000-04-07 2008-04-03 Mayo Foundation For Medical Education And Research, Image-Guided Neurologics, Inc. Adjustable trajectory access device and method therefor
US8634897B2 (en) 2000-04-07 2014-01-21 Medtronic Navigation, Inc. Trajectory storage apparatus and method for surgical navigation systems
US8845656B2 (en) 2000-04-07 2014-09-30 Medtronic, Inc. Device for immobilizing a primary instrument and method therefor
US7828809B2 (en) 2000-04-07 2010-11-09 Medtronic, Inc. Device for immobilizing a primary instrument and method therefor
US20110022059A1 (en) * 2000-04-07 2011-01-27 Medtronic, Inc. Device for Immobilizing a Primary Instrument and Method Therefor
US10300268B2 (en) 2000-04-07 2019-05-28 Medtronic, Inc. Device for immobilizing a primary instrument and method therefor
US7366561B2 (en) 2000-04-07 2008-04-29 Medtronic, Inc. Robotic trajectory guide
US7857820B2 (en) 2000-04-07 2010-12-28 Medtronic, Inc. Sheath assembly for an access device and method therefor
US20070250076A1 (en) * 2000-04-07 2007-10-25 Mayo Foundation For Medical Education And Research Device for immobilizing a primary instrument and method therefor
US20070250075A1 (en) * 2000-04-07 2007-10-25 Mayo Foundation For Medical Education And Research Device for immobilizing a primary instrument and method therefor
US20020156372A1 (en) * 2000-04-07 2002-10-24 Image-Guided Neurologics, Inc. Deep organ access device and method
US20010053879A1 (en) * 2000-04-07 2001-12-20 Mills Gerald W. Robotic trajectory guide
US20070250077A1 (en) * 2000-04-07 2007-10-25 Mayo Foundation For Medical Education And Research Image -Guided Neurologics, Inc. Device for immobilizing a primary instrument and method therefor
US6991656B2 (en) 2000-04-26 2006-01-31 Dana Mears Method and apparatus for performing a minimally invasive total hip arthroplasty
US20030220698A1 (en) * 2000-04-26 2003-11-27 Dana Mears Method and apparatus for performing a minimally invasive total hip arthroplasty
US6860903B2 (en) 2000-04-26 2005-03-01 Zimmer Technology, Inc. Method and apparatus for performing a minimally invasive total hip arthroplasty
US7833275B2 (en) 2000-04-26 2010-11-16 Zimmer Technology, Inc. Method and apparatus for performing a minimally invasive total hip arthroplasty
US20050043810A1 (en) * 2000-04-26 2005-02-24 Dana Mears Method and apparatus for performing a minimally invasive total hip arthroplasty
US7780673B2 (en) 2000-04-26 2010-08-24 Zimmer Technology, Inc. Method and apparatus for performing a minimally invasive total hip arthroplasty
US6953480B2 (en) 2000-04-26 2005-10-11 Zimmer Technology, Inc. Method and apparatus for performing a minimally invasive total hip arthroplasty
US6676706B1 (en) 2000-04-26 2004-01-13 Zimmer Technology, Inc. Method and apparatus for performing a minimally invasive total hip arthroplasty
US20070213833A1 (en) * 2000-04-26 2007-09-13 Zimmer Technology, Inc. Method and apparatus for performing a minimally invasive total hip arthroplasty
US20050177172A1 (en) * 2000-04-26 2005-08-11 Acker Dean M. Method and apparatus for performing a minimally invasive total hip arthroplasty
US6629960B2 (en) 2000-05-18 2003-10-07 Integrated Implant Systems, Ll.C. Needle hub for medical instrument
US6589157B2 (en) * 2000-05-18 2003-07-08 Integrated Implant Systems, L.L.C. Drive mechanism for medical instrument
US6599232B2 (en) 2000-05-18 2003-07-29 Integrated Implant Systems, Llc Needle spin for medical instrument
US6551275B2 (en) 2000-05-18 2003-04-22 Integrated Implant Systems, Llc Grid sheath for medical instrument
US6540656B2 (en) 2000-05-18 2003-04-01 Integrated Implant Systems Llc Targeting fixture for a grid template
US6616594B2 (en) 2000-05-18 2003-09-09 Integrated Implant Systems, L.L.C. Cartridge-moveable shield
US8320653B2 (en) 2000-06-14 2012-11-27 Medtronic Navigation, Inc. System and method for image based sensor calibration
US7831082B2 (en) 2000-06-14 2010-11-09 Medtronic Navigation, Inc. System and method for image based sensor calibration
US6726699B1 (en) 2000-08-15 2004-04-27 Computer Motion, Inc. Instrument guide
US20100063516A1 (en) * 2000-08-17 2010-03-11 Medtronic, Inc. Trajectory Guide With Instrument Immobilizer
US8192445B2 (en) 2000-08-17 2012-06-05 Medtronic, Inc. Trajectory guide with instrument immobilizer
US20040267284A1 (en) * 2000-08-17 2004-12-30 Image-Guided Neurologics, Inc. Trajectory guide with instrument immobilizer
US6823207B1 (en) 2000-08-26 2004-11-23 Ge Medical Systems Global Technology Company, Llc Integrated fluoroscopic surgical navigation and imaging workstation with command protocol
US20040076259A1 (en) * 2000-08-26 2004-04-22 Jensen Vernon Thomas Integrated fluoroscopic surgical navigation and workstation with command protocol
US6860877B1 (en) 2000-09-29 2005-03-01 Computer Motion, Inc. Heart stabilizer support arm
US7422592B2 (en) 2000-12-29 2008-09-09 Intuitive Surgical, Inc. Bipolar cauterizing instrument
US20050240178A1 (en) * 2000-12-29 2005-10-27 Intuitive Surgical, Inc. Bipolar cauterizing instrument
US20070123855A1 (en) * 2000-12-29 2007-05-31 Intuitive Surgical Inc. Bipolar cauterizing instrument
US6840938B1 (en) 2000-12-29 2005-01-11 Intuitive Surgical, Inc. Bipolar cauterizing instrument
US20070250078A1 (en) * 2001-01-16 2007-10-25 Microdexterity Systems, Inc. Surgical manipulator
US7892243B2 (en) 2001-01-16 2011-02-22 Microdexterity Systems, Inc. Surgical manipulator
US20040162564A1 (en) * 2001-01-16 2004-08-19 Microdexterity Systems, Inc. Surgical manipulator
US7625383B2 (en) 2001-01-16 2009-12-01 Microdexterity Systems, Inc. Surgical manipulator
US6676669B2 (en) 2001-01-16 2004-01-13 Microdexterity Systems, Inc. Surgical manipulator
WO2002062248A1 (en) 2001-02-06 2002-08-15 Cedara Software Corp. Computer-assisted surgical positioning method and system
US20030069591A1 (en) * 2001-02-27 2003-04-10 Carson Christopher Patrick Computer assisted knee arthroplasty instrumentation, systems, and processes
US7547307B2 (en) 2001-02-27 2009-06-16 Smith & Nephew, Inc. Computer assisted knee arthroplasty instrumentation, systems, and processes
US6783524B2 (en) 2001-04-19 2004-08-31 Intuitive Surgical, Inc. Robotic surgical tool with ultrasound cauterizing and cutting instrument
US20050021018A1 (en) * 2001-04-19 2005-01-27 Intuitive Surgical, Inc., A Delaware Corporation Robotic surgical tool with ultrasound cauterizing and cutting instrument
US9011415B2 (en) 2001-05-01 2015-04-21 Intuitive Surgical Operations, Inc. Pivot point arm for a robotic system used to perform a surgical procedure
US20030191455A1 (en) * 2001-05-01 2003-10-09 Dan Sanchez Pivot point arm for a robotic system used to perform a surgical procedure
US8641698B2 (en) 2001-05-01 2014-02-04 Intuitive Surgical Operations, Inc. Pivot point arm for robotic system used to perform a surgical procedure
US9501955B2 (en) 2001-05-20 2016-11-22 Simbionix Ltd. Endoscopic ultrasonography simulation
US20040054355A1 (en) * 2001-05-31 2004-03-18 Intuitive Surgical, Inc. Tool guide and method for introducing an end effector to a surgical site in minimally invasive surgery
US9675424B2 (en) 2001-06-04 2017-06-13 Surgical Navigation Technologies, Inc. Method for calibrating a navigation system
US20040116803A1 (en) * 2001-06-04 2004-06-17 Bradley Jascob Method and apparatus for electromagnetic navigation of a surgical probe near a metal object
US20020191814A1 (en) * 2001-06-14 2002-12-19 Ellis Randy E. Apparatuses and methods for surgical navigation
US6990220B2 (en) 2001-06-14 2006-01-24 Igo Technologies Inc. Apparatuses and methods for surgical navigation
US10105128B2 (en) 2001-06-29 2018-10-23 Intuitive Surgical Operations, Inc. Apparatus for pitch and yaw rotation
US8911428B2 (en) 2001-06-29 2014-12-16 Intuitive Surgical Operations, Inc. Apparatus for pitch and yaw rotation
US11051794B2 (en) 2001-06-29 2021-07-06 Intuitive Surgical Operations, Inc. Apparatus for pitch and yaw rotation
US10506920B2 (en) 2001-06-29 2019-12-17 Intuitive Surgical Operations, Inc. Articulate and swappable endoscope for a surgical robot
US9005112B2 (en) 2001-06-29 2015-04-14 Intuitive Surgical Operations, Inc. Articulate and swapable endoscope for a surgical robot
US9730572B2 (en) 2001-06-29 2017-08-15 Intuitive Surgical Operations, Inc. Articulate and swappable endoscope for a surgical robot
US9717486B2 (en) 2001-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Apparatus for pitch and yaw rotation
FR2829016A1 (en) * 2001-09-03 2003-03-07 Bertin Virgile Claude Nahum SURGICAL DEVICE FOR GUIDING MILLING, DRILLING, BORING OR CUTTING BONE TISSUE INSTRUMENTS
US20030195663A1 (en) * 2001-09-07 2003-10-16 Yulun Wang Modularity system for computer assisted surgery
US20030195662A1 (en) * 2001-09-07 2003-10-16 Yulun Wang Modularity system for computer assisted surgery
US6871117B2 (en) 2001-09-07 2005-03-22 Intuitive Surgical, Inc. Modularity system for computer assisted surgery
US6892112B2 (en) 2001-09-07 2005-05-10 Computer Motion, Inc. Modularity system for computer assisted surgery
US6785593B2 (en) 2001-09-07 2004-08-31 Computer Motion, Inc. Modularity system for computer assisted surgery
US20030195661A1 (en) * 2001-09-07 2003-10-16 Yulun Wang Modularity system for computer assisted surgery
US6799088B2 (en) 2001-09-07 2004-09-28 Computer Motion, Inc. Modularity system for computer assisted surgery
US7239940B2 (en) 2001-09-07 2007-07-03 Intuitive Surgical, Inc Modularity system for computer assisted surgery
US6836703B2 (en) 2001-09-07 2004-12-28 Computer Motion, Inc. Modularity system for computer assisted surgery
US6728599B2 (en) 2001-09-07 2004-04-27 Computer Motion, Inc. Modularity system for computer assisted surgery
US6839612B2 (en) 2001-12-07 2005-01-04 Institute Surgical, Inc. Microwrist system for surgical procedures
US6793653B2 (en) 2001-12-08 2004-09-21 Computer Motion, Inc. Multifunctional handle for a medical robotic system
US20050043719A1 (en) * 2001-12-08 2005-02-24 Computer Motion, Inc. Multifunctional handle for a medical robotic system
US8002767B2 (en) 2001-12-08 2011-08-23 Intuitive Surgical Operations, Inc. Multifunctional handle for a medical robotic system
US8939891B2 (en) 2001-12-08 2015-01-27 Intuitive Surgical Operations, Inc. Multifunctional handle for a medical robotic system
US7682357B2 (en) 2002-01-16 2010-03-23 Intuitive Surgical, Inc. Tele-medicine system that transmits an entire state of a subsystem
US6951535B2 (en) 2002-01-16 2005-10-04 Intuitive Surgical, Inc. Tele-medicine system that transmits an entire state of a subsystem
US9786203B2 (en) 2002-01-16 2017-10-10 Intuitive Surgical Operations, Inc. Minimally invasive surgical training using robotics and telecollaboration
US7413565B2 (en) 2002-01-16 2008-08-19 Intuitive Surgical, Inc. Minimally invasive surgical training using robotics and telecollaboration
US9039681B2 (en) 2002-01-16 2015-05-26 Intuitive Surgical Operations, Inc. Minimally invasive surgical training using robotics and telecollaboration
US6852107B2 (en) 2002-01-16 2005-02-08 Computer Motion, Inc. Minimally invasive surgical training using robotics and tele-collaboration
US7237556B2 (en) 2002-02-11 2007-07-03 Smith & Nephew, Inc. Image-guided fracture reduction
US20030181918A1 (en) * 2002-02-11 2003-09-25 Crista Smothers Image-guided fracture reduction
US9757087B2 (en) 2002-02-28 2017-09-12 Medtronic Navigation, Inc. Method and apparatus for perspective inversion
US20030163038A1 (en) * 2002-02-28 2003-08-28 Simon David A. Method and apparatus for perspective inversion
US20030191394A1 (en) * 2002-04-04 2003-10-09 Simon David A. Method and apparatus for virtual digital subtraction angiography
US8838199B2 (en) 2002-04-04 2014-09-16 Medtronic Navigation, Inc. Method and apparatus for virtual digital subtraction angiography
US10743748B2 (en) 2002-04-17 2020-08-18 Covidien Lp Endoscope structures and techniques for navigating to a target in branched structure
US8696685B2 (en) 2002-04-17 2014-04-15 Covidien Lp Endoscope structures and techniques for navigating to a target in branched structure
US9642514B2 (en) 2002-04-17 2017-05-09 Covidien Lp Endoscope structures and techniques for navigating to a target in a branched structure
US8696548B2 (en) 2002-04-17 2014-04-15 Covidien Lp Endoscope structures and techniques for navigating to a target in branched structure
US8801719B2 (en) 2002-05-15 2014-08-12 Otismed Corporation Total joint arthroplasty system
US20090131941A1 (en) * 2002-05-15 2009-05-21 Ilwhan Park Total joint arthroplasty system
US8801720B2 (en) 2002-05-15 2014-08-12 Otismed Corporation Total joint arthroplasty system
US7787934B2 (en) 2002-07-29 2010-08-31 Medtronic, Inc. Fiducial marker devices, tools, and methods
US20040030236A1 (en) * 2002-07-29 2004-02-12 Mazzocchi Rudy A. Fiducial marker devices, tools, and methods
US20040030237A1 (en) * 2002-07-29 2004-02-12 Lee David M. Fiducial marker devices and methods
US20040019265A1 (en) * 2002-07-29 2004-01-29 Mazzocchi Rudy A. Fiducial marker devices, tools, and methods
US8170717B2 (en) 2002-08-13 2012-05-01 Neuroarm Surgical Ltd. Microsurgical robot system
US8041459B2 (en) 2002-08-13 2011-10-18 Neuroarm Surgical Ltd. Methods relating to microsurgical robot system
US8396598B2 (en) 2002-08-13 2013-03-12 Neuroarm Surgical Ltd. Microsurgical robot system
US8005571B2 (en) 2002-08-13 2011-08-23 Neuroarm Surgical Ltd. Microsurgical robot system
US9220567B2 (en) 2002-08-13 2015-12-29 Neuroarm Surgical Ltd. Microsurgical robot system
US9901713B2 (en) 2002-09-17 2018-02-27 Medtronic, Inc. Low profile instrument immobilizer
US7704260B2 (en) 2002-09-17 2010-04-27 Medtronic, Inc. Low profile instrument immobilizer
US10974029B2 (en) 2002-09-17 2021-04-13 Medtronic, Inc. Low profile instrument immobilizer
US10058681B2 (en) 2002-09-17 2018-08-28 Medtronic, Inc. Low profile instrument immobilizer
US20050192594A1 (en) * 2002-09-17 2005-09-01 Skakoon James G. Low profile instrument immobilizer
US7166114B2 (en) 2002-09-18 2007-01-23 Stryker Leibinger Gmbh & Co Kg Method and system for calibrating a surgical tool and adapter thereof
US20070175489A1 (en) * 2002-09-18 2007-08-02 Stryker Leibinger Gmbh & Co. Kg Method and system for calibrating a surgical tool and adapter therefor
US20070173790A1 (en) * 2002-09-18 2007-07-26 Stryker Leibinger Gmbh & Co. Kg Method and system for calibrating a surgical tool and adapter therefor
US20100249782A1 (en) * 2002-10-03 2010-09-30 Durham Alfred A Intramedullary nail targeting device
US7753913B2 (en) 2002-10-03 2010-07-13 Virginia Polytechnic Institute And State University Magnetic targeting device
US7799084B2 (en) 2002-10-23 2010-09-21 Mako Surgical Corp. Modular femoral component for a total knee joint replacement for minimally invasive implantation
US8046052B2 (en) 2002-11-19 2011-10-25 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US8060185B2 (en) 2002-11-19 2011-11-15 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US8467853B2 (en) 2002-11-19 2013-06-18 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US8401616B2 (en) 2002-11-19 2013-03-19 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US20060247647A1 (en) * 2002-11-27 2006-11-02 Zimmer Technology, Inc. Method and apparatus for achieving correct limb alignment in unicondylar knee arthroplasty
US7842039B2 (en) 2002-11-27 2010-11-30 Zimmer Technology, Inc. Method and apparatus for achieving correct limb alignment in unicondylar knee arthroplasty
US8454616B2 (en) 2002-11-27 2013-06-04 Zimmer, Inc. Method and apparatus for achieving correct limb alignment in unicondylar knee arthroplasty
US8690908B2 (en) 2002-12-06 2014-04-08 Intuitive Surgical Operations, Inc. Flexible wrist for surgical tool
US8337521B2 (en) 2002-12-06 2012-12-25 Intuitive Surgical Operations, Inc. Flexible wrist for surgical tool
US8790243B2 (en) 2002-12-06 2014-07-29 Intuitive Surgical Operations, Inc. Flexible wrist for surgical tool
US20110125166A1 (en) * 2002-12-06 2011-05-26 Intuitive Surgical Operations, Inc. Flexible Wrist for Surgical Tool
US10524868B2 (en) 2002-12-06 2020-01-07 Intuitive Surgical Operations, Inc. Flexible wrist for surgical tool
US7862580B2 (en) 2002-12-06 2011-01-04 Intuitive Surgical Operations, Inc. Flexible wrist for surgical tool
US9623563B2 (en) 2002-12-06 2017-04-18 Intuitive Surgical Operations, Inc. Tool grip calibration for robotic surgery
US11633241B2 (en) 2002-12-06 2023-04-25 Intuitive Surgical Operations, Inc. Flexible wrist for surgical tool
US20070239203A1 (en) * 2002-12-06 2007-10-11 Intuitive Surgical, Inc. Flexible wrist for surgical tool
US9585641B2 (en) 2002-12-06 2017-03-07 Intuitive Surgical Operations, Inc. Flexible wrist for surgical tool
US9095317B2 (en) 2002-12-06 2015-08-04 Intuitive Surgical Operations, Inc. Flexible wrist for surgical tool
US20040122305A1 (en) * 2002-12-20 2004-06-24 Grimm James E. Surgical instrument and method of positioning same
US20050209605A1 (en) * 2002-12-20 2005-09-22 Grimm James E Navigated orthopaedic guide and method
US20040172044A1 (en) * 2002-12-20 2004-09-02 Grimm James E. Surgical instrument and method of positioning same
US8116850B2 (en) 2002-12-20 2012-02-14 Medtronic, Inc. Organ access device and method
US20100057008A1 (en) * 2002-12-20 2010-03-04 Medtronic, Inc. Organ Access Device and Method
US20040122446A1 (en) * 2002-12-20 2004-06-24 Solar Matthew S. Organ access device and method
US7029477B2 (en) 2002-12-20 2006-04-18 Zimmer Technology, Inc. Surgical instrument and positioning method
US20060149276A1 (en) * 2002-12-20 2006-07-06 Grimm James E Surgical instrument and positioning method
US20070282347A9 (en) * 2002-12-20 2007-12-06 Grimm James E Navigated orthopaedic guide and method
US20040152970A1 (en) * 2003-01-30 2004-08-05 Mark Hunter Six degree of freedom alignment display for medical procedures
US9867721B2 (en) 2003-01-30 2018-01-16 Medtronic Navigation, Inc. Method and apparatus for post-operative tuning of a spinal implant
US11684491B2 (en) 2003-01-30 2023-06-27 Medtronic Navigation, Inc. Method and apparatus for post-operative tuning of a spinal implant
US7974677B2 (en) 2003-01-30 2011-07-05 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
US11707363B2 (en) 2003-01-30 2023-07-25 Medtronic Navigation, Inc. Method and apparatus for post-operative tuning of a spinal implant
US20040152972A1 (en) * 2003-01-30 2004-08-05 Mark Hunter Method and apparatus for post-operative tuning of a spinal implant
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
US20040171930A1 (en) * 2003-02-04 2004-09-02 Zimmer Technology, Inc. Guidance system for rotary surgical instrument
US6925339B2 (en) 2003-02-04 2005-08-02 Zimmer Technology, Inc. Implant registration device for surgical navigation system
US20040152955A1 (en) * 2003-02-04 2004-08-05 Mcginley Shawn E. Guidance system for rotary surgical instrument
EP1667574A4 (en) * 2003-02-04 2008-03-12 Z Kat Inc System and method for providing computer assistance with spinal fixation procedures
US7458977B2 (en) 2003-02-04 2008-12-02 Zimmer Technology, Inc. Surgical navigation instrument useful in marking anatomical structures
US20040167654A1 (en) * 2003-02-04 2004-08-26 Zimmer Technology, Inc. Implant registration device for surgical navigation system
US6988009B2 (en) 2003-02-04 2006-01-17 Zimmer Technology, Inc. Implant registration device for surgical navigation system
EP1667574A2 (en) * 2003-02-04 2006-06-14 Z-Kat, Inc. System and method for providing computer assistance with spinal fixation procedures
US20070191867A1 (en) * 2003-02-20 2007-08-16 Image-Guided Neurologics, Inc. Trajectory guide with angled or patterned guide lumens or height adjustment
US20040167543A1 (en) * 2003-02-20 2004-08-26 Mazzocchi Rudy A. Trajectory guide with angled or patterned lumens or height adjustment
US7658879B2 (en) 2003-02-20 2010-02-09 Medtronic, Inc. Trajectory guide with angled or patterned guide lumens or height adjustment
US7981120B2 (en) 2003-02-20 2011-07-19 University Of South Florida Trajectory guide with angled or patterned guide lumens or height adjustment
US20040167542A1 (en) * 2003-02-20 2004-08-26 Solar Matthew S. Target depth locators for trajectory guide for introducing an instrument
US7896889B2 (en) 2003-02-20 2011-03-01 Medtronic, Inc. Trajectory guide with angled or patterned lumens or height adjustment
US7699854B2 (en) 2003-02-20 2010-04-20 Medtronic, Inc. Trajectory guide with angled or patterned guide lumens or height adjustment
US20060192319A1 (en) * 2003-02-20 2006-08-31 Image-Guided Neurologics, Inc. Trajectory guide with angled or patterned guide lumens or height adjustment
US20060195119A1 (en) * 2003-02-20 2006-08-31 Image-Guided Neurologics, Inc. Trajectory guide with angled or patterned guide lumens or height adjustment
US8185184B2 (en) 2003-02-25 2012-05-22 Medtronic, Inc. Fiducial marker devices, tools, and methods
US8032204B2 (en) 2003-02-25 2011-10-04 Medtronic, Inc. Fiducial marker devices, tools, and methods
US7643867B2 (en) 2003-02-25 2010-01-05 Medtronic, Inc. Fiducial marker devices, tools, and methods
US20100217120A1 (en) * 2003-02-25 2010-08-26 Medtronic, Inc. Fiducial Marker Devices, Tools, and Methods
US7720522B2 (en) 2003-02-25 2010-05-18 Medtronic, Inc. Fiducial marker devices, tools, and methods
US20040167393A1 (en) * 2003-02-25 2004-08-26 Solar Matthew S. Fiducial marker devices, tools, and methods
US8073530B2 (en) 2003-02-25 2011-12-06 Medtronic, Inc. Fiducial marker devices, tools, and methods
US20070225599A1 (en) * 2003-02-25 2007-09-27 Image-Guided Neurologics, Inc. Fiducial marker devices, tools, and methods
US20040167391A1 (en) * 2003-02-25 2004-08-26 Solar Matthew S. Fiducial marker devices, tools, and methods
US20050021037A1 (en) * 2003-05-29 2005-01-27 Mccombs Daniel L. Image-guided navigated precision reamers
US7104997B2 (en) 2003-06-19 2006-09-12 Lionberger Jr David R Cutting guide apparatus and surgical method for use in knee arthroplasty
US20040260301A1 (en) * 2003-06-19 2004-12-23 David Lionberger Cutting guide apparatus and surgical method for use in knee arthroplasty
US6932823B2 (en) 2003-06-24 2005-08-23 Zimmer Technology, Inc. Detachable support arm for surgical navigation system reference array
US20040267242A1 (en) * 2003-06-24 2004-12-30 Grimm James E. Detachable support arm for surgical navigation system reference array
US7850456B2 (en) 2003-07-15 2010-12-14 Simbionix Ltd. Surgical simulation device, system and method
US7925328B2 (en) 2003-08-28 2011-04-12 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
US20050049486A1 (en) * 2003-08-28 2005-03-03 Urquhart Steven J. Method and apparatus for performing stereotactic surgery
US9089261B2 (en) 2003-09-15 2015-07-28 Covidien Lp System of accessories for use with bronchoscopes
US8663088B2 (en) 2003-09-15 2014-03-04 Covidien Lp System of accessories for use with bronchoscopes
US10383509B2 (en) 2003-09-15 2019-08-20 Covidien Lp System of accessories for use with bronchoscopes
US7686818B2 (en) 2003-09-24 2010-03-30 Stryker Trauma Gmbh Locking nail and stereotaxic apparatus therefor
US20050080335A1 (en) * 2003-09-24 2005-04-14 Stryker Trauma Gmbh Locking nail and stereotaxic apparatus therefor
US8491597B2 (en) 2003-10-03 2013-07-23 Smith & Nephew, Inc. (partial interest) Surgical positioners
US7862570B2 (en) 2003-10-03 2011-01-04 Smith & Nephew, Inc. Surgical positioners
US20050124988A1 (en) * 2003-10-06 2005-06-09 Lauralan Terrill-Grisoni Modular navigated portal
US8706185B2 (en) 2003-10-16 2014-04-22 Medtronic Navigation, Inc. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US7835778B2 (en) 2003-10-16 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US7971341B2 (en) 2003-10-17 2011-07-05 Medtronic Navigation, Inc. Method of forming an electromagnetic sensing coil in a medical instrument for a surgical navigation system
US7818044B2 (en) 2003-10-17 2010-10-19 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8359730B2 (en) 2003-10-17 2013-01-29 Medtronic Navigation, Inc. Method of forming an electromagnetic sensing coil in a medical instrument
US8239001B2 (en) 2003-10-17 2012-08-07 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8271069B2 (en) 2003-10-17 2012-09-18 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8549732B2 (en) 2003-10-17 2013-10-08 Medtronic Navigation, Inc. Method of forming an electromagnetic sensing coil in a medical instrument
US7840253B2 (en) 2003-10-17 2010-11-23 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7751865B2 (en) 2003-10-17 2010-07-06 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7764985B2 (en) 2003-10-20 2010-07-27 Smith & Nephew, Inc. Surgical navigation system component fault interfaces and related processes
US7794467B2 (en) 2003-11-14 2010-09-14 Smith & Nephew, Inc. Adjustable surgical cutting systems
US20050149041A1 (en) * 2003-11-14 2005-07-07 Mcginley Brian J. Adjustable surgical cutting systems
US20050131426A1 (en) * 2003-12-10 2005-06-16 Moctezuma De La Barrera Jose L. Adapter for surgical navigation trackers
US7771436B2 (en) 2003-12-10 2010-08-10 Stryker Leibinger Gmbh & Co. Kg. Surgical navigation tracker, system and method
US20050288575A1 (en) * 2003-12-10 2005-12-29 De La Barrera Jose Luis M Surgical navigation tracker, system and method
US20090088630A1 (en) * 2003-12-10 2009-04-02 Skryker Leibinger Gmbh & Co., Kg Surgical navigation tracker, system and method
US7873400B2 (en) 2003-12-10 2011-01-18 Stryker Leibinger Gmbh & Co. Kg. Adapter for surgical navigation trackers
US20050143746A1 (en) * 2003-12-26 2005-06-30 Steffensmeier Scott J. Adjustable resection guide
US7641661B2 (en) 2003-12-26 2010-01-05 Zimmer Technology, Inc. Adjustable resection guide
US20100010506A1 (en) * 2004-01-16 2010-01-14 Murphy Stephen B Method of Computer-Assisted Ligament Balancing and Component Placement in Total Knee Arthroplasty
US8764725B2 (en) 2004-02-09 2014-07-01 Covidien Lp Directional anchoring mechanism, method and applications thereof
US10086193B2 (en) 2004-02-13 2018-10-02 Medtronic, Inc. Apparatus for securing a therapy delivery device within a burr hole and method for making same
US11938312B2 (en) 2004-02-13 2024-03-26 Medtronic, Inc. Apparatus for securing a therapy delivery device within a burr hole and method for making same
US10582879B2 (en) 2004-02-17 2020-03-10 Philips Electronics Ltd Method and apparatus for registration, verification and referencing of internal organs
US20050182319A1 (en) * 2004-02-17 2005-08-18 Glossop Neil D. Method and apparatus for registration, verification, and referencing of internal organs
US20060122618A1 (en) * 2004-03-08 2006-06-08 Zimmer Technology, Inc. Navigated cut guide locator
US7993341B2 (en) 2004-03-08 2011-08-09 Zimmer Technology, Inc. Navigated orthopaedic guide and method
US8114086B2 (en) 2004-03-08 2012-02-14 Zimmer Technology, Inc. Navigated cut guide locator
US20050209598A1 (en) * 2004-03-08 2005-09-22 Grimm James E Navigated orthopaedic guide and method
US7998062B2 (en) 2004-03-29 2011-08-16 Superdimension, Ltd. Endoscope structures and techniques for navigating to a target in branched structure
US7477926B2 (en) 2004-03-31 2009-01-13 Smith & Nephew, Inc. Methods and apparatuses for providing a reference array input device
US8109942B2 (en) 2004-04-21 2012-02-07 Smith & Nephew, Inc. Computer-aided methods, systems, and apparatuses for shoulder arthroplasty
US10321803B2 (en) 2004-04-26 2019-06-18 Covidien Lp System and method for image-based alignment of an endoscope
US9055881B2 (en) 2004-04-26 2015-06-16 Super Dimension Ltd. System and method for image-based alignment of an endoscope
US7953471B2 (en) 2004-05-03 2011-05-31 Medtronic Navigation, Inc. Method and apparatus for implantation between two vertebral bodies
US9872737B2 (en) 2004-05-04 2018-01-23 Intuitive Surgical Operations, Inc. Tool grip calibration for robotic surgery
US9317651B2 (en) 2004-05-04 2016-04-19 Intuitive Surgical Operations, Inc. Tool grip calibration for robotic surgery
US10595946B2 (en) 2004-05-04 2020-03-24 Intuitive Surgical Operations, Inc. Tool grip calibration for robotic surgery
US8452447B2 (en) 2004-05-04 2013-05-28 Intuitive Surgical Operations, Inc. Tool grip calibration for robotic surgery
US20080114494A1 (en) * 2004-05-04 2008-05-15 Intuitive Surgical, Inc. Tool grip calibration for robotic surgery
US20050251110A1 (en) * 2004-05-04 2005-11-10 Intuitive Surgical, Inc. Tool grip calibration for robotic surgery
US7386365B2 (en) 2004-05-04 2008-06-10 Intuitive Surgical, Inc. Tool grip calibration for robotic surgery
US9085083B2 (en) 2004-05-04 2015-07-21 Intuitive Surgical Operations, Inc. Tool grip calibration for robotic surgery
US20070156157A1 (en) * 2004-06-15 2007-07-05 Zimmer Gmbh Imageless robotized device and method for surgical tool guidance
US8167888B2 (en) 2004-08-06 2012-05-01 Zimmer Technology, Inc. Tibial spacer blocks and femoral cutting guide
US9386974B2 (en) 2004-10-28 2016-07-12 Vycor Medical, Inc. Apparatus and methods for performing brain surgery
US9216015B2 (en) 2004-10-28 2015-12-22 Vycor Medical, Inc. Apparatus and methods for performing brain surgery
US9968414B2 (en) 2004-10-28 2018-05-15 Vycor Medical, Inc. Apparatus and methods for performing brain surgery
US9968415B2 (en) 2004-10-28 2018-05-15 Vycor Medical, Inc. Apparatus and methods for performing brain surgery
US20080071215A1 (en) * 2004-11-05 2008-03-20 Traxtal Technologies Inc. Access System
US7722565B2 (en) 2004-11-05 2010-05-25 Traxtal, Inc. Access system
US20060122497A1 (en) * 2004-11-12 2006-06-08 Glossop Neil D Device and method for ensuring the accuracy of a tracking device in a volume
US20060173269A1 (en) * 2004-11-12 2006-08-03 Glossop Neil D Integrated skin-mounted multifunction device for use in image-guided surgery
US7751868B2 (en) 2004-11-12 2010-07-06 Philips Electronics Ltd Integrated skin-mounted multifunction device for use in image-guided surgery
US20060262631A1 (en) * 2004-11-12 2006-11-23 Samsung Electronics Co., Ltd. Bank selection signal control circuit for use in semiconductor memory device, and bank selection control method
US7805269B2 (en) 2004-11-12 2010-09-28 Philips Electronics Ltd Device and method for ensuring the accuracy of a tracking device in a volume
US20060200025A1 (en) * 2004-12-02 2006-09-07 Scott Elliott Systems, methods, and apparatus for automatic software flow using instrument detection during computer-aided surgery
US7803163B2 (en) 2004-12-04 2010-09-28 Medtronic, Inc. Multiple instrument retaining assembly and methods therefor
US20060122629A1 (en) * 2004-12-04 2006-06-08 Skakoon James G Multiple instrument retaining assembly and methods therefor
US20060122627A1 (en) * 2004-12-04 2006-06-08 Miller Thomas I Multi-lumen instrument guide
US7867242B2 (en) 2004-12-04 2011-01-11 Medtronic, Inc. Instrument for guiding stage apparatus and method for using same
US7744606B2 (en) 2004-12-04 2010-06-29 Medtronic, Inc. Multi-lumen instrument guide
US20060184016A1 (en) * 2005-01-18 2006-08-17 Glossop Neil D Method and apparatus for guiding an instrument to a target in the lung
US20060173291A1 (en) * 2005-01-18 2006-08-03 Glossop Neil D Electromagnetically tracked K-wire device
US7840254B2 (en) 2005-01-18 2010-11-23 Philips Electronics Ltd Electromagnetically tracked K-wire device
US8611983B2 (en) 2005-01-18 2013-12-17 Philips Electronics Ltd Method and apparatus for guiding an instrument to a target in the lung
US7682362B2 (en) 2005-02-01 2010-03-23 Smith & Nephew, Inc. Lockable orientation stylus
US8834473B2 (en) 2005-02-01 2014-09-16 Smith & Nephew, Inc. Lockable orientation instrument assembly
US20060179979A1 (en) * 2005-02-01 2006-08-17 Dees Roger R Jr Lockable orientation stylus
US20100234850A1 (en) * 2005-02-01 2010-09-16 Smith And Nephew, Inc. Lockable Orientation Instrument Assembly
US20060241404A1 (en) * 2005-02-04 2006-10-26 De La Barrera Jose Luis M Enhanced shape characterization device and method
US7623250B2 (en) 2005-02-04 2009-11-24 Stryker Leibinger Gmbh & Co. Kg. Enhanced shape characterization device and method
US8177788B2 (en) 2005-02-22 2012-05-15 Smith & Nephew, Inc. In-line milling system
US9782157B2 (en) 2005-06-17 2017-10-10 Vycor Medical, Inc. Tissue retractor apparatus and methods
US9566052B2 (en) 2005-06-17 2017-02-14 Vycor Medical, Inc. Tissue retractor apparatus and methods
US9307969B2 (en) 2005-06-17 2016-04-12 Vycor Medical, Inc. Tissue retractor apparatus and methods
US9675331B2 (en) 2005-06-17 2017-06-13 Vycor Medical, Inc. Tissue retractor apparatus and methods
US9398892B2 (en) 2005-06-21 2016-07-26 Koninklijke Philips N.V. Device and method for a trackable ultrasound
US20070167787A1 (en) * 2005-06-21 2007-07-19 Glossop Neil D Device and method for a trackable ultrasound
US8632461B2 (en) 2005-06-21 2014-01-21 Koninklijke Philips N.V. System, method and apparatus for navigated therapy and diagnosis
US20060290813A1 (en) * 2005-06-28 2006-12-28 Fujitsu Component Limited Remote console unit and remote display apparatus
US8200851B2 (en) 2005-06-28 2012-06-12 Fujitsu Component Limited Remote console unit and remote display apparatus
US10335242B2 (en) 2005-06-30 2019-07-02 Intuitive Surgical Operations, Inc. Indicator for tool state and communication in multi-arm robotic telesurgery
US8100133B2 (en) 2005-06-30 2012-01-24 Intuitive Surgical Operations Indicator for tool state and communication in multi-arm robotic telesurgery and method of use
US11723735B2 (en) 2005-06-30 2023-08-15 Intuitive Surgical Operations, Inc. Indicator for tool state and communication in multi-arm robotic telesurgery
US11337765B2 (en) 2005-06-30 2022-05-24 Intuitive Surgical Operations, Inc. Indicator for tool state and communication in multi-arm robotic telesurgery
US9259276B2 (en) 2005-06-30 2016-02-16 Intuitive Surgical Operations, Inc. Indicator for tool state and communication in multiarm telesurgery
US8894634B2 (en) 2005-06-30 2014-11-25 Intuitive Surgical Operations, Inc. Indicator for tool state and communication in multi-arm robotic telesurgery
US20070005045A1 (en) * 2005-06-30 2007-01-04 Intuitive Surgical Inc. Indicator for tool state and communication in multi-arm robotic telesurgery
US10258416B2 (en) 2005-06-30 2019-04-16 Intuitive Surgical Operations, Inc. Indicator for tool state and communication in multiarm robotic telesurgery
US9661991B2 (en) 2005-08-24 2017-05-30 Koninklijke Philips N.V. System, method and devices for navigated flexible endoscopy
US20070055128A1 (en) * 2005-08-24 2007-03-08 Glossop Neil D System, method and devices for navigated flexible endoscopy
US8467851B2 (en) 2005-09-21 2013-06-18 Medtronic Navigation, Inc. Method and apparatus for positioning a reference frame
US7835784B2 (en) 2005-09-21 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for positioning a reference frame
US9089343B2 (en) 2005-10-03 2015-07-28 Smith & Nephew, Inc. Locking instrument assembly
US20070096863A1 (en) * 2005-10-31 2007-05-03 Benito Valencia Avila System for protecting circuitry in high-temperature environments
US8386022B2 (en) 2005-11-03 2013-02-26 Orthosoft Inc. Multifaceted tracker device for computer-assisted surgery
US20070100325A1 (en) * 2005-11-03 2007-05-03 Sebastien Jutras Multifaceted tracker device for computer-assisted surgery
US20070149977A1 (en) * 2005-11-28 2007-06-28 Zimmer Technology, Inc. Surgical component positioner
US8998930B2 (en) 2005-12-20 2015-04-07 Intuitive Surgical Operations, Inc. Disposable sterile surgical adaptor
US7520880B2 (en) 2006-01-09 2009-04-21 Zimmer Technology, Inc. Adjustable surgical support base with integral hinge
US20070173849A1 (en) * 2006-01-09 2007-07-26 Zimmer Technology, Inc. Adjustable surgical support base with integral hinge
US20070173850A1 (en) * 2006-01-10 2007-07-26 Zimmer Technology, Inc. Bone resection guide and method
US7744600B2 (en) 2006-01-10 2010-06-29 Zimmer Technology, Inc. Bone resection guide and method
US9168102B2 (en) 2006-01-18 2015-10-27 Medtronic Navigation, Inc. Method and apparatus for providing a container to a sterile environment
US10597178B2 (en) 2006-01-18 2020-03-24 Medtronic Navigation, Inc. Method and apparatus for providing a container to a sterile environment
US20070173854A1 (en) * 2006-01-23 2007-07-26 Berger Richard A Bone resection apparatus and method for knee surgery
US7780671B2 (en) 2006-01-23 2010-08-24 Zimmer Technology, Inc. Bone resection apparatus and method for knee surgery
US20100286699A1 (en) * 2006-01-23 2010-11-11 Zimmer Technology, Inc. Bone resection apparatus and method for knee surgery
US9808262B2 (en) 2006-02-15 2017-11-07 Howmedica Osteonics Corporation Arthroplasty devices and related methods
US9017336B2 (en) 2006-02-15 2015-04-28 Otismed Corporation Arthroplasty devices and related methods
US20070239153A1 (en) * 2006-02-22 2007-10-11 Hodorek Robert A Computer assisted surgery system using alternative energy technology
US8112292B2 (en) 2006-04-21 2012-02-07 Medtronic Navigation, Inc. Method and apparatus for optimizing a therapy
US8025620B2 (en) 2006-04-26 2011-09-27 Medtronic, Inc. Methods and devices for stabilizing tissue
US7794387B2 (en) 2006-04-26 2010-09-14 Medtronic, Inc. Methods and devices for stabilizing tissue
US8432417B2 (en) 2006-05-08 2013-04-30 C. R. Bard, Inc. User interface and methods for sonographic display device
US8937630B2 (en) 2006-05-08 2015-01-20 C. R. Bard, Inc. User interface and methods for sonographic display device
US20080033293A1 (en) * 2006-05-08 2008-02-07 C. R. Bard, Inc. User interface and methods for sonographic display device
US8228347B2 (en) * 2006-05-08 2012-07-24 C. R. Bard, Inc. User interface and methods for sonographic display device
US11304769B2 (en) * 2006-06-13 2022-04-19 Intuitive Surgical Operations, Inc. Side looking minimally invasive surgery instrument assembly
US8660635B2 (en) 2006-09-29 2014-02-25 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
US9597154B2 (en) 2006-09-29 2017-03-21 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
US8460302B2 (en) 2006-12-18 2013-06-11 Otismed Corporation Arthroplasty devices and related methods
US20080147072A1 (en) * 2006-12-18 2008-06-19 Ilwhan Park Arthroplasty devices and related methods
US8543338B2 (en) 2007-01-16 2013-09-24 Simbionix Ltd. System and method for performing computerized simulations for image-guided procedures using a patient specific model
US8500451B2 (en) 2007-01-16 2013-08-06 Simbionix Ltd. Preoperative surgical simulation
US8491604B2 (en) 2007-02-23 2013-07-23 Microdexterity Systems, Inc. Manipulator
US7950306B2 (en) 2007-02-23 2011-05-31 Microdexterity Systems, Inc. Manipulator
US20110088500A1 (en) * 2007-02-23 2011-04-21 Microdexterity Systems, Inc. Manipulator
US8617174B2 (en) 2007-08-07 2013-12-31 Stryker Leibinger Gmbh & Co. Kg Method of virtually planning a size and position of a prosthetic implant
US8617173B2 (en) 2007-08-07 2013-12-31 Stryker Leibinger Gmbh & Co. Kg System for assessing a fit of a femoral implant
US20090043556A1 (en) * 2007-08-07 2009-02-12 Axelson Stuart L Method of and system for planning a surgery
US8382765B2 (en) 2007-08-07 2013-02-26 Stryker Leibinger Gmbh & Co. Kg. Method of and system for planning a surgery
US8905920B2 (en) 2007-09-27 2014-12-09 Covidien Lp Bronchoscope adapter and method
US9668639B2 (en) 2007-09-27 2017-06-06 Covidien Lp Bronchoscope adapter and method
US9986895B2 (en) 2007-09-27 2018-06-05 Covidien Lp Bronchoscope adapter and method
US10390686B2 (en) 2007-09-27 2019-08-27 Covidien Lp Bronchoscope adapter and method
US10980400B2 (en) 2007-09-27 2021-04-20 Covidien Lp Bronchoscope adapter and method
US20090110498A1 (en) * 2007-10-25 2009-04-30 Ilwhan Park Arthroplasty systems and devices, and related methods
US8460303B2 (en) 2007-10-25 2013-06-11 Otismed Corporation Arthroplasty systems and devices, and related methods
USD691719S1 (en) 2007-10-25 2013-10-15 Otismed Corporation Arthroplasty jig blank
US20100261998A1 (en) * 2007-11-19 2010-10-14 Stiehl James B Hip implant registration in computer assisted surgery
US9017335B2 (en) 2007-11-19 2015-04-28 Blue Ortho Hip implant registration in computer assisted surgery
US20090138020A1 (en) * 2007-11-27 2009-05-28 Otismed Corporation Generating mri images usable for the creation of 3d bone models employed to make customized arthroplasty jigs
US10582934B2 (en) 2007-11-27 2020-03-10 Howmedica Osteonics Corporation Generating MRI images usable for the creation of 3D bone models employed to make customized arthroplasty jigs
US8737700B2 (en) 2007-12-18 2014-05-27 Otismed Corporation Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
US8968320B2 (en) 2007-12-18 2015-03-03 Otismed Corporation System and method for manufacturing arthroplasty jigs
US8617171B2 (en) 2007-12-18 2013-12-31 Otismed Corporation Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
US9649170B2 (en) 2007-12-18 2017-05-16 Howmedica Osteonics Corporation Arthroplasty system and related methods
US8715291B2 (en) 2007-12-18 2014-05-06 Otismed Corporation Arthroplasty system and related methods
US8734455B2 (en) 2008-02-29 2014-05-27 Otismed Corporation Hip resurfacing surgical guide tool
US9408618B2 (en) 2008-02-29 2016-08-09 Howmedica Osteonics Corporation Total hip replacement surgical guide tool
US9575140B2 (en) 2008-04-03 2017-02-21 Covidien Lp Magnetic interference detection system and method
US9646113B2 (en) 2008-04-29 2017-05-09 Howmedica Osteonics Corporation Generation of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices
US8480679B2 (en) 2008-04-29 2013-07-09 Otismed Corporation Generation of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices
US8532361B2 (en) 2008-04-30 2013-09-10 Otismed Corporation System and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US8483469B2 (en) 2008-04-30 2013-07-09 Otismed Corporation System and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US9208263B2 (en) 2008-04-30 2015-12-08 Howmedica Osteonics Corporation System and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US8473032B2 (en) 2008-06-03 2013-06-25 Superdimension, Ltd. Feature-based registration method
US11783498B2 (en) 2008-06-03 2023-10-10 Covidien Lp Feature-based registration method
US9659374B2 (en) 2008-06-03 2017-05-23 Covidien Lp Feature-based registration method
US10096126B2 (en) 2008-06-03 2018-10-09 Covidien Lp Feature-based registration method
US11074702B2 (en) 2008-06-03 2021-07-27 Covidien Lp Feature-based registration method
US9117258B2 (en) 2008-06-03 2015-08-25 Covidien Lp Feature-based registration method
US9271803B2 (en) 2008-06-06 2016-03-01 Covidien Lp Hybrid registration method
US11931141B2 (en) 2008-06-06 2024-03-19 Covidien Lp Hybrid registration method
US10285623B2 (en) 2008-06-06 2019-05-14 Covidien Lp Hybrid registration method
US8452068B2 (en) 2008-06-06 2013-05-28 Covidien Lp Hybrid registration method
US8467589B2 (en) 2008-06-06 2013-06-18 Covidien Lp Hybrid registration method
US10478092B2 (en) 2008-06-06 2019-11-19 Covidien Lp Hybrid registration method
US10674936B2 (en) 2008-06-06 2020-06-09 Covidien Lp Hybrid registration method
US10912487B2 (en) 2008-07-10 2021-02-09 Covidien Lp Integrated multi-function endoscopic tool
US11241164B2 (en) 2008-07-10 2022-02-08 Covidien Lp Integrated multi-functional endoscopic tool
US10070801B2 (en) 2008-07-10 2018-09-11 Covidien Lp Integrated multi-functional endoscopic tool
US8932207B2 (en) 2008-07-10 2015-01-13 Covidien Lp Integrated multi-functional endoscopic tool
US11234611B2 (en) 2008-07-10 2022-02-01 Covidien Lp Integrated multi-functional endoscopic tool
US20100023015A1 (en) * 2008-07-23 2010-01-28 Otismed Corporation System and method for manufacturing arthroplasty jigs having improved mating accuracy
US8777875B2 (en) 2008-07-23 2014-07-15 Otismed Corporation System and method for manufacturing arthroplasty jigs having improved mating accuracy
US20110166435A1 (en) * 2008-09-17 2011-07-07 Inertial Orthopaedic Navigation Solutions Pty Ltd. Surgical orientation system and associated method
US9125678B2 (en) 2008-09-17 2015-09-08 Inertial Orthopaedic Navigation Solutions Pty Ltd Surgical orientation system and associated method
AU2009295253B2 (en) * 2008-09-17 2012-01-12 Gyder Surgical Pty Ltd A surgical orientation system and associated method
WO2010031111A1 (en) 2008-09-17 2010-03-25 Robert Lye A surgical orientation system and associated method
US8165658B2 (en) 2008-09-26 2012-04-24 Medtronic, Inc. Method and apparatus for positioning a guide relative to a base
US7908757B2 (en) 2008-10-16 2011-03-22 Hexagon Metrology, Inc. Articulating measuring arm with laser scanner
US10337853B2 (en) 2008-10-16 2019-07-02 Hexagon Metrology, Inc. Articulating measuring arm with laser scanner
US9618330B2 (en) 2008-10-16 2017-04-11 Hexagon Metrology, Inc. Articulating measuring arm with laser scanner
US20100095542A1 (en) * 2008-10-16 2010-04-22 Romer, Inc. Articulating measuring arm with laser scanner
US8955229B2 (en) 2008-10-16 2015-02-17 Hexagon Metrology, Inc. Articulating measuring arm with optical scanner
US8176646B2 (en) 2008-10-16 2012-05-15 Hexagon Metrology, Inc. Articulating measuring arm with laser scanner
US8438747B2 (en) 2008-10-16 2013-05-14 Hexagon Metrology, Inc. Articulating measuring arm with laser scanner
US20110192043A1 (en) * 2008-10-16 2011-08-11 Hexagon Metrology, Inc. Articulating measuring arm with laser scanner
US11029142B2 (en) 2008-10-16 2021-06-08 Hexagon Metrology, Inc. Articulating measuring arm with laser scanner
US8731641B2 (en) 2008-12-16 2014-05-20 Medtronic Navigation, Inc. Combination of electromagnetic and electropotential localization
US8175681B2 (en) 2008-12-16 2012-05-08 Medtronic Navigation Inc. Combination of electromagnetic and electropotential localization
US8617175B2 (en) 2008-12-16 2013-12-31 Otismed Corporation Unicompartmental customized arthroplasty cutting jigs and methods of making the same
US9687306B2 (en) 2009-03-18 2017-06-27 Integrated Spinal Concepts, Inc. Image-guided minimal-step placement of screw into bone
US9216048B2 (en) 2009-03-18 2015-12-22 Integrated Spinal Concepts, Inc. Image-guided minimal-step placement of screw into bone
US11471220B2 (en) 2009-03-18 2022-10-18 Integrated Spinal Concepts, Inc. Image-guided minimal-step placement of screw into bone
US10603116B2 (en) 2009-03-18 2020-03-31 Integrated Spinal Concepts, Inc. Image-guided minimal-step placement of screw into bone
US10154798B2 (en) 2009-04-08 2018-12-18 Covidien Lp Locatable catheter
US9113813B2 (en) 2009-04-08 2015-08-25 Covidien Lp Locatable catheter
US8611984B2 (en) 2009-04-08 2013-12-17 Covidien Lp Locatable catheter
US20100275718A1 (en) * 2009-04-29 2010-11-04 Microdexterity Systems, Inc. Manipulator
US9655628B2 (en) 2009-05-06 2017-05-23 Blue Ortho Reduced invasivity fixation system for trackers in computer assisted surgery
US20140106325A1 (en) * 2009-05-13 2014-04-17 Medtronic Navigation, Inc. Method And Apparatus For Identifying An Instrument Location Based On Measuring A Characteristic
US11468792B2 (en) * 2009-05-13 2022-10-11 Medtronic Navigation, Inc. Method and apparatus for identifying an instrument location based on measuring a characteristic
US10755598B2 (en) * 2009-05-13 2020-08-25 Medtronic Navigation, Inc. Method and apparatus for identifying an instrument location based on measuring a characteristic
US7898353B2 (en) 2009-05-15 2011-03-01 Freescale Semiconductor, Inc. Clock conditioning circuit
US20120143198A1 (en) * 2009-06-30 2012-06-07 Blue Ortho Adjustable guide in computer assisted orthopaedic surgery
US9220509B2 (en) * 2009-06-30 2015-12-29 Blue Ortho Adjustable guide in computer assisted orthopaedic surgery
US8494613B2 (en) 2009-08-31 2013-07-23 Medtronic, Inc. Combination localization system
US8494614B2 (en) 2009-08-31 2013-07-23 Regents Of The University Of Minnesota Combination localization system
US9770306B2 (en) 2009-10-01 2017-09-26 Mako Surgical Corp. Surgical system for positioning prosthetic component and/or for constraining movement of surgical tool
US9724167B2 (en) 2009-10-01 2017-08-08 Mako Surgical Corp. System with brake to limit manual movement of member and control system for same
US10052166B2 (en) 2009-10-01 2018-08-21 Mako Surgical Corp. System with brake to limit manual movement of member and control system for same
US10864047B2 (en) 2009-10-01 2020-12-15 Mako Surgical Corp. Surgical system for positioning prosthetic component and/or for constraining movement of surgical tool
US20150164600A1 (en) * 2009-10-01 2015-06-18 Mako Surgical Corp. Surgical system for positioning prosthetic component and/or for constraining movement of surgical tool
US9597157B2 (en) * 2009-10-01 2017-03-21 Mako Surgical Corp. Surgical system for positioning prosthetic component and/or for constraining movement of surgical tool
US11672610B2 (en) 2009-10-01 2023-06-13 Mako Surgical Corp. Surgical system for positioning prosthetic component and/or for constraining movement of surgical tool
US10206750B2 (en) 2009-10-01 2019-02-19 Mako Surgical Corp. Surgical system for positioning prosthetic component and/or for constraining movement of surgical tool
US8099877B2 (en) 2009-11-06 2012-01-24 Hexagon Metrology Ab Enhanced position detection for a CMM
US8327555B2 (en) 2009-11-06 2012-12-11 Hexagon Metrology Ab Enhanced position detection for a CMM
US20110107614A1 (en) * 2009-11-06 2011-05-12 Hexagon Metrology Ab Enhanced position detection for a cmm
US10582834B2 (en) 2010-06-15 2020-03-10 Covidien Lp Locatable expandable working channel and method
US20120059360A1 (en) * 2010-09-06 2012-03-08 Olympus Corporation Surgical power transmission adapter and medical manipulator system
US11071687B2 (en) * 2011-07-27 2021-07-27 Zoll Medical Corporation Method and apparatus for monitoring manual chest compression efficiency during CPR
US20150359706A1 (en) * 2011-07-27 2015-12-17 Zoll Medical Corporation Method and Apparatus for Monitoring Manual Chest Compression Efficiency During CPR
US9402637B2 (en) 2012-10-11 2016-08-02 Howmedica Osteonics Corporation Customized arthroplasty cutting guides and surgical methods using the same
US11284951B2 (en) 2012-11-09 2022-03-29 Blue Belt Technologies, Inc. Systems and methods for navigation and control of an implant positioning device
EP3998048A1 (en) 2012-11-09 2022-05-18 Blue Belt Technologies, Inc. Systems for navigation and control of an implant positioning device
US11229491B2 (en) 2012-11-09 2022-01-25 Blue Belt Technologies, Inc. Systems and methods for navigation and control of an implant positioning device
US10743950B2 (en) 2012-11-09 2020-08-18 Blue Belt Technologies, Inc. Systems and methods for navigation and control of an implant positioning device
US11147638B2 (en) 2012-11-09 2021-10-19 Blue Belt Technologies, Inc. Systems and methods for navigation and control of an implant positioning device
WO2014074676A2 (en) 2012-11-09 2014-05-15 Blue Belt Technologies, Inc. Systems and methods for navigation and control of an implant positioning device
US10888359B2 (en) 2013-03-14 2021-01-12 DePuy Synthes Products, Inc. Methods and devices for polyaxial screw alignment
US9999448B2 (en) 2013-03-14 2018-06-19 DePuy Synthes Products, Inc. Methods and devices for polyaxial screw alignment
US10318655B2 (en) 2013-09-18 2019-06-11 Medicrea International Method making it possible to produce the ideal curvature of a rod of vertebral osteosynthesis material designed to support a patient's vertebral column
US10970426B2 (en) 2013-09-18 2021-04-06 Medicrea International SA Methods, systems, and devices for designing and manufacturing a spinal rod
US11918295B2 (en) 2013-10-18 2024-03-05 Medicrea International Methods, systems, and devices for designing and manufacturing a spinal rod
US11197718B2 (en) 2013-10-18 2021-12-14 Medicrea Iniernational Methods, systems, and devices for designing and manufacturing a spinal rod
US10426553B2 (en) 2013-10-18 2019-10-01 Medicrea International Methods, systems, and devices for designing and manufacturing a spinal rod
US10420615B1 (en) 2013-10-18 2019-09-24 Medicrea International Methods, systems, and devices for designing and manufacturing a spinal rod
US10045824B2 (en) 2013-10-18 2018-08-14 Medicrea International Methods, systems, and devices for designing and manufacturing a rod to support a vertebral column of a patient
US10314657B2 (en) 2013-10-18 2019-06-11 Medicrea International Methods, systems, and devices for designing and manufacturing a spinal rod
US11197719B2 (en) 2013-10-18 2021-12-14 Medicrea International Methods, systems, and devices for designing and manufacturing a spinal rod
US10433912B1 (en) 2013-10-18 2019-10-08 Medicrea International Methods, systems, and devices for designing and manufacturing a spinal rod
US10441363B1 (en) 2013-10-18 2019-10-15 Medicrea International Methods, systems, and devices for designing and manufacturing a spinal rod
US10413365B1 (en) 2013-10-18 2019-09-17 Medicrea International Methods, systems, and devices for designing and manufacturing a spinal rod
US10433913B2 (en) 2013-10-18 2019-10-08 Medicrea International Methods, systems, and devices for designing and manufacturing a spinal rod
US10973582B2 (en) 2013-10-18 2021-04-13 Medicrea International Methods, systems, and devices for designing and manufacturing a spinal rod
US9737287B2 (en) 2014-05-13 2017-08-22 Vycor Medical, Inc. Guidance system mounts for surgical introducers
US10327748B2 (en) 2014-05-13 2019-06-25 Vycor Medical, Inc. Guidance system mounts for surgical introducers
US11116487B2 (en) 2014-05-13 2021-09-14 Vycor Medical, Inc. Guidance system mounts for surgical introducers
US10952593B2 (en) 2014-06-10 2021-03-23 Covidien Lp Bronchoscope adapter
US9993177B2 (en) 2014-08-28 2018-06-12 DePuy Synthes Products, Inc. Systems and methods for intraoperatively measuring anatomical orientation
US11395604B2 (en) 2014-08-28 2022-07-26 DePuy Synthes Products, Inc. Systems and methods for intraoperatively measuring anatomical orientation
US9579043B2 (en) 2014-08-28 2017-02-28 DePuy Synthes Products, Inc. Systems and methods for intraoperatively measuring anatomical orientation
US11215442B2 (en) 2014-09-19 2022-01-04 Hexagon Metrology, Inc. Multi-mode portable coordinate measuring machine
US10663284B2 (en) 2014-09-19 2020-05-26 Hexagon Metrology, Inc. Multi-mode portable coordinate measuring machine
US10036627B2 (en) 2014-09-19 2018-07-31 Hexagon Metrology, Inc. Multi-mode portable coordinate measuring machine
US20170340353A1 (en) * 2015-02-18 2017-11-30 Prabhat Kumar Ahluwalia Systems and methods for a dynamic manipulator holder
US10413327B2 (en) * 2015-02-18 2019-09-17 Prabhat Kumar Ahluwalia Systems and methods for a dynamic manipulator holder
US10426555B2 (en) 2015-06-03 2019-10-01 Covidien Lp Medical instrument with sensor for use in a system and method for electromagnetic navigation
US11801024B2 (en) 2015-10-28 2023-10-31 Medtronic Navigation, Inc. Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient
US11006914B2 (en) 2015-10-28 2021-05-18 Medtronic Navigation, Inc. Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient
US10456211B2 (en) 2015-11-04 2019-10-29 Medicrea International Methods and apparatus for spinal reconstructive surgery and measuring spinal length and intervertebral spacing, tension and rotation
US11660149B2 (en) 2015-12-30 2023-05-30 DePuy Synthes Products, Inc. Method and apparatus for intraoperative measurements of anatomical orientation
US10743944B2 (en) 2015-12-30 2020-08-18 DePuy Synthes Products, Inc. Method and apparatus for intraoperative measurements of anatomical orientation
US11160619B2 (en) 2015-12-30 2021-11-02 DePuy Synthes Products, Inc. Method and apparatus for intraoperative measurements of anatomical orientation
US9554411B1 (en) 2015-12-30 2017-01-24 DePuy Synthes Products, Inc. Systems and methods for wirelessly powering or communicating with sterile-packed devices
US11223245B2 (en) 2015-12-30 2022-01-11 DePuy Synthes Products, Inc. Systems and methods for wirelessly powering or communicating with sterile-packed devices
US11563345B2 (en) 2015-12-30 2023-01-24 Depuy Synthes Products, Inc Systems and methods for wirelessly powering or communicating with sterile-packed devices
US10335241B2 (en) 2015-12-30 2019-07-02 DePuy Synthes Products, Inc. Method and apparatus for intraoperative measurements of anatomical orientation
US10714987B2 (en) 2015-12-30 2020-07-14 DePuy Synthes Products, Inc. Systems and methods for wirelessly powering or communicating with sterile-packed devices
US10396606B2 (en) 2015-12-30 2019-08-27 DePuy Synthes Products, Inc. Systems and methods for wirelessly powering or communicating with sterile-packed devices
US11464596B2 (en) 2016-02-12 2022-10-11 Medos International Sarl Systems and methods for intraoperatively measuring anatomical orientation
US11160617B2 (en) 2016-05-16 2021-11-02 Covidien Lp System and method to access lung tissue
US11786317B2 (en) 2016-05-16 2023-10-17 Covidien Lp System and method to access lung tissue
US10478254B2 (en) 2016-05-16 2019-11-19 Covidien Lp System and method to access lung tissue
US10820835B2 (en) 2016-09-12 2020-11-03 Medos International Sarl Systems and methods for anatomical alignment
US10751126B2 (en) 2016-10-28 2020-08-25 Covidien Lp System and method for generating a map for electromagnetic navigation
US10446931B2 (en) 2016-10-28 2019-10-15 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10792106B2 (en) 2016-10-28 2020-10-06 Covidien Lp System for calibrating an electromagnetic navigation system
US10615500B2 (en) 2016-10-28 2020-04-07 Covidien Lp System and method for designing electromagnetic navigation antenna assemblies
US10418705B2 (en) 2016-10-28 2019-09-17 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US11786314B2 (en) 2016-10-28 2023-10-17 Covidien Lp System for calibrating an electromagnetic navigation system
US10517505B2 (en) 2016-10-28 2019-12-31 Covidien Lp Systems, methods, and computer-readable media for optimizing an electromagnetic navigation system
US11759264B2 (en) 2016-10-28 2023-09-19 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US10722311B2 (en) 2016-10-28 2020-07-28 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US10638952B2 (en) 2016-10-28 2020-05-05 Covidien Lp Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system
US11672604B2 (en) 2016-10-28 2023-06-13 Covidien Lp System and method for generating a map for electromagnetic navigation
US11517347B2 (en) 2016-11-07 2022-12-06 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
US10543016B2 (en) 2016-11-07 2020-01-28 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
US11045182B2 (en) 2016-11-07 2021-06-29 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
US10376258B2 (en) 2016-11-07 2019-08-13 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
US11612436B2 (en) 2016-12-12 2023-03-28 Medicrea International Systems, methods, and devices for developing patient-specific medical treatments, operations, and procedures
CN110430836A (en) * 2017-03-15 2019-11-08 安托踏实公司 For the system in spinal surgery relative to object axis guidance Surigical tool
US11089975B2 (en) 2017-03-31 2021-08-17 DePuy Synthes Products, Inc. Systems, devices and methods for enhancing operative accuracy using inertial measurement units
US11185369B2 (en) 2017-04-21 2021-11-30 Medicrea Nternational Systems, methods, and devices for developing patient-specific spinal treatments, operations, and procedures
US10292770B2 (en) 2017-04-21 2019-05-21 Medicrea International Systems, methods, and devices for developing patient-specific spinal treatments, operations, and procedures
US11219489B2 (en) 2017-10-31 2022-01-11 Covidien Lp Devices and systems for providing sensors in parallel with medical tools
US10918422B2 (en) 2017-12-01 2021-02-16 Medicrea International Method and apparatus for inhibiting proximal junctional failure
US11331126B2 (en) * 2019-03-13 2022-05-17 Curexo, Inc. Surgical tool handle device
US11877801B2 (en) 2019-04-02 2024-01-23 Medicrea International Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures
US11925417B2 (en) 2019-04-02 2024-03-12 Medicrea International Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures
US11769251B2 (en) 2019-12-26 2023-09-26 Medicrea International Systems and methods for medical image analysis
US11523852B1 (en) * 2021-08-26 2022-12-13 University Of Utah Research Foundation Active compression bone screw

Also Published As

Publication number Publication date
JP2930314B2 (en) 1999-08-03
EP0326768A3 (en) 1991-01-23
EP0326768A2 (en) 1989-08-09
JPH01280449A (en) 1989-11-10

Similar Documents

Publication Publication Date Title
US5305203A (en) Computer-aided surgery apparatus
US5748767A (en) Computer-aided surgery apparatus
EP0469966B1 (en) Computer-aided surgery apparatus
Nolte et al. A new approach to computer-aided spine surgery: fluoroscopy-based surgical navigation
US6928742B2 (en) Method and apparatus for finding the position of a mechanical axis of a limb
Radermacher et al. Image guided Orthopedic Surgery using individual templates: Experimental results and aspects of the development of a demonstrator for pelvis surgery
US8167884B2 (en) System and methods for improved access to vertebral bodies for kyphoplasty, vertebroplasty, vertebral body biopsy or screw placement
US6922581B2 (en) Computer assisted intramedullary rod surgery system with enhanced features
US5769078A (en) Device and process for preparing for and supporting surgical operations
US11064904B2 (en) Smart drill, jig, and method of orthopedic surgery
JP2007531596A (en) Method and apparatus for providing a reference array input device
US20120089012A1 (en) Method and apparatus for navigating a cutting tool during orthopedic surgery using a localization system
CA2369039A1 (en) Method and arrangement for determining where to position fixation means
JP2004202239A (en) Instrument for surgical operation and positioning method for it
EP1545342B1 (en) A guide block for use in surgery
US6387100B1 (en) Method and arrangement for position determining of bone structure
WO2006030637A1 (en) Bone tracing device securing member
EP0977514B1 (en) Orthopaedic system allowing alignment of bones or fracture reduction
CA1336451C (en) Computer-aided surgery apparatus
EP1485031B1 (en) A surgical navigation tool
AU2012200215A1 (en) Systems for providing a reference plane for mounting an acetabular cup

Legal Events

Date Code Title Description
AS Assignment

Owner name: FARO MEDICAL TECHNOLOGIES (U.S.) INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FARO MEDICAL TECHNOLOGIES INC.;REEL/FRAME:006336/0707

Effective date: 19920101

AS Assignment

Owner name: FARO TECHNOLOGIES, INC.

Free format text: CHANGE OF NAME;ASSIGNOR:FARO TECHNOLOGIES (U.S.) INC.;REEL/FRAME:006635/0215

Effective date: 19930205

AS Assignment

Owner name: FARO SUBSIDIARY CORP., FLORIDA

Free format text: MERGER;ASSIGNOR:FARO TECHNOLOGIES, INC.;REEL/FRAME:006652/0040

Effective date: 19921229

AS Assignment

Owner name: FARO TECHNOLOGIES, INC., FLORIDA

Free format text: CHANGE OF NAME;ASSIGNOR:FARO SUBSIDIARY CORP.;REEL/FRAME:006627/0952

Effective date: 19921229

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: XENON RESEARCH, INC., FLORIDA

Free format text: NOTICE OF ASSIGNMENT OF PATENTS;ASSIGNOR:FARO TECHNOLOGIES, INC.;REEL/FRAME:007077/0488

Effective date: 19940615

AS Assignment

Owner name: FARO TECHNOLOGIES, INC., FLORIDA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:XENON RESEARCH, INC., A FLORIDA CORP.;REEL/FRAME:008246/0833

Effective date: 19961113

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAT HLDR NO LONGER CLAIMS SMALL ENT STAT AS INDIV INVENTOR (ORIGINAL EVENT CODE: LSM1); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
FPAY Fee payment

Year of fee payment: 8

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 12