US5993856A - Pharmaceutical preparations and methods for their administration - Google Patents

Pharmaceutical preparations and methods for their administration Download PDF

Info

Publication number
US5993856A
US5993856A US08/971,346 US97134697A US5993856A US 5993856 A US5993856 A US 5993856A US 97134697 A US97134697 A US 97134697A US 5993856 A US5993856 A US 5993856A
Authority
US
United States
Prior art keywords
drug
formulation
treatment
effective
endometriosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/971,346
Inventor
Vanaja V. Ragavan
Gerrianne M. DiPiano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEMMEPHARMA HOLDING COMPANY Inc
Original Assignee
FemmePharma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
US case filed in Delaware District Court litigation Critical https://portal.unifiedpatents.com/litigation/Delaware%20District%20Court/case/1%3A10-cv-00641 Source: District Court Jurisdiction: Delaware District Court "Unified Patents Litigation Data" by Unified Patents is licensed under a Creative Commons Attribution 4.0 International License.
First worldwide family litigation filed litigation https://patents.darts-ip.com/?family=27365086&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US5993856(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by FemmePharma filed Critical FemmePharma
Priority to US08/971,346 priority Critical patent/US5993856A/en
Assigned to FEMMEPHARMA, reassignment FEMMEPHARMA, ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DIPIANO, GERIANNE, M., RAGAVAN, VANAJA V.
Priority to US09/355,213 priority patent/US6416778B1/en
Priority to JP53206098A priority patent/JP2001511773A/en
Priority to EP05015104A priority patent/EP1611878A1/en
Priority to EP10185383A priority patent/EP2316424A1/en
Priority to ES98902614T priority patent/ES2260828T3/en
Priority to AU59227/98A priority patent/AU743157B2/en
Priority to AT98902614T priority patent/ATE321532T1/en
Priority to DE69834025T priority patent/DE69834025T2/en
Priority to PT98902614T priority patent/PT977555E/en
Priority to DK98902614T priority patent/DK0977555T3/en
Priority to PCT/US1998/000916 priority patent/WO1998032422A1/en
Priority to EP98902614A priority patent/EP0977555B1/en
Priority to CA002278541A priority patent/CA2278541C/en
Publication of US5993856A publication Critical patent/US5993856A/en
Application granted granted Critical
Priority to US10/147,762 priority patent/US6652874B2/en
Assigned to FEMMEPHARMA HOLDING COMPANY, INC. reassignment FEMMEPHARMA HOLDING COMPANY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FEMMEPHARMA, INC.
Assigned to FEMMEPHARMA, INC. reassignment FEMMEPHARMA, INC. AFFIDAVIT REGARDING NAME OF BUSINESS Assignors: FEMMEPHARMA
Priority to JP2010052254A priority patent/JP2010138196A/en
Assigned to U.S. HEALTHCARE I, LLC reassignment U.S. HEALTHCARE I, LLC PATENT SECURITY AGREEMENT Assignors: DRUGTECH CORPORATION
Assigned to DRUGTECH CORPORATION reassignment DRUGTECH CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: U.S. HEALTHCARE, LLC (AS ADMINISTRATIVE AND COLLATERAL AGENT)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0034Urogenital system, e.g. vagina, uterus, cervix, penis, scrotum, urethra, bladder; Personal lubricants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/02Drugs for genital or sexual disorders; Contraceptives for disorders of the vagina
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition
    • Y10S977/795Composed of biological material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/906Drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/915Therapeutic or pharmaceutical composition

Definitions

  • the present invention relates to pharmaceutical preparations, and especially pharmaceutical formulations that can be introduced topically, locally, intrapelvic, intraperitoneal or directly on reproductive organs of interest in amounts effective to treat various conditions, particularly local diseases of female reproductive system, such as pelvic, uterine, cervical and vaginal diseases which are present in this region of the body.
  • danazol an isoxazolo derivative of 17 ⁇ ethenyltestosterone (an androgen hormone) which is commonly administered to women for treatment of endometriosis in dosages of up to 800 mg daily, and at such higher doses, adverse side effects are seen which may include weight gain, voice change, development of facial and chest hair, loss of libido, acne, and central nervous system ("CNS”) symptoms such as depression, anxiety, fatigue, nausea and diarrhea, as well as the inhibition of pregnancy while undergoing treatment. See, for example, Spooner, Classification of Side Effects to Danazol Therapy, Winthrop Laboratories, Surrey, England.
  • Mizutani, et al. in Fertility and Sterility 63, 1184-1189 (1995), describes administration of danazole vaginally by means of a 100 mg suppository, and compared the results with oral administration of a 400 mg dosage. No effect on the hypothalamic-pituitary-ovarian axis was noted, although high concentrations were present in the ovary,uterus and serum, with insignificant serum levels, following vaginal administration. Mizutani, et al., conducted their study following a report by Igarishi, Asia-Oceania J. Obstet. Gynaecol.
  • vaginally of danazole in a silicone vaginal ring reduced endometriotic tissue in the uterus and increased the incidence of pregnancy in treated women to a statistically significant degree.
  • the immediate drawback to both therapies is the formulation and delivery platform such as vaginal rings and other devices are particularly unsatisfactory for women who already suffer from the cramps and pains associated with endometriosis.
  • the dosages which were used were also quite high and extremely variable and may potentially have a negative and accumulative depot effect.
  • Formulations which have been developed for topical or local delivery intrapelvically, intraperitoneally or directly on reproductive organs of interest administration to a region such as the female reproductive system provide for increased comfort, increased bioavailability, rapid and relatively high blood levels in the regions to be treated in the substantial absence of systemic levels of drug which might cause side effects.
  • These formulations consist of drug micro or nanoparticles, which may be formed of drug alone or in combination with an excipient or polymeric carrier.
  • the excipient or polymer may be used to manipulate release rates and to increase adhesion to the affected region.
  • the particulate formulation can be applied as a dried powder, a liquid suspension or dispersion, or as a topical ointment, creme, lotion, foam or suppository.
  • Rat studies demonstrate rapid uptake of danazole into the tissues affected in endometriosis, with serum drug levels that are almost undetectable.
  • compositions and methods for administration thereof provide for significantly diminished side effects with increased bioavailability and comfort, as compared to conventional drug administration techniques, avoiding oral and parenteral administration, the use of complex and expensive biocompatible polymeric material, and the elimination of the need for insertion and maintenance of potentially infectious foreign objects into the body such as intrauterine devices, vaginal rings, and suppositories.
  • the formulations are designed to provide maximum uptake in the affected tissues with rapid dissemination throughout the region to be treated, with little to no increase in systemic blood levels of the drug.
  • the formulations can consist solely of drug, or drug combined with excipient or polymeric material.
  • drug can refer to any pharmaceutically active substance capable of being administered in a particulate formulation, which achieves the desired effect.
  • Drugs can be synthetic or isolated natural organic compounds, proteins or peptides, oligonucleotides or nucleotides, or polysaccharides or sugars. Drugs may have any of a variety of activities, which may be inhibitory or stimulatory, such as antibiotic activity, antiviral activity, antifungal activity, steroidal activity, cytotoxic or anti-proliferative activity, anti-inflammatory activity, analgesic or anesthetic activity, as well as contrast or other diagnostic agents.
  • the drug is danazole is a micro or nanoparticulate formulation. This can be achieved by milling of the drug or atomization of drug solution, for example, into a solvent extraction fluid, or other standard techniques.
  • the drug substance may be "associated" in any physical form with a particulate material, for example, adsorbed or absorbed, adhered to or dispersed or suspended in such matter, which may take the form of discrete particles or microparticles in any medicinal preparation, and/or suspended or dissolved in a carrier such as an ointment, gel, paste, lotion, or spray.
  • a particulate material for example, adsorbed or absorbed, adhered to or dispersed or suspended in such matter, which may take the form of discrete particles or microparticles in any medicinal preparation, and/or suspended or dissolved in a carrier such as an ointment, gel, paste, lotion, or spray.
  • Standard excipients include gelatin, casein, lecithin, gum acacia, cholesterol, tragacanth, stearic acid, benzalkonium chloride, calcium stearate, glyceryl monostearate, cetostearyl alcohol, cetomacrogol emulsifying wax, sorbitan esters, polyoxyethylene alkyl ethers, polyoxyethylene castor oil derivatives, polyoxyethylene sorbitan fatty acid esters, polyethylene glycols, polyoxyethylene stearates, colloidol silicon dioxide, phosphates, sodium dodecylsulfate, carboxymethylcellulose calcium, carboxymethylcellulose sodium, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethycellulose phthalate, noncrystalline cellulose, magnesium aluminum silicate, triethanolamine, polyvinyl alcohol, polyvinylpyrrolidone, sugars and starches.
  • the drug is present on or within micro or nanoparticulates formed of a polymeric material.
  • Polymers can be used to increase adhesion to mucosal surfaces, to control release as a function of the diffusion rate of drugs out of the polymeric matrix and/or rate of degradation by hydrolysis or enzyme degradation of the polymers and/or pH alteration, and to increase surface area of the drug relative to the size of the particle.
  • Additional materials such as diagnostic agents, including echogenic gases, radioactive materials--which may also in themselves be therapeutic, and magnetic materials for detection by MRI or PET, can be included in the drug and/or polymer.
  • hydrophilic polymers two classes have appeared to show useful bioadhesive properties: hydrophilic polymers and hydrogels.
  • carboxylic groups e.g., poly[acrylic acid]
  • hydrogels two classes of polymers have appeared to show useful bioadhesive properties: hydrophilic polymers and hydrogels.
  • carboxylic groups e.g., poly[acrylic acid]
  • polymers with the highest concentrations of carboxylic groups should be the materials of choice for bioadhesion on soft tissues.
  • the most promising polymers were sodium alginate, carboxymethylcellulose, hydroxymethylcellulose and methylcellulose. Some of these materials are water-soluble, while others are hydrogels.
  • Rapidly bioerodible polymers such as poly[lactide-co-glycolide], polyanhydrides, and polyorthoesters, whose carboxylic groups are exposed on the external surface as their smooth surface erodes, are excellent candidates for bioadhesive drug delivery systems.
  • polymers containing labile bonds such as polyanhydrides and polyesters, are well known for their hydrolytic reactivity. Their hydrolytic degradation rates can generally be altered by simple changes in the polymer backbone.
  • Representative natural polymers include proteins, such as zein, modified zein, casein, gelatin, gluten, serum albumin, or collagen, and polysaccharides, such as cellulose, dextrans, polyhyaluronic acid, polymers of acrylic and methacrylic esters and alginic acid.
  • proteins such as zein, modified zein, casein, gelatin, gluten, serum albumin, or collagen
  • polysaccharides such as cellulose, dextrans, polyhyaluronic acid, polymers of acrylic and methacrylic esters and alginic acid.
  • Representative synthetic polymers include polyphosphazines, poly(vinyl alcohols), polyamides, polycarbonates, polyalkylenes, polyacrylamides, polyalkylene glycols, polyalkylene oxides, polyalkylene terephthalates, polyvinyl ethers, polyvinyl esters, polyvinyl halides, polyvinylpyrrolidone, polyglycolides, polysiloxanes, polyurethanes and copolymers thereof.
  • Synthetically modified natural polymers include alkyl celluloses, hydroxyalkyl celluloses, cellulose ethers, cellulose esters, and nitrocelluloses.
  • polymers of interest include, but are not limited to, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxybutyl methyl cellulose, cellulose acetate, cellulose propionate, cellulose acetate butyrate, cellulose acetate phthalate, carboxymethyl cellulose, cellulose triacetate, cellulose sulfate sodium salt, poly(methyl methacrylate), poly(ethyl methacrylate), poly(butyl methacrylate), poly(isobutyl methacrylate), poly(hexyl methacrylate), poly(isodecyl methacrylate), poly(lauryl methacrylate), poly(phenyl methacrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl acrylate), poly(octadecyl acrylate) polyethylene, polypropylene, poly(ethylene glycol), poly(ethylene oxide), poly (
  • bioerodible polymers include polylactides, polyglycolides and copolymers thereof, poly(ethylene terephthalate), poly(butic acid), poly(valeric acid), poly(lactide-co-caprolactone), poly[lactide-co-glycolide], polyanhydrides, polyorthoesters, blends and copolymers thereof.
  • biodegradable polymers include synthetic polymers such as polymers of lactic acid and glycolic acid, polyanhydrides, poly(ortho)esters, polyurethanes, poly(butic acid), poly(valeric acid), and poly(lactide-co-caprolactone), and natural polymers such as alginate and other polysaccharides including dextran and cellulose, collagen, chemical derivatives thereof (substitutions, additions of chemical groups, for example, alkyl, alkylene, hydroxylations, oxidations, and other modifications routinely made by those skilled in the art), albumin and other hydrophilic proteins, zein and other prolamines and hydrophobic proteins, copolymers and mixtures thereof. In general, these materials degrade either by enzymatic hydrolysis or exposure to water in vivo, by surface or bulk erosion.
  • polymers can be obtained from sources such as Sigma Chemical Co., St. Louis, Mo., Polysciences, Warrenton, Pa., Aldrich, Milwaukee, Wis., Fluka, Ronkonkoma, N.Y., and BioRad, Richmond, Calif. or else synthesized from monomers obtained from these suppliers using standard techniques.
  • Both non-biodegradable and biodegradable matrices can be used for delivery of drugs, although biodegradable matrices are preferred.
  • These may be natural or synthetic polymers, although synthetic polymers are preferred due to the better characterization of degradation and release profiles.
  • the polymer is selected based on the period over which release is desired, generally in the range of at least immediate release to release over a period of twelve months, although longer periods may be desirable.
  • the polymer may be in the form of a hydrogel (typically absorbing up to about 90% by weight of water), and can optionally be crosslinked with multivalent ions or polymers.
  • High molecular weight drugs can be delivered partially by diffusion but mainly by degradation of the polymeric system.
  • biodegradable polymers, bioerodible hydrogels, and protein delivery systems are particularly preferred.
  • non-biodegradable polymers examples include ethylene vinyl acetate, poly(meth)acrylic acid, polyamides, copolymers and mixtures thereof.
  • the polymeric matrix is between nanometers and one millimeter in diameter, more preferably between 0.5 and 100 microns.
  • the microparticles can be drug/polymer particles, microspheres, where drug is dispersed within a solid polymeric matrix, or microcapsules, where the core is of a different material than the polymeric shell, and the drug is dispersed or suspended in the core, which may be liquid or solid in nature. Unless specifically defined herein, microparticles, microspheres, and microcapsules are used interchangeably.
  • the matrices can be formed by solvent evaporation, spray drying, solvent extraction and other methods known to those skilled in the art, for example, as described by Mathiowitz and Langer, J. Controlled Release 5, 13-22 (1987); Mathiowitz, et al., Reactive Polymers 6, 275-283 (1987); and Mathiowitz, et al., J. Appl. Polymer Sci. 35, 755-774 (1988), the teachings of which are incorporated herein.
  • the selection of the method depends on the polymer selection, the size, external morphology, and crystallinity that is desired, as described, for example, by Mathiowitz, et al., Scanning Microscopy 4, 329-340 (1990); Mathiowitz, et al., J. Appl. Polymer Sci. 45, 125-134 (1992); and Benita, et al., J. Pharm. Sci. 73, 1721-1724 (1984), the teachings of which are incorporated herein.
  • the polymer is dissolved in a volatile organic solvent.
  • the drug either in soluble form or dispersed as fine particles, is added to the polymer solution, and the mixture is suspended in an aqueous phase that contains a surface active agent such as poly(vinyl alcohol).
  • the resulting emulsion is stirred until most of the organic solvent evaporates, leaving solid microspheres.
  • the polymer can be dissolved in methylene chloride.
  • methylene chloride Several different polymer concentrations can be used, for example, between 0.05 and 0.20 g/ml.
  • the solution is suspended in 200 ml of vigorously stirring distilled water containing 1% (w/v) poly(vinyl alcohol) (Sigma Chemical Co., St. Louis, Mo.). After four hours of stirring, the organic solvent will have evaporated from the polymer, and the resulting microspheres will be washed with water and dried overnight in a lyophilizer.
  • Microspheres with different sizes (between 1 nanometer and 1000 microns) and morphologies can be obtained by this method which is useful for relatively stable polymers such as polyesters and polystyrene.
  • relatively stable polymers such as polyesters and polystyrene.
  • labile polymers such as polyanhydrides may degrade due to exposure to water.
  • hot melt encapsulation and solvent removal may be preferred.
  • the polymer In hot melt encapsulation, the polymer is first melted and then mixed with the solid particles of drug, preferably sieved to less than 50 ⁇ m. The mixture is suspended in a non-miscible solvent such as silicon oil and, with continuous stirring, heated to 5° C. above the melting point of the polymer. Once the emulsion is stabilized, it is cooled until the polymer particles solidify. The resulting microspheres are washed by decantation with petroleum ether to give a free-flowing powder. Microspheres with diameters between one and 1000 microns can be obtained with this method. The external surface of spheres prepared with this technique are usually smooth and dense. This procedure is useful with water labile polymers, but is limited to use with polymers with molecular weights between 1000 and 50000.
  • Solvent removal was primarily designed for use with polyanhydrides.
  • the drug is dispersed or dissolved in a solution of a selected polymer in a volatile organic solvent like methylene chloride.
  • the mixture is then suspended in oil, such as silicon oil, by stirring, to form an emulsion.
  • oil such as silicon oil
  • the solvent diffuses into the oil phase and the emulsion droplets harden into solid polymer microspheres.
  • this method can be used to make microspheres from polymers with high melting points and a wide range of molecular weights. Microspheres having a diameter between one and 300 microns can be obtained with this procedure.
  • the external morphology of the spheres is highly dependent on the type of polymer used.
  • the polymer In spray drying, the polymer is dissolved in methylene chloride (0.04 g/ml). A known amount of active drug is suspended (if insoluble) or co-dissolved (if soluble) in the polymer solution. The solution or the dispersion is then spray-dried.
  • Double walled microspheres can be prepared according to U.S. Pat. No. 4,861,627 to Mathiowitz.
  • Hydrogel microspheres made of gel-type polymers such as alginate or polyphosphazenes or other dicarboxylic polymers can be prepared by dissolving the polymer in an aqueous solution, suspending the material to be incorporated into the mixture, and extruding the polymer mixture through a microdroplet forming device, equipped with a nitrogen gas jet. The resulting microspheres fall into a slowly stirring, ionic hardening bath, as described, for example, by Salib, et al., Pharmazeutician Industrie 40-11A, 1230 (1978), the teachings of which are incorporated herein.
  • the advantage of this system is the ability to further modify the surface of the microspheres by coating them with polycationic polymers such as polylysine, after fabrication, for example, as described by Lim, et al., J. Pharm. Sci. 70, 351-354 (1981).
  • polycationic polymers such as polylysine
  • a hydrogel can be formed by ionically crosslinking the alginate with calcium ions, then crosslinking the outer surface of the microparticle with a polycation such as polylysine, after fabrication.
  • the microsphere particle size will be controlled using various size extruders, polymer flow rates and gas flow rates.
  • U.S. Pat. No. 5,145,684 describes dispersible particles consisting of a drug substance having a surface modifier adsorbed on its surface to maintain an effective average particle size of less than about 400 nanometers.
  • U.S. Pat. No. 5,472,704 describes pharmaceutical compositions for the controlled release of various drugs said to have the properties of adhering to biologic tissues. These compositions are clusters of pharmaceutically active ingredients, each of which are substantially and completely coated with an adhesive polymeric coating substance, in which the coating also comprises a physiologically acceptable adhesive polymer in amounts efficient to adhere to a mucous membrane. These compositions can be adapted for oral, ocular, rectal, vaginal, nasal, and periodontal administration.
  • Pat. No. 5,340,585 discusses compositions and methods to treat gynecological disorders for extended periods.
  • U.S. Pat. No. 4,107,288 discusses particles in a size range from about 10 to about 1000 nanometers formed of a cross-linked matrix of macromolecules which can include gum, soluble cellulose, or proteins such as gelatin or albumin, and which a biologically or pharmacodynamically active material is supported on or incorporated into these cross-linked matrices. As the active substance is enclosed and adsorbed into the structure of the particles, selective long-term therapy can be carried out in which the organism is subjected to only a minimum of biologically or pharmacodynamically active substance.
  • U.S. Pat. No. 4,997,653 describes a preparation containing danazol in a matrix base of a topical drug delivery system. These topical matrix-based preparations are said to be of any shape commonly employed for insertion into the uterus or vagina.
  • the formulations are preferably administered locally within the region to be treated, for example, vaginally for treatment of diseases of the ovaries and uterus.
  • locally can refer to topical application generally to the mucosal or endometrial surfaces of the vagina and/or uterus, or to a particular portion of the vagina or uterus.
  • regionally refers to reproductive organs and their surrounding environs, which include uterus, fallopian tube, peritoneal space, pelvic cul-de-sac, ovaries, perineum, and the rectovaginal region.
  • systemically refers to the circulatory system, and regions outside the spaces described above.
  • Vaginally administered pharmaceutical preparations as described herein are particularly effective in treating certain diseases of female reproductive systems, such as the administration of danazol for treatment of endometriosis. It is desirable to administer the danazol formulations locally with dosages which are less than other modes of delivery, such as oral delivery. Transdermal doses are usually found to be one-quarter of the oral dose for similar efficacy. In this instance, it is possible to lower the dose even lower (the ring delivered between about 1 and 2 mg/day). Such dosage administration will ensure negligible or relatively low serum levels of danazol to avoid undesirable side effects associated with oral dosing, such as hirsutism and other androgenic side effects.
  • micronized danazol (carrying DMF-Drug Master File Certification) was manufactured by Cipla Pharmaceuticals and bought from Byron Chemical Company. UV absorption identified the drug substance as being identical to Danazol USP. Individual impurity was noted to be more than 0.5%, and total impurities not more than 1.0%. Assay of dried basis was between 97% and 102% w/w on dried basis. More than 90% of the particles were less than 5 microns in diameter and the remaining particles were between 5 and 15 microns in diameter.
  • Micronized danazol was levigated in a commercial preparation of KY Jelly, which is made up of a polymer hydroxyethyl cellulose to 10 ml volume (based on weight using density of jelly of 2.16 g/ml) for 1 mg per 50 ⁇ l concentration. Gels were smooth in consistency, uniformly white and flowable. Particle size measurements were conducted with a Coulter H4mD particle size analyser and were noted to be as follows:
  • Mature female Sprague-Dawley rats were used for the experiment. 1 mg of the microparticulate danazol was delivered in a volume of 50 ⁇ l to the vaginal vault and the animals sacrificed at the times noted below. The uterus and ovaries were separately homogenized and blood was drawn. All tissues and biological samples were processed. Danazol was extracted and assayed by HPLC methodology.
  • Danazol was extracted from serum and tissue hexane/chloroform 80/20. For tissues, 1 ml aliquote of each homogenate was taken. The extracted danazol was reconstituted in a water/acetonitrile mobile phase and a Beckman Ultrasphere 5 micron, 4.6 mm ⁇ 15 cm reverse phase column (C-18 RP) was used for all the HPLC analyses. A danazol recovery study was conducted using danazol drug product. The recovery was determined by comparing the extracted signal with unextracted signal. A recovery of between 75 and 84% was obtained for the extraction method.
  • danazol concentrations of 1 mg/300 g rat were administered.
  • danazol concentrations of 100 mg/50 kg women were administered. These concentrations are roughly equivalent.
  • the data demonstrate that the suppository used by Mizutami resulted in uterine concentrations of danazol which were 10 5 times higher than the uterine concentrations of danazol provided by the microparticles in the above examples.
  • Such high local concentrations could result in significant changes in the local delivery of the drug and effects on the reproductive organs, for instance, changes in hormone steroid responsiveness and depot effect.
  • Igarashi administered a vaginal ring contained in silicone. This type of drug delivery device releases drug in a constant manner, creating a continuous flow of drug and potentially to a depot effect.
  • Igarashi discloses two examples in which danazol was administered via the vaginal ring. In both examples, the uterine concentration of danazol was 100 times higher than the uterine concentration in the above examples.
  • Microparticle formulation allows for considerable decrease in delivered dose, increased bioavailability to the organs of interest with lower tissue concentrations.
  • monkey study will demonstrate efficacy of the microparticle formulation in an animal model of endometriosis, while also evaluating systemic levels of locally delivered danazol.
  • the simian model of endometriosis will be used to demonstrate efficacy and safety.
  • the rationale for using monkeys is the finding that certain monkeys will naturally develop endometriosis which resembles, in crucial ways, the human disease.
  • monkeys are a good model for studying the human female reproductive system, both anatomically and physiologically for testing a vaginal product such as Danazol TVDT.
  • danazol can be delivered vaginally for treatment of endometriosis with reduced systemic levels.
  • Microparticle danazol will be formulated in the presence of poly(vinylpyrrilodine).
  • Three doses of Danazol TVDT will be studied in monkeys with endometriosis and compared to orally delivered danazol as described below.
  • the study will be a nine week, parallel, randomized study comparing the effects of oral danazol given at 200 mg daily and three doses of Danazol TVDT: at 10 mg/day; (one-twentieth the oral dose), 25 mg/day (one-tenth the oral dose) and 50 mg/day, (one quarter the oral dose).
  • the results will demonstrate local delivery of microparticle danazol results in efficacy and low systemic levels.

Abstract

Formulations which have been developed for topical or local delivery intrapelvically, intraperitoneally or directly on reproductive organs of interest administration to a region such as the female reproductive system, provide for increased comfort, increased bioavailability, rapid and relatively high blood levels in the regions to be treated in the substantial absence of systemic levels of drug which might cause side effects. These formulations consist of drug micro or nanoparticles, which may be formed of drug alone or in combination with an excipient or polymeric carrier. The excipient or polymer may be used to manipulate release rates and to increase adhesion to the affected region. The particulate formulation can be applied as a dried powder, a liquid suspension or dispersion, or as a topical ointment, creme, lotion, foam or suppository.

Description

This application claims priority to U.S. Ser. No. 60/036,727, filed Jan. 24, 1997 expired entitled "Microparticle Enhanced Delivery of Pharmaceuticals" and U.S. Ser. No. 60/052,578, filed Jul. 15, 1997 expired entitled "Non-Oral Delivery of Pharmaceuticals in the Treatment of Endometriosis", both by Vanaja V. Ragavan and Geriannn M. Dipiano.
FIELD OF THE INVENTION
The present invention relates to pharmaceutical preparations, and especially pharmaceutical formulations that can be introduced topically, locally, intrapelvic, intraperitoneal or directly on reproductive organs of interest in amounts effective to treat various conditions, particularly local diseases of female reproductive system, such as pelvic, uterine, cervical and vaginal diseases which are present in this region of the body.
BACKGROUND OF THE INVENTION
It has long been known that treatment of female reproductive diseases by traditional methods of oral or systemic administration is associated with drug bioavailability problems and concomitant side effect complications from unwanted absorption of drugs into the systemic circulation. For example, normal digestive tract action may break down orally administered active ingredients to decrease effective drug delivery dosages, or the pharmaceutical preparation is changed by passage through the liver or by systemic circulation or may not achieve adequate levels in the area of interest. To counteract these undesirable actions, the dosage of the active ingredient needs to be increased, oftentimes leading to undesirable side effects.
In the case of danazol, an isoxazolo derivative of 17∝ ethenyltestosterone (an androgen hormone) which is commonly administered to women for treatment of endometriosis in dosages of up to 800 mg daily, and at such higher doses, adverse side effects are seen which may include weight gain, voice change, development of facial and chest hair, loss of libido, acne, and central nervous system ("CNS") symptoms such as depression, anxiety, fatigue, nausea and diarrhea, as well as the inhibition of pregnancy while undergoing treatment. See, for example, Spooner, Classification of Side Effects to Danazol Therapy, Winthrop Laboratories, Surrey, England.
It is therefore highly desirable to provide new systems and methods for the administration of pharmaceuticals which would avoid such drawbacks. Mizutani, et al., in Fertility and Sterility 63, 1184-1189 (1995), describes administration of danazole vaginally by means of a 100 mg suppository, and compared the results with oral administration of a 400 mg dosage. No effect on the hypothalamic-pituitary-ovarian axis was noted, although high concentrations were present in the ovary,uterus and serum, with insignificant serum levels, following vaginal administration. Mizutani, et al., conducted their study following a report by Igarishi, Asia-Oceania J. Obstet. Gynaecol. 16(1), 1-12 (1990), that administration vaginally of danazole in a silicone vaginal ring reduced endometriotic tissue in the uterus and increased the incidence of pregnancy in treated women to a statistically significant degree. The immediate drawback to both therapies, however, is the formulation and delivery platform such as vaginal rings and other devices are particularly unsatisfactory for women who already suffer from the cramps and pains associated with endometriosis. The dosages which were used were also quite high and extremely variable and may potentially have a negative and accumulative depot effect.
It is therefore an object of the present invention to provide formulations which are effective in treating disorders of the reproductive organs which has high patient compliance and comfort.
It is a further object of the present invention to provide formulations and methods of administration which provide for extremely rapid uptake of drug in the affected region, with low systemic concentrations and few concordant side effects.
It is still another object of the present invention to provide greatly enhanced bioavailability of drug in formulations administered topically or locally, intrapelvically, intraperitoneally or directly on reproductive organs of interest as compared to the drugs administered in controlled release devices.
SUMMARY OF THE INVENTION
Formulations which have been developed for topical or local delivery intrapelvically, intraperitoneally or directly on reproductive organs of interest administration to a region such as the female reproductive system, provide for increased comfort, increased bioavailability, rapid and relatively high blood levels in the regions to be treated in the substantial absence of systemic levels of drug which might cause side effects. These formulations consist of drug micro or nanoparticles, which may be formed of drug alone or in combination with an excipient or polymeric carrier. The excipient or polymer may be used to manipulate release rates and to increase adhesion to the affected region. The particulate formulation can be applied as a dried powder, a liquid suspension or dispersion, or as a topical ointment, creme, lotion, foam or suppository.
Rat studies demonstrate rapid uptake of danazole into the tissues affected in endometriosis, with serum drug levels that are almost undetectable.
DETAILED DESCRIPTION OF THE INVENTION
The compositions and methods for administration thereof provide for significantly diminished side effects with increased bioavailability and comfort, as compared to conventional drug administration techniques, avoiding oral and parenteral administration, the use of complex and expensive biocompatible polymeric material, and the elimination of the need for insertion and maintenance of potentially infectious foreign objects into the body such as intrauterine devices, vaginal rings, and suppositories.
I. Formulations.
The formulations are designed to provide maximum uptake in the affected tissues with rapid dissemination throughout the region to be treated, with little to no increase in systemic blood levels of the drug. The formulations can consist solely of drug, or drug combined with excipient or polymeric material.
A. Drugs
The term "drug" can refer to any pharmaceutically active substance capable of being administered in a particulate formulation, which achieves the desired effect. Drugs can be synthetic or isolated natural organic compounds, proteins or peptides, oligonucleotides or nucleotides, or polysaccharides or sugars. Drugs may have any of a variety of activities, which may be inhibitory or stimulatory, such as antibiotic activity, antiviral activity, antifungal activity, steroidal activity, cytotoxic or anti-proliferative activity, anti-inflammatory activity, analgesic or anesthetic activity, as well as contrast or other diagnostic agents. A description of these classes of drugs and listing of species within each class can be found in Martindale, The Extra Pharmacopoeia, 31st Ed., The Pharmaceutical Press, London (1996) and goodman and Gilman, The Pharmacological Basis of Therapeutics, (th Ed., McGraw-Hill Publishing company (1996).
In a preferred embodiment, the drug is danazole is a micro or nanoparticulate formulation. This can be achieved by milling of the drug or atomization of drug solution, for example, into a solvent extraction fluid, or other standard techniques.
B. Excipients or Carriers
The drug substance may be "associated" in any physical form with a particulate material, for example, adsorbed or absorbed, adhered to or dispersed or suspended in such matter, which may take the form of discrete particles or microparticles in any medicinal preparation, and/or suspended or dissolved in a carrier such as an ointment, gel, paste, lotion, or spray.
Standard excipients include gelatin, casein, lecithin, gum acacia, cholesterol, tragacanth, stearic acid, benzalkonium chloride, calcium stearate, glyceryl monostearate, cetostearyl alcohol, cetomacrogol emulsifying wax, sorbitan esters, polyoxyethylene alkyl ethers, polyoxyethylene castor oil derivatives, polyoxyethylene sorbitan fatty acid esters, polyethylene glycols, polyoxyethylene stearates, colloidol silicon dioxide, phosphates, sodium dodecylsulfate, carboxymethylcellulose calcium, carboxymethylcellulose sodium, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethycellulose phthalate, noncrystalline cellulose, magnesium aluminum silicate, triethanolamine, polyvinyl alcohol, polyvinylpyrrolidone, sugars and starches.
In a preferred embodiment, the drug is present on or within micro or nanoparticulates formed of a polymeric material. Polymers can be used to increase adhesion to mucosal surfaces, to control release as a function of the diffusion rate of drugs out of the polymeric matrix and/or rate of degradation by hydrolysis or enzyme degradation of the polymers and/or pH alteration, and to increase surface area of the drug relative to the size of the particle. Additional materials, such as diagnostic agents, including echogenic gases, radioactive materials--which may also in themselves be therapeutic, and magnetic materials for detection by MRI or PET, can be included in the drug and/or polymer.
1. Polymeric Materials
Generally, two classes of polymers have appeared to show useful bioadhesive properties: hydrophilic polymers and hydrogels. In the large class of hydrophilic polymers, those containing carboxylic groups (e.g., poly[acrylic acid]) exhibit the best bioadhesive properties. One could infer that polymers with the highest concentrations of carboxylic groups should be the materials of choice for bioadhesion on soft tissues. In other studies, the most promising polymers were sodium alginate, carboxymethylcellulose, hydroxymethylcellulose and methylcellulose. Some of these materials are water-soluble, while others are hydrogels.
Rapidly bioerodible polymers such as poly[lactide-co-glycolide], polyanhydrides, and polyorthoesters, whose carboxylic groups are exposed on the external surface as their smooth surface erodes, are excellent candidates for bioadhesive drug delivery systems. In addition, polymers containing labile bonds, such as polyanhydrides and polyesters, are well known for their hydrolytic reactivity. Their hydrolytic degradation rates can generally be altered by simple changes in the polymer backbone.
Representative natural polymers include proteins, such as zein, modified zein, casein, gelatin, gluten, serum albumin, or collagen, and polysaccharides, such as cellulose, dextrans, polyhyaluronic acid, polymers of acrylic and methacrylic esters and alginic acid. Representative synthetic polymers include polyphosphazines, poly(vinyl alcohols), polyamides, polycarbonates, polyalkylenes, polyacrylamides, polyalkylene glycols, polyalkylene oxides, polyalkylene terephthalates, polyvinyl ethers, polyvinyl esters, polyvinyl halides, polyvinylpyrrolidone, polyglycolides, polysiloxanes, polyurethanes and copolymers thereof. Synthetically modified natural polymers include alkyl celluloses, hydroxyalkyl celluloses, cellulose ethers, cellulose esters, and nitrocelluloses. Other polymers of interest include, but are not limited to, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxybutyl methyl cellulose, cellulose acetate, cellulose propionate, cellulose acetate butyrate, cellulose acetate phthalate, carboxymethyl cellulose, cellulose triacetate, cellulose sulfate sodium salt, poly(methyl methacrylate), poly(ethyl methacrylate), poly(butyl methacrylate), poly(isobutyl methacrylate), poly(hexyl methacrylate), poly(isodecyl methacrylate), poly(lauryl methacrylate), poly(phenyl methacrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl acrylate), poly(octadecyl acrylate) polyethylene, polypropylene, poly(ethylene glycol), poly(ethylene oxide), poly (ethylene terephthalate), poly(vinyl acetate), polyvinyl chloride, polystyrene, polyvinyl pyrrolidone, and polyvinylphenol. Representative bioerodible polymers include polylactides, polyglycolides and copolymers thereof, poly(ethylene terephthalate), poly(butic acid), poly(valeric acid), poly(lactide-co-caprolactone), poly[lactide-co-glycolide], polyanhydrides, polyorthoesters, blends and copolymers thereof.
Examples of biodegradable polymers include synthetic polymers such as polymers of lactic acid and glycolic acid, polyanhydrides, poly(ortho)esters, polyurethanes, poly(butic acid), poly(valeric acid), and poly(lactide-co-caprolactone), and natural polymers such as alginate and other polysaccharides including dextran and cellulose, collagen, chemical derivatives thereof (substitutions, additions of chemical groups, for example, alkyl, alkylene, hydroxylations, oxidations, and other modifications routinely made by those skilled in the art), albumin and other hydrophilic proteins, zein and other prolamines and hydrophobic proteins, copolymers and mixtures thereof. In general, these materials degrade either by enzymatic hydrolysis or exposure to water in vivo, by surface or bulk erosion.
These polymers can be obtained from sources such as Sigma Chemical Co., St. Louis, Mo., Polysciences, Warrenton, Pa., Aldrich, Milwaukee, Wis., Fluka, Ronkonkoma, N.Y., and BioRad, Richmond, Calif. or else synthesized from monomers obtained from these suppliers using standard techniques. Both non-biodegradable and biodegradable matrices can be used for delivery of drugs, although biodegradable matrices are preferred. These may be natural or synthetic polymers, although synthetic polymers are preferred due to the better characterization of degradation and release profiles. The polymer is selected based on the period over which release is desired, generally in the range of at least immediate release to release over a period of twelve months, although longer periods may be desirable. In some cases linear release may be most useful, although in others a pulse release or "bulk release" may provide more effective results. The polymer may be in the form of a hydrogel (typically absorbing up to about 90% by weight of water), and can optionally be crosslinked with multivalent ions or polymers.
High molecular weight drugs can be delivered partially by diffusion but mainly by degradation of the polymeric system. In this case, biodegradable polymers, bioerodible hydrogels, and protein delivery systems are particularly preferred.
Examples of non-biodegradable polymers include ethylene vinyl acetate, poly(meth)acrylic acid, polyamides, copolymers and mixtures thereof.
2. Methods of Making Particles
In the preferred embodiment, the polymeric matrix is between nanometers and one millimeter in diameter, more preferably between 0.5 and 100 microns. The microparticles can be drug/polymer particles, microspheres, where drug is dispersed within a solid polymeric matrix, or microcapsules, where the core is of a different material than the polymeric shell, and the drug is dispersed or suspended in the core, which may be liquid or solid in nature. Unless specifically defined herein, microparticles, microspheres, and microcapsules are used interchangeably.
The matrices can be formed by solvent evaporation, spray drying, solvent extraction and other methods known to those skilled in the art, for example, as described by Mathiowitz and Langer, J. Controlled Release 5, 13-22 (1987); Mathiowitz, et al., Reactive Polymers 6, 275-283 (1987); and Mathiowitz, et al., J. Appl. Polymer Sci. 35, 755-774 (1988), the teachings of which are incorporated herein. The selection of the method depends on the polymer selection, the size, external morphology, and crystallinity that is desired, as described, for example, by Mathiowitz, et al., Scanning Microscopy 4, 329-340 (1990); Mathiowitz, et al., J. Appl. Polymer Sci. 45, 125-134 (1992); and Benita, et al., J. Pharm. Sci. 73, 1721-1724 (1984), the teachings of which are incorporated herein.
In solvent evaporation, described for example, in Mathiowitz, et al., (1990), Benita, and U.S. Pat. No. 4,272,398 to Jaffe, the polymer is dissolved in a volatile organic solvent. The drug, either in soluble form or dispersed as fine particles, is added to the polymer solution, and the mixture is suspended in an aqueous phase that contains a surface active agent such as poly(vinyl alcohol). The resulting emulsion is stirred until most of the organic solvent evaporates, leaving solid microspheres.
In general, the polymer can be dissolved in methylene chloride. Several different polymer concentrations can be used, for example, between 0.05 and 0.20 g/ml. After loading the solution with drug, the solution is suspended in 200 ml of vigorously stirring distilled water containing 1% (w/v) poly(vinyl alcohol) (Sigma Chemical Co., St. Louis, Mo.). After four hours of stirring, the organic solvent will have evaporated from the polymer, and the resulting microspheres will be washed with water and dried overnight in a lyophilizer.
Microspheres with different sizes (between 1 nanometer and 1000 microns) and morphologies can be obtained by this method which is useful for relatively stable polymers such as polyesters and polystyrene. However, labile polymers such as polyanhydrides may degrade due to exposure to water. For these polymers, hot melt encapsulation and solvent removal may be preferred.
In hot melt encapsulation, the polymer is first melted and then mixed with the solid particles of drug, preferably sieved to less than 50 μm. The mixture is suspended in a non-miscible solvent such as silicon oil and, with continuous stirring, heated to 5° C. above the melting point of the polymer. Once the emulsion is stabilized, it is cooled until the polymer particles solidify. The resulting microspheres are washed by decantation with petroleum ether to give a free-flowing powder. Microspheres with diameters between one and 1000 microns can be obtained with this method. The external surface of spheres prepared with this technique are usually smooth and dense. This procedure is useful with water labile polymers, but is limited to use with polymers with molecular weights between 1000 and 50000.
Solvent removal was primarily designed for use with polyanhydrides. In this method, the drug is dispersed or dissolved in a solution of a selected polymer in a volatile organic solvent like methylene chloride. The mixture is then suspended in oil, such as silicon oil, by stirring, to form an emulsion. Within 24 hours, the solvent diffuses into the oil phase and the emulsion droplets harden into solid polymer microspheres. Unlike solvent evaporation, this method can be used to make microspheres from polymers with high melting points and a wide range of molecular weights. Microspheres having a diameter between one and 300 microns can be obtained with this procedure. The external morphology of the spheres is highly dependent on the type of polymer used.
In spray drying, the polymer is dissolved in methylene chloride (0.04 g/ml). A known amount of active drug is suspended (if insoluble) or co-dissolved (if soluble) in the polymer solution. The solution or the dispersion is then spray-dried. Typical process parameters for a mini-spray drier are as follows: polymer concentration=0.04 g/ml, inlet temperature=24° C., outlet temperature=13 to 15° C., aspirator setting=15, pump setting=10 ml/min, spray flow=600 NLh-1, and nozzle diameter=0.5 mm. Microspheres ranging in diameter between one and ten microns can be obtained with a morphology which depends on the selection of polymer.
Double walled microspheres can be prepared according to U.S. Pat. No. 4,861,627 to Mathiowitz.
Hydrogel microspheres made of gel-type polymers such as alginate or polyphosphazenes or other dicarboxylic polymers can be prepared by dissolving the polymer in an aqueous solution, suspending the material to be incorporated into the mixture, and extruding the polymer mixture through a microdroplet forming device, equipped with a nitrogen gas jet. The resulting microspheres fall into a slowly stirring, ionic hardening bath, as described, for example, by Salib, et al., Pharmazeutische Industrie 40-11A, 1230 (1978), the teachings of which are incorporated herein. The advantage of this system is the ability to further modify the surface of the microspheres by coating them with polycationic polymers such as polylysine, after fabrication, for example, as described by Lim, et al., J. Pharm. Sci. 70, 351-354 (1981). For example, in the case of alginate, a hydrogel can be formed by ionically crosslinking the alginate with calcium ions, then crosslinking the outer surface of the microparticle with a polycation such as polylysine, after fabrication. The microsphere particle size will be controlled using various size extruders, polymer flow rates and gas flow rates.
3. Exemplary Formulations
Many specific drug formulations have been described in the literature. For example, U.S. Pat. No. 5,145,684 describes dispersible particles consisting of a drug substance having a surface modifier adsorbed on its surface to maintain an effective average particle size of less than about 400 nanometers. U.S. Pat. No. 5,472,704 describes pharmaceutical compositions for the controlled release of various drugs said to have the properties of adhering to biologic tissues. These compositions are clusters of pharmaceutically active ingredients, each of which are substantially and completely coated with an adhesive polymeric coating substance, in which the coating also comprises a physiologically acceptable adhesive polymer in amounts efficient to adhere to a mucous membrane. These compositions can be adapted for oral, ocular, rectal, vaginal, nasal, and periodontal administration. U.S. Pat. No. 5,340,585 discusses compositions and methods to treat gynecological disorders for extended periods. U.S. Pat. No. 4,107,288 discusses particles in a size range from about 10 to about 1000 nanometers formed of a cross-linked matrix of macromolecules which can include gum, soluble cellulose, or proteins such as gelatin or albumin, and which a biologically or pharmacodynamically active material is supported on or incorporated into these cross-linked matrices. As the active substance is enclosed and adsorbed into the structure of the particles, selective long-term therapy can be carried out in which the organism is subjected to only a minimum of biologically or pharmacodynamically active substance. U.S. Pat. No. 4,997,653 describes a preparation containing danazol in a matrix base of a topical drug delivery system. These topical matrix-based preparations are said to be of any shape commonly employed for insertion into the uterus or vagina.
II. Methods of Administration
The formulations are preferably administered locally within the region to be treated, for example, vaginally for treatment of diseases of the ovaries and uterus. As used herein, "locally" can refer to topical application generally to the mucosal or endometrial surfaces of the vagina and/or uterus, or to a particular portion of the vagina or uterus. As used herein, "regionally" refers to reproductive organs and their surrounding environs, which include uterus, fallopian tube, peritoneal space, pelvic cul-de-sac, ovaries, perineum, and the rectovaginal region. As used herein, "systemically" refers to the circulatory system, and regions outside the spaces described above.
Vaginally administered pharmaceutical preparations as described herein are particularly effective in treating certain diseases of female reproductive systems, such as the administration of danazol for treatment of endometriosis. It is desirable to administer the danazol formulations locally with dosages which are less than other modes of delivery, such as oral delivery. Transdermal doses are usually found to be one-quarter of the oral dose for similar efficacy. In this instance, it is possible to lower the dose even lower (the ring delivered between about 1 and 2 mg/day). Such dosage administration will ensure negligible or relatively low serum levels of danazol to avoid undesirable side effects associated with oral dosing, such as hirsutism and other androgenic side effects.
The following non-limiting examples more fully demonstrate the present invention.
EXAMPLE 1
Preparation of Gel Products
The drug substance, micronized danazol (carrying DMF-Drug Master File Certification) was manufactured by Cipla Pharmaceuticals and bought from Byron Chemical Company. UV absorption identified the drug substance as being identical to Danazol USP. Individual impurity was noted to be more than 0.5%, and total impurities not more than 1.0%. Assay of dried basis was between 97% and 102% w/w on dried basis. More than 90% of the particles were less than 5 microns in diameter and the remaining particles were between 5 and 15 microns in diameter.
Micronized danazol was levigated in a commercial preparation of KY Jelly, which is made up of a polymer hydroxyethyl cellulose to 10 ml volume (based on weight using density of jelly of 2.16 g/ml) for 1 mg per 50 μl concentration. Gels were smooth in consistency, uniformly white and flowable. Particle size measurements were conducted with a Coulter H4mD particle size analyser and were noted to be as follows:
Danazol Powder:
______________________________________                                    
Average of 6 measurements                                                 
                                   3.2 μ                               
Individual measurement and variation                                      
                          3.2 μ ± 9 μ                            
______________________________________                                    
1 mg gel:
______________________________________                                    
 Average of 5 measurements                                                
                                  3.0 μ                                
Individual measurement and variation                                      
                           3.4 μ ± 1.5 μ                         
______________________________________                                    
EXAMPLE 2
Administration of Danazole Microparticulate Formulation to Rats.
Mature female Sprague-Dawley rats were used for the experiment. 1 mg of the microparticulate danazol was delivered in a volume of 50 μl to the vaginal vault and the animals sacrificed at the times noted below. The uterus and ovaries were separately homogenized and blood was drawn. All tissues and biological samples were processed. Danazol was extracted and assayed by HPLC methodology.
Danazol Clinical Assay:
Danazol was extracted from serum and tissue hexane/chloroform 80/20. For tissues, 1 ml aliquote of each homogenate was taken. The extracted danazol was reconstituted in a water/acetonitrile mobile phase and a Beckman Ultrasphere 5 micron, 4.6 mm×15 cm reverse phase column (C-18 RP) was used for all the HPLC analyses. A danazol recovery study was conducted using danazol drug product. The recovery was determined by comparing the extracted signal with unextracted signal. A recovery of between 75 and 84% was obtained for the extraction method.
Study Results:
Tissue and serum levels are summarized below in Table 1:
              TABLE 1                                                     
______________________________________                                    
Tissue and Serum Levels of Danazole in Rats                               
RATE AND TIME                                                             
           UTERUS-ng/g                                                    
                      OVARIES ng/g                                        
                                  SERUM ng/ml                             
______________________________________                                    
2 hours    0.43       0.33        0.21                                    
4 hours              0.57                                                 
                                not detected                              
                                   not detected                           
6 hours              0.77                                                 
                                not detected                              
                                   not detected                           
______________________________________                                    
The results of this study demonstrate that the formulation used resulted in a preferential absorption of danazol into the uterus.
In the above examples, danazol concentrations of 1 mg/300 g rat were administered. In work by Mizutami, danazol concentrations of 100 mg/50 kg women were administered. These concentrations are roughly equivalent. The data demonstrate that the suppository used by Mizutami resulted in uterine concentrations of danazol which were 105 times higher than the uterine concentrations of danazol provided by the microparticles in the above examples. Such high local concentrations could result in significant changes in the local delivery of the drug and effects on the reproductive organs, for instance, changes in hormone steroid responsiveness and depot effect.
Igarashi administered a vaginal ring contained in silicone. This type of drug delivery device releases drug in a constant manner, creating a continuous flow of drug and potentially to a depot effect. Igarashi discloses two examples in which danazol was administered via the vaginal ring. In both examples, the uterine concentration of danazol was 100 times higher than the uterine concentration in the above examples.
EXAMPLE 3
Protocol for Studies in Primate Models of Endometriosis.
Microparticle formulation allows for considerable decrease in delivered dose, increased bioavailability to the organs of interest with lower tissue concentrations.
Monkey Protocol:
The monkey study will demonstrate efficacy of the microparticle formulation in an animal model of endometriosis, while also evaluating systemic levels of locally delivered danazol. The simian model of endometriosis will be used to demonstrate efficacy and safety. The rationale for using monkeys is the finding that certain monkeys will naturally develop endometriosis which resembles, in crucial ways, the human disease. In addition, monkeys are a good model for studying the human female reproductive system, both anatomically and physiologically for testing a vaginal product such as Danazol TVDT. This study will assist in identifying the dose needed to treat human endometriosis and furthermore, corroborate preliminary evidence that danazol can be delivered vaginally for treatment of endometriosis with reduced systemic levels. Microparticle danazol will be formulated in the presence of poly(vinylpyrrilodine). Three doses of Danazol TVDT will be studied in monkeys with endometriosis and compared to orally delivered danazol as described below. The study will be a nine week, parallel, randomized study comparing the effects of oral danazol given at 200 mg daily and three doses of Danazol TVDT: at 10 mg/day; (one-twentieth the oral dose), 25 mg/day (one-tenth the oral dose) and 50 mg/day, (one quarter the oral dose). The results will demonstrate local delivery of microparticle danazol results in efficacy and low systemic levels.
Modifications and variations of the present invention will be obvious to those skilled in the art from the foregoing description. These modifications and variations are intended to come within the scope of the appended claims.

Claims (33)

We claim:
1. A micro or nanoparticulate drug formulation for local or regional topical administration of an effective amount to provide relief from symptoms associated with a disease or disorder in a region in patients in need thereof, wherein the effective amount is less than the effective amount when the drug is administered systemically.
2. The formulation of claim 1 wherein the region is the female reproductive organs.
3. The formulation of claim 2 wherein the patients have a disorder located in the reproductive organs.
4. The formulation of claim 1 wherein the formulation comprises drug particles.
5. The formulation of claim 3 wherein the drug is for treatment of endometriosis.
6. The formulation of claim 1 wherein the micro or nano particulates adhere to mucosal tissue.
7. The formulation of claim 1 where the micro or nano particulates comprise polymer altering rates of drug absorption in the region to be treated.
8. The formulation of claim 1 which can be administered vaginally, intraperitoneally, or directly on the reproductive organs of interest.
9. The formulation of claim 8 wherein the drug is danazol and wherein the formulation is suitable for vaginal administration in patients in need thereof and is in a dosage effective for treatment of endometriosis.
10. The formulation of claim 1 wherein the drug is an anticancer drug, cytotherapeutic or anti-proliferative drug in a dosage effective for treatment of cancer in the region of the patient where administered.
11. The formulation of claim 1 wherein the drug is an antiviral agent effective for treatment of viral infections selected from genital herpes and genital papilloma viral infections.
12. The formulation of claim 1 wherein the drug is an antifungal agent effective for treatment of vaginal fungal infections.
13. The formulation of claim 1 wherein the drug is an antibacterial agent effective for treatment of vaginal and endometrial bacterial infections.
14. The formulation of claim 1 wherein the drug is a steroid or steroid-like product suitable for treatment of endocrine conditions.
15. The formulation of claim 14 wherein the drug is effective for treatment of menopause, infertility, contraception, dysfunctional uterine bleeding, dysmenorrhea, adenomyosis, or assisted reproductive technologies.
16. A method of treating a patient comprising the step of topically administering to the patient an effective amount of a micro or nanoparticulate drug formulation suitable for local or regional topical administration of an effective amount to provide relief from symptoms associated with a disease or disorder in a region in the patient in need thereof, wherein the effective amount is less than the effective amount when the drug is administered systemically.
17. The method of claim 16 wherein the region is the female reproductive organs.
18. The method of claim 16 wherein the patients have a disorder located in the reproductive organs.
19. The method of claim 18 wherein the drug is for treatment of endometriosis and the patient has endometriosis.
20. The method of claim 17 which can be administered vaginally, intraperitoneally, or directly on the reproductive organs of interest.
21. The method of claim 16 wherein the drug is danazol and wherein the formulation is vaginally administered in patients in need thereof in a dosage effective for treatment of endometriosis.
22. The method of claim 16 wherein the drug is an anticancer drug, cytotherapeutic or anti-proliferative drug in a dosage effective for treatment of cancer in the region of the patient where administered.
23. The method of claim 16 wherein the drug is an antiviral agent effective for treatment of viral infections selected from genital herpes and genital papilloma viral infections.
24. The method of claim 16 wherein the drug is an antifungal agent effective for treatment of vaginal fungal infections.
25. The method of claim 16 wherein the drug is an antibacterial agent effective for treatment of vaginal and endometrial bacterial infections.
26. The method of claim 16 wherein the drug is a steroid or steroid-like product suitable for treatment of endocrine conditions.
27. The method of claim 26 wherein the drug is effective for treatment of menopause, infertility, contraception, dysfunctional uterine bleeding, dysmenorrhea, adenomyosis, or assisted reproductive technologies.
28. A method for treating endometriosis by decreasing the discomfort associated with endometriosis comprising administering to the mucosal membranes of the female reproductive tract danazole in a form promoting quick uptake into the blood stream, wherein the danazole is administered in an effective amount which is less than the effective amount when the drug is administered systemically.
29. The method of claim 28 wherein the danazole is in a form selected from the group consisting of foams, tablets, and creams.
30. The method of claim 28 wherein the danazole is in a form suitable for application to the uterus.
31. A composition for treating endometriosis comprising danazole in a form promoting quick uptake into the blood stream when applied to the mucosal membranes of the female reproductive tract, wherein danazole is in a form delivering an effective amount to decrease the discomfort of endometriosis which is less than the effective amount when the drug is administered systemically.
32. The composition of claim 31 wherein the danazole is in a form selected from the group consisting of foams, tablets, and creams.
33. The composition of claim 32 wherein the danazole is in a form suitable for application to the uterus.
US08/971,346 1997-01-24 1997-11-17 Pharmaceutical preparations and methods for their administration Expired - Lifetime US5993856A (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
US08/971,346 US5993856A (en) 1997-01-24 1997-11-17 Pharmaceutical preparations and methods for their administration
CA002278541A CA2278541C (en) 1997-01-24 1998-01-23 Pharmaceutical preparations and methods for their regional administration
DE69834025T DE69834025T2 (en) 1997-01-24 1998-01-23 PHARMACEUTICAL PREPARATIONS AND METHOD FOR THE LOCAL ADMINISTRATION
DK98902614T DK0977555T3 (en) 1997-01-24 1998-01-23 Pharmaceutical preparations and methods for their regional administration
EP98902614A EP0977555B1 (en) 1997-01-24 1998-01-23 Pharmaceutical preparations and methods for their regional administration
EP05015104A EP1611878A1 (en) 1997-01-24 1998-01-23 Pharmaceutical preparations and methods for their regional administration
EP10185383A EP2316424A1 (en) 1997-01-24 1998-01-23 Pharmaceutical preparations and methods for their regional administration
ES98902614T ES2260828T3 (en) 1997-01-24 1998-01-23 PHARMACEUTICAL PREPARATIONS AND PROCEDURES FOR YOUR LOCAL ADMINISTRATION.
AU59227/98A AU743157B2 (en) 1997-01-24 1998-01-23 Pharmaceutical preparations and methods for their regional administration
AT98902614T ATE321532T1 (en) 1997-01-24 1998-01-23 PHARMACEUTICAL PREPARATIONS AND METHODS FOR THE LOCAL ADMINISTRATION THEREOF
JP53206098A JP2001511773A (en) 1997-01-24 1998-01-23 Pharmaceutical preparations and methods for their regional administration
PT98902614T PT977555E (en) 1997-01-24 1998-01-23 PHARMACEUTICAL PREPARATIONS AND METHODS FOR ITS ADMINISTRATION LOCALLY
US09/355,213 US6416778B1 (en) 1997-01-24 1998-01-23 Pharmaceutical preparations and methods for their regional administration
PCT/US1998/000916 WO1998032422A1 (en) 1997-01-24 1998-01-23 Pharmaceutical preparations and methods for their regional administration
US10/147,762 US6652874B2 (en) 1997-01-24 2002-05-16 Pharmaceutical preparations and methods for their regional administration
JP2010052254A JP2010138196A (en) 1997-01-24 2010-03-09 Pharmaceutical preparations and methods for their regional administration

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US3672797P 1997-01-24 1997-01-24
US5257897P 1997-07-15 1997-07-15
US08/971,346 US5993856A (en) 1997-01-24 1997-11-17 Pharmaceutical preparations and methods for their administration

Related Child Applications (3)

Application Number Title Priority Date Filing Date
PCT/US1998/000916 Continuation-In-Part WO1998032422A1 (en) 1997-01-24 1998-01-23 Pharmaceutical preparations and methods for their regional administration
US09/355,213 Continuation-In-Part US6416778B1 (en) 1997-01-24 1998-01-23 Pharmaceutical preparations and methods for their regional administration
US10/147,762 Continuation-In-Part US6652874B2 (en) 1997-01-24 2002-05-16 Pharmaceutical preparations and methods for their regional administration

Publications (1)

Publication Number Publication Date
US5993856A true US5993856A (en) 1999-11-30

Family

ID=27365086

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/971,346 Expired - Lifetime US5993856A (en) 1997-01-24 1997-11-17 Pharmaceutical preparations and methods for their administration

Country Status (11)

Country Link
US (1) US5993856A (en)
EP (2) EP0977555B1 (en)
JP (2) JP2001511773A (en)
AT (1) ATE321532T1 (en)
AU (1) AU743157B2 (en)
CA (1) CA2278541C (en)
DE (1) DE69834025T2 (en)
DK (1) DK0977555T3 (en)
ES (1) ES2260828T3 (en)
PT (1) PT977555E (en)
WO (1) WO1998032422A1 (en)

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001899A1 (en) * 1999-07-07 2001-01-11 Andre Bieniarz Methods and materials for preterm birth prevention
US6350463B1 (en) 1998-05-23 2002-02-26 Andre Bieniarz Method of treatment for premature rupture of membranes in pregnancy (PROM)
US6350464B1 (en) 1999-01-11 2002-02-26 Guilford Pharmaceuticals, Inc. Methods for treating ovarian cancer, poly (phosphoester) compositions, and biodegradable articles for same
US6472425B1 (en) 1997-10-31 2002-10-29 Nitromed, Inc. Methods for treating female sexual dysfunctions
US6537566B1 (en) 1999-03-11 2003-03-25 John Alton Copland Compositions and methods for the non-invasive treatment of uterine fibroid cells
US6537585B1 (en) 1999-03-26 2003-03-25 Guilford Pharmaceuticals, Inc. Methods and compositions for treating solid tumors
EP1301150A1 (en) * 2000-07-11 2003-04-16 UMD, Inc. Device and method for intravaginal or transvaginal treatment of fungal, bacterial, viral or parasitic infections
US20030114394A1 (en) * 2001-10-29 2003-06-19 Levine Howard L. Vaginally administered anti-dysrhythmic agents for treating pelvic pain
US20030133903A1 (en) * 2001-07-19 2003-07-17 Wenbin Dang Compositions for treatment of prostate cancers and methods of making and using the same
US20030134892A1 (en) * 2001-07-19 2003-07-17 Wenbin Dang Compositions for treatment of head and neck cancers, and methods of making and using the same
US20030143278A1 (en) * 2001-12-20 2003-07-31 Femmepharma, Inc. Vaginal delivery of drugs
US6613355B2 (en) 2000-05-11 2003-09-02 A.P. Pharma, Inc. Semi-solid delivery vehicle and pharmaceutical compositions
US20030211071A1 (en) * 2001-10-29 2003-11-13 Bologna William J. Extended, controlled-release pharmaceutical compositions using charged polymers
US6652874B2 (en) * 1997-01-24 2003-11-25 Femmepharma Pharmaceutical preparations and methods for their regional administration
US20040096506A1 (en) * 2002-11-15 2004-05-20 Jorge Heller Bioerodible poly(ortho esters) from dioxane-based di(ketene acetals), and block copolymers containing them
US6762202B2 (en) 2000-05-09 2004-07-13 Nitromed, Inc. Infrared thermography and methods of use
US6780896B2 (en) 2002-12-20 2004-08-24 Kimberly-Clark Worldwide, Inc. Stabilized photoinitiators and applications thereof
US20040229813A1 (en) * 2003-01-02 2004-11-18 Femme Pharma, Inc. Pharmaceutical preparations for treatments of diseases and disorders of the breast
US6822000B2 (en) 2001-05-11 2004-11-23 Ap Pharma, Inc. Bioerodible poly (orthoesters) from dioxolane-based diketene acetals
US20050008694A1 (en) * 1998-11-18 2005-01-13 Biosoma Ltd. Vaginally administratable progesterone-containing tablets and method for preparing same
US20050042194A1 (en) * 2000-05-11 2005-02-24 A.P. Pharma, Inc. Semi-solid delivery vehicle and pharmaceutical compositions
US20050065161A1 (en) * 1996-02-02 2005-03-24 Nitromed, Inc. Nitrosated and nitrosylated alpha-adrenergic receptor antagonist compounds, compositions and their uses
US20050085453A1 (en) * 2003-09-03 2005-04-21 Miscon Trading, S.A. Methods for the treatment of endometriosis
US20050095245A1 (en) * 2003-09-19 2005-05-05 Riley Thomas C. Pharmaceutical delivery system
US20050222106A1 (en) * 2004-04-01 2005-10-06 Stefan Bracht Drospirenone-containing preparations for transdermal use
US20060040904A1 (en) * 2004-08-17 2006-02-23 Ahmed Salah U Vaginal cream compositions, kits thereof and methods of using thereof
US20060140990A1 (en) * 2003-09-19 2006-06-29 Drugtech Corporation Composition for topical treatment of mixed vaginal infections
US20070110805A1 (en) * 2005-05-09 2007-05-17 Levinson R S Modified-release pharmaceutical compositions
US20070111972A1 (en) * 2005-07-12 2007-05-17 Dmi Biosciences, Inc. "methods and products for treatment of diseases"
US7220414B2 (en) 2000-09-06 2007-05-22 A.P. Pharma, Inc. Degradable polyacetal polymers
US20070154516A1 (en) * 2006-01-05 2007-07-05 Drugtech Corporation Drug delivery system
US20070178139A1 (en) * 1998-11-18 2007-08-02 Yankov Vladimir I Vaginally administratable progesterone-containing tablets and method for preparing same
US20070191321A1 (en) * 2005-12-27 2007-08-16 Ahmed Salah U Conjugated estrogen compositions, applicators, kits, and methods of making and use thereof
US20070224226A1 (en) * 2006-01-05 2007-09-27 Drugtech Corporation Composition and method of use thereof
US20070265329A1 (en) * 2006-05-12 2007-11-15 Devang Shah T Methods for the prevention of acute and delayed chemotherapy-induced nausea and vomiting (CINV)
US20070264338A1 (en) * 2006-05-12 2007-11-15 Shah Devang T Base-stabilized polyorthoester formulations
US20080146531A1 (en) * 2006-09-19 2008-06-19 Solvay Pharmaceuticals Gmbh Therapeutically Active Triazoles and Their Use
US20080153789A1 (en) * 2006-12-26 2008-06-26 Femmepharma Holding Company, Inc. Topical administration of danazol
US20080182841A1 (en) * 2001-10-29 2008-07-31 Levine Howard L Vaginally administered anti-dysrhythmic agents for treating pelvic pain
US20080287408A1 (en) * 2007-05-14 2008-11-20 Drugtech Corporation Endometriosis treatment
WO2009073782A2 (en) * 2007-12-04 2009-06-11 Ams Research Corporation Apparatus and methods for treatment of pathologic proliferative conditions of uterine tissue
US20090202612A1 (en) * 2008-02-04 2009-08-13 Ahmed Salah U Monolithic Intravaginal Rings Comprising Progesterone and Methods of Making and Uses Thereof
US7666410B2 (en) 2002-12-20 2010-02-23 Kimberly-Clark Worldwide, Inc. Delivery system for functional compounds
US7708726B2 (en) 2005-04-28 2010-05-04 Kimberly-Clark Worldwide, Inc. Dosage form cap for an applicator
US20100152227A1 (en) * 2008-12-11 2010-06-17 A.P. Pharma, Inc. Methods for Enhancing Stability of Polyorthoesters and Their Formulations
US7744556B2 (en) 2005-03-25 2010-06-29 Kimberly-Clark Worldwide, Inc. Delivery tube assembly for an applicator
US20100323991A1 (en) * 2009-06-22 2010-12-23 Dmi Acquisition Corp. Methods and products for treatment of diseases
US20100324005A1 (en) * 2009-06-22 2010-12-23 Dmi Acquisition Corp. Method for treatment of diseases
US20110003000A1 (en) * 2009-07-06 2011-01-06 Femmepharma Holding Company, Inc. Transvaginal Delivery of Drugs
WO2011006067A1 (en) * 2009-07-09 2011-01-13 Ams Research Corporation Apparatus and methods of treatment of pathologic proliferative conditions uterine tissue
US20110033545A1 (en) * 2009-08-06 2011-02-10 Absize, Inc. Topical pharmaceutical preparations having both a nanoparticle solution and a nanoparticle suspension and methods for the treatment of acute and chronic pain therewith
US7919453B2 (en) 2005-03-25 2011-04-05 Kimberly-Clark Worldwide, Inc. Dosage cap assembly for an applicator
US20110189353A1 (en) * 2009-01-27 2011-08-04 Frito-Lay North America, Inc. Methods of Flavor Encapsulation and Matrix-Assisted Concentration of Aqueous Foods and Products Produced Therefrom
US7993667B2 (en) 2005-03-25 2011-08-09 Kimberly-Clark Worldwide, Inc. Methods of manufacturing a medicated tampon assembly
US20110212934A1 (en) * 2003-01-02 2011-09-01 Femmepharma Holding Company, Inc. Pharmaceutical preparations for treatments of diseases and disorders of the breast
US8409618B2 (en) 2002-12-20 2013-04-02 Kimberly-Clark Worldwide, Inc. Odor-reducing quinone compounds
US8633178B2 (en) 2011-11-23 2014-01-21 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US8933059B2 (en) 2012-06-18 2015-01-13 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US9180091B2 (en) 2012-12-21 2015-11-10 Therapeuticsmd, Inc. Soluble estradiol capsule for vaginal insertion
US9289382B2 (en) 2012-06-18 2016-03-22 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US9351979B2 (en) 2012-12-19 2016-05-31 Ampio Pharmaceuticals, Inc. Methods of treatment of diseases
US9931349B2 (en) 2016-04-01 2018-04-03 Therapeuticsmd, Inc. Steroid hormone pharmaceutical composition
US10052386B2 (en) 2012-06-18 2018-08-21 Therapeuticsmd, Inc. Progesterone formulations
US10201496B2 (en) 2002-06-25 2019-02-12 Durect Corporation Short duration depot formulations
US10206932B2 (en) 2014-05-22 2019-02-19 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US10258630B2 (en) 2014-10-22 2019-04-16 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US10286077B2 (en) 2016-04-01 2019-05-14 Therapeuticsmd, Inc. Steroid hormone compositions in medium chain oils
US10328087B2 (en) 2015-07-23 2019-06-25 Therapeuticsmd, Inc. Formulations for solubilizing hormones
US10471148B2 (en) 2012-06-18 2019-11-12 Therapeuticsmd, Inc. Progesterone formulations having a desirable PK profile
US10471072B2 (en) 2012-12-21 2019-11-12 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US10537581B2 (en) 2012-12-21 2020-01-21 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US10688072B2 (en) 2014-07-11 2020-06-23 Azanta Danmark A/S Misoprostol dispersible tablet
US10806740B2 (en) 2012-06-18 2020-10-20 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US11246875B2 (en) 2012-12-21 2022-02-15 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US11266661B2 (en) 2012-12-21 2022-03-08 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US11400019B2 (en) 2020-01-13 2022-08-02 Durect Corporation Sustained release drug delivery systems with reduced impurities and related methods
US11633405B2 (en) 2020-02-07 2023-04-25 Therapeuticsmd, Inc. Steroid hormone pharmaceutical formulations

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6630168B1 (en) * 1997-02-20 2003-10-07 Biomedicines, Inc. Gel delivery vehicles for anticellular proliferative agents
WO2003055469A1 (en) * 2001-12-21 2003-07-10 Celator Technologies Inc. Improved polymer-lipid delivery vehicles
WO2004022100A1 (en) * 2002-08-15 2004-03-18 Yunqing Liu Soild nano pharmaceutical formulation and preparation method thereof
AU2007216882B2 (en) * 2003-01-02 2010-03-11 Femmepharma Holding Company, Inc. Pharmaceutical preparations for treatment of diseases and disorders of the breast
JP2004323454A (en) * 2003-04-25 2004-11-18 Chisso Corp Medicinal agent
US8288367B2 (en) 2006-11-30 2012-10-16 Solvay Pharmaceuticals Gmbh Substituted estratriene derivatives as 17BETA HSD inhibitors
KR20130009990A (en) * 2010-03-22 2013-01-24 레프로스 쎄라피우틱스 아이엔씨. Compositions and methods for non-toxic delivery of antiprogestins
US20200121589A1 (en) * 2017-06-22 2020-04-23 Viramal Limited Compositions for drug delivery and methods of use thereof

Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921636A (en) * 1973-01-15 1975-11-25 Alza Corp Novel drug delivery device
US4081533A (en) * 1976-09-01 1978-03-28 Regents Of The University Of California Method of reducing mammalian fertility and drugs therefor
US4107288A (en) * 1974-09-18 1978-08-15 Pharmaceutical Society Of Victoria Injectable compositions, nanoparticles useful therein, and process of manufacturing same
US4272398A (en) * 1978-08-17 1981-06-09 The United States Of America As Represented By The Secretary Of Agriculture Microencapsulation process
US4286587A (en) * 1978-10-11 1981-09-01 Alza Corporation Vaginal drug delivery system made from polymer
US4291028A (en) * 1977-12-30 1981-09-22 Nichols Vorys Follicular phase estrogen or progestin with physiologic estrogen/progestin luteal phase replacement drug delivery system
US4292315A (en) * 1977-12-30 1981-09-29 Nichols Vorys Follicular phase estrogen or progestin with physiologic estrogen/progestin luteal phase replacement drug delivery system
US4391797A (en) * 1977-01-05 1983-07-05 The Children's Hospital Medical Center Systems for the controlled release of macromolecules
US4525340A (en) * 1982-04-21 1985-06-25 Akzo Nv Composite body for long-term delivery of effective substances
US4591496A (en) * 1984-01-16 1986-05-27 Massachusetts Institute Of Technology Process for making systems for the controlled release of macromolecules
US4673405A (en) * 1983-03-04 1987-06-16 Alza Corporation Osmotic system with instant drug availability
US4762717A (en) * 1986-03-21 1988-08-09 The General Hospital Corporation Continuous delivery of luteinizing hormone releasing hormone compositions in combination with sex steroid delivery for use as a contraceptive
US4861627A (en) * 1987-05-01 1989-08-29 Massachusetts Institute Of Technology Preparation of multiwall polymeric microcapsules
US4873092A (en) * 1987-05-21 1989-10-10 Murata Kikai Kabushiki Kaisha Slow-releasing preparation
US4965128A (en) * 1984-06-15 1990-10-23 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappe Lijk Biodegradable polymer substrates loaded with active substance suitable for the controlled release of the active substance by means of a membrane
US4997653A (en) * 1988-03-01 1991-03-05 Masao Igarashi Method for treating endometriosis with topical preparations containing danazol
US5057317A (en) * 1987-03-24 1991-10-15 Chugai Seiyaku Kabushiki Kaisha Slow-release pharmaceutical agent
US5091185A (en) * 1990-06-20 1992-02-25 Monsanto Company Coated veterinary implants
US5130137A (en) * 1989-08-09 1992-07-14 The General Hospital Corporation Continuous delivery of luteinizing hormone releasing hormone compositions in combination with sex steroid delivery for use in treating benign ovarian secretory disorders
EP0501056A1 (en) * 1991-02-28 1992-09-02 Masao Igarashi Danazol containing compositions for the treatment of endometriosis
US5145684A (en) * 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
US5156851A (en) * 1990-06-20 1992-10-20 Monsanto Company Coated veterinary implants
EP0566135A1 (en) * 1992-04-17 1993-10-20 Takeda Chemical Industries, Ltd. Transmucosal composition comprising a peptide and a cytidine derivative
US5324522A (en) * 1991-12-30 1994-06-28 Akzo N.V. Sustained release thyroactive composition
US5330768A (en) * 1991-07-05 1994-07-19 Massachusetts Institute Of Technology Controlled drug delivery using polymer/pluronic blends
US5340585A (en) * 1991-04-12 1994-08-23 University Of Southern California Method and formulations for use in treating benign gynecological disorders
US5359030A (en) * 1993-05-10 1994-10-25 Protein Delivery, Inc. Conjugation-stabilized polypeptide compositions, therapeutic delivery and diagnostic formulations comprising same, and method of making and using the same
WO1995007071A1 (en) * 1993-09-08 1995-03-16 Edko Trading And Representation Company Limited Multi-phase compositions for an initial and delayed release of a medicament
US5413797A (en) * 1992-03-12 1995-05-09 Alkermes Controlled Therapeutics, Inc. Controlled release ACTH containing microspheres
US5417982A (en) * 1994-02-17 1995-05-23 Modi; Pankaj Controlled release of drugs or hormones in biodegradable polymer microspheres
US5472704A (en) * 1991-05-30 1995-12-05 Recordati S.A., Chemical And Pharmaceutical Company Pharmaceutical controlled-release composition with bioadhesive properties
US5482927A (en) * 1991-02-20 1996-01-09 Massachusetts Institute Of Technology Controlled released microparticulate delivery system for proteins
US5494047A (en) * 1994-03-16 1996-02-27 Van Os; Willem A. A. Intrauterine contraceptive device
US5510118A (en) * 1995-02-14 1996-04-23 Nanosystems Llc Process for preparing therapeutic compositions containing nanoparticles
WO1996037232A1 (en) * 1995-05-26 1996-11-28 Universidade De Santiago De Compostela Stabilization of colloidal systems by the formation of ionic lipid-polysaccharide complexes
US5633011A (en) * 1994-08-04 1997-05-27 Alza Corporation Progesterone replacement therapy
US5643604A (en) * 1990-06-14 1997-07-01 Aplicaciones Farmaceuticas S.A. De C.V. Parenteral dosage form
US5651976A (en) * 1993-06-17 1997-07-29 The United States Of America As Represented By The Secretary Of The Navy Controlled release of active agents using inorganic tubules
US5665383A (en) * 1993-02-22 1997-09-09 Vivorx Pharmaceuticals, Inc. Methods for the preparation of immunostimulating agents for in vivo delivery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555114A (en) * 1978-10-17 1980-04-22 Stolle Res & Dev Fine drug
JP2927830B2 (en) * 1989-09-01 1999-07-28 東京田辺製薬株式会社 Danazol suppository
US5410016A (en) 1990-10-15 1995-04-25 Board Of Regents, The University Of Texas System Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
ATE148098T1 (en) * 1991-02-21 1997-02-15 Sankyo Co BENZOLE DERIVATIVES TO PROMOTE THE PRODUCTION OF NERVE GROWTH FACTOR
TW384224B (en) * 1994-05-25 2000-03-11 Nano Sys Llc Method of preparing submicron particles of a therapeutic or diagnostic agent
US5718388A (en) * 1994-05-25 1998-02-17 Eastman Kodak Continuous method of grinding pharmaceutical substances
US5587143A (en) * 1994-06-28 1996-12-24 Nanosystems L.L.C. Butylene oxide-ethylene oxide block copolymer surfactants as stabilizer coatings for nanoparticle compositions
US5573783A (en) * 1995-02-13 1996-11-12 Nano Systems L.L.C. Redispersible nanoparticulate film matrices with protective overcoats

Patent Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921636A (en) * 1973-01-15 1975-11-25 Alza Corp Novel drug delivery device
US4107288A (en) * 1974-09-18 1978-08-15 Pharmaceutical Society Of Victoria Injectable compositions, nanoparticles useful therein, and process of manufacturing same
US4081533A (en) * 1976-09-01 1978-03-28 Regents Of The University Of California Method of reducing mammalian fertility and drugs therefor
US4391797A (en) * 1977-01-05 1983-07-05 The Children's Hospital Medical Center Systems for the controlled release of macromolecules
US4291028A (en) * 1977-12-30 1981-09-22 Nichols Vorys Follicular phase estrogen or progestin with physiologic estrogen/progestin luteal phase replacement drug delivery system
US4292315A (en) * 1977-12-30 1981-09-29 Nichols Vorys Follicular phase estrogen or progestin with physiologic estrogen/progestin luteal phase replacement drug delivery system
US4272398A (en) * 1978-08-17 1981-06-09 The United States Of America As Represented By The Secretary Of Agriculture Microencapsulation process
US4286587A (en) * 1978-10-11 1981-09-01 Alza Corporation Vaginal drug delivery system made from polymer
US4525340A (en) * 1982-04-21 1985-06-25 Akzo Nv Composite body for long-term delivery of effective substances
US4673405A (en) * 1983-03-04 1987-06-16 Alza Corporation Osmotic system with instant drug availability
US4591496A (en) * 1984-01-16 1986-05-27 Massachusetts Institute Of Technology Process for making systems for the controlled release of macromolecules
US4965128A (en) * 1984-06-15 1990-10-23 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappe Lijk Biodegradable polymer substrates loaded with active substance suitable for the controlled release of the active substance by means of a membrane
US4762717A (en) * 1986-03-21 1988-08-09 The General Hospital Corporation Continuous delivery of luteinizing hormone releasing hormone compositions in combination with sex steroid delivery for use as a contraceptive
US5057317A (en) * 1987-03-24 1991-10-15 Chugai Seiyaku Kabushiki Kaisha Slow-release pharmaceutical agent
US4861627A (en) * 1987-05-01 1989-08-29 Massachusetts Institute Of Technology Preparation of multiwall polymeric microcapsules
US4873092A (en) * 1987-05-21 1989-10-10 Murata Kikai Kabushiki Kaisha Slow-releasing preparation
US4997653A (en) * 1988-03-01 1991-03-05 Masao Igarashi Method for treating endometriosis with topical preparations containing danazol
US5130137A (en) * 1989-08-09 1992-07-14 The General Hospital Corporation Continuous delivery of luteinizing hormone releasing hormone compositions in combination with sex steroid delivery for use in treating benign ovarian secretory disorders
US5643604A (en) * 1990-06-14 1997-07-01 Aplicaciones Farmaceuticas S.A. De C.V. Parenteral dosage form
US5156851A (en) * 1990-06-20 1992-10-20 Monsanto Company Coated veterinary implants
US5091185A (en) * 1990-06-20 1992-02-25 Monsanto Company Coated veterinary implants
US5145684A (en) * 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
US5482927A (en) * 1991-02-20 1996-01-09 Massachusetts Institute Of Technology Controlled released microparticulate delivery system for proteins
EP0501056A1 (en) * 1991-02-28 1992-09-02 Masao Igarashi Danazol containing compositions for the treatment of endometriosis
US5340585A (en) * 1991-04-12 1994-08-23 University Of Southern California Method and formulations for use in treating benign gynecological disorders
US5472704A (en) * 1991-05-30 1995-12-05 Recordati S.A., Chemical And Pharmaceutical Company Pharmaceutical controlled-release composition with bioadhesive properties
US5330768A (en) * 1991-07-05 1994-07-19 Massachusetts Institute Of Technology Controlled drug delivery using polymer/pluronic blends
US5324522A (en) * 1991-12-30 1994-06-28 Akzo N.V. Sustained release thyroactive composition
US5413797A (en) * 1992-03-12 1995-05-09 Alkermes Controlled Therapeutics, Inc. Controlled release ACTH containing microspheres
EP0566135A1 (en) * 1992-04-17 1993-10-20 Takeda Chemical Industries, Ltd. Transmucosal composition comprising a peptide and a cytidine derivative
US5665383A (en) * 1993-02-22 1997-09-09 Vivorx Pharmaceuticals, Inc. Methods for the preparation of immunostimulating agents for in vivo delivery
US5438040A (en) * 1993-05-10 1995-08-01 Protein Delivery, Inc. Conjugation-stabilized polypeptide compositions, therapeutic delivery and diagnostic formulations comprising same, and method of making and using the same
US5359030A (en) * 1993-05-10 1994-10-25 Protein Delivery, Inc. Conjugation-stabilized polypeptide compositions, therapeutic delivery and diagnostic formulations comprising same, and method of making and using the same
US5651976A (en) * 1993-06-17 1997-07-29 The United States Of America As Represented By The Secretary Of The Navy Controlled release of active agents using inorganic tubules
WO1995007071A1 (en) * 1993-09-08 1995-03-16 Edko Trading And Representation Company Limited Multi-phase compositions for an initial and delayed release of a medicament
US5417982A (en) * 1994-02-17 1995-05-23 Modi; Pankaj Controlled release of drugs or hormones in biodegradable polymer microspheres
US5494047A (en) * 1994-03-16 1996-02-27 Van Os; Willem A. A. Intrauterine contraceptive device
US5633011A (en) * 1994-08-04 1997-05-27 Alza Corporation Progesterone replacement therapy
US5510118A (en) * 1995-02-14 1996-04-23 Nanosystems Llc Process for preparing therapeutic compositions containing nanoparticles
WO1996037232A1 (en) * 1995-05-26 1996-11-28 Universidade De Santiago De Compostela Stabilization of colloidal systems by the formation of ionic lipid-polysaccharide complexes

Non-Patent Citations (32)

* Cited by examiner, † Cited by third party
Title
"The First Uterine Pass Effect--A new finding for new options in progresterone therapy," (West-Ayerst International, Inc., 1995).
Benita, et al., "Characterization of Drug-Loaded Poly(d,N-lactide) Microspheres" J. Pharm. Sci. 73(12):1721-1724 (1984).
Benita, et al., Characterization of Drug Loaded Poly(d,N lactide) Microspheres J. Pharm. Sci. 73(12):1721 1724 (1984). *
Braun, et al., "Effect of danazol in vitro and in vivo on monocyte-mediated enhancement of endometrial cell proliferation in women with endometriosis," Fertility and Sterility 62(1):89-95 (1994).
Braun, et al., Effect of danazol in vitro and in vivo on monocyte mediated enhancement of endometrial cell proliferation in women with endometriosis, Fertility and Sterility 62(1):89 95 (1994). *
De Ziegler, et al., "Administration Non-Orale De La Progesterone: Experiences et Avenir De La Voie Transvaginale," Rev. Med. Suisse Romande, pp. 13-28 (1994).
De Ziegler, et al., Administration Non Orale De La Progest e rone: Exp e riences et Avenir De La Voie Transvaginale, Rev. Med. Suisse Romande, pp. 13 28 (1994). *
Farquhar, "Management of Dysfunctional Uterine Bleeding," Drugs 44(4):378-384 (1992).
Farquhar, Management of Dysfunctional Uterine Bleeding, Drugs 44(4):378 384 (1992). *
Hull, et al., "Endometriosis: An Enigmatic Disease," Journal of Women's Health 5(2):111-120 (1996).
Hull, et al., Endometriosis: An Enigmatic Disease, Journal of Women s Health 5(2):111 120 (1996). *
Igarishi, "A New Therapy for Pelvic Endometriosis and Uterine Adenomyosis: Local Effect of Vaginal and Intrauterine Danazol Application," Asia-Oceania J. Obstet. Gynaecol. 16(1):1-12 (1990).
Igarishi, A New Therapy for Pelvic Endometriosis and Uterine Adenomyosis: Local Effect of Vaginal and Intrauterine Danazol Application, Asia Oceania J. Obstet. Gynaecol. 16(1):1 12 (1990). *
Lim, et al., "Micoencapsulation of Living Cells and Tissues," J. Pharm. Sci. 70(4):351-354 (1981).
Lim, et al., Micoencapsulation of Living Cells and Tissues, J. Pharm. Sci. 70(4):351 354 (1981). *
Lobo, "Vaginal Route Paradox: A Direct Transport to the Uterus," Symposium: The First Uterine Pass Effect, (Wyeth-Ayerst International, Inc., 1995).
Lobo, Vaginal Route Paradox: A Direct Transport to the Uterus, Symposium: The First Uterine Pass Effect , (Wyeth Ayerst International, Inc., 1995). *
Mathiowitz, et al., "Morphology of Polyanhydride Microsphere Delivery System," Scanning Microscopy 4(2):329-340 (1990).
Mathiowitz, et al., "Novel Microcapsules for Delivery Systems," Reactive Polyymers 6:275-283 (1987).
Mathiowitz, et al., "Polyanhydride Microspheres as Drug Carriers I. Hot-Melt Microencapsulation," J. Controlled Release 5:13-22.
Mathiowitz, et al., "Polyanhydride Microspheres as Drug Carriers. II. Microencapsulation by Solvent Removal," J. Appl. Polymer Sci. 35:755-774 (1988).
Mathiowitz, et al., "Polyanhydride Microspheres. IV. morphology and Characterization of Systems Made by Spray Drying," J. Appl. Polymer Sci. 45:125-134 (1992).
Mathiowitz, et al., Morphology of Polyanhydride Microsphere Delivery System, Scanning Microscopy 4(2):329 340 (1990). *
Mathiowitz, et al., Novel Microcapsules for Delivery Systems, Reactive Polyymers 6:275 283 (1987). *
Mathiowitz, et al., Polyanhydride Microspheres as Drug Carriers I. Hot Melt Microencapsulation, J. Controlled Release 5:13 22. *
Mathiowitz, et al., Polyanhydride Microspheres as Drug Carriers. II. Microencapsulation by Solvent Removal, J. Appl. Polymer Sci. 35:755 774 (1988). *
Mathiowitz, et al., Polyanhydride Microspheres. IV. morphology and Characterization of Systems Made by Spray Drying, J. Appl. Polymer Sci. 45:125 134 (1992). *
Mizutani, et al., "Danazol concentrations in ovary, uterus, and seum and their effect on the hypothalamic-pituitary-ovarian axis during vaginal administration of a danazol suppository," Fertility and Sterility 63(6):1184-1189 (1995).
Mizutani, et al., Danazol concentrations in ovary, uterus, and seum and their effect on the hypothalamic pituitary ovarian axis during vaginal administration of a danazol suppository, Fertility and Sterility 63(6):1184 1189 (1995). *
Salib, et al., "Utilization of Sodium Alginate in Drug Microencapsulation," Pharmazeutische Industie 40-11A:1230-1234 (1978).
Salib, et al., Utilization of Sodium Alginate in Drug Microencapsulation, Pharmazeutische Industie 40 11A:1230 1234 (1978). *
The First Uterine Pass Effect A new finding for new options in progresterone therapy, (West Ayerst International, Inc., 1995). *

Cited By (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050065161A1 (en) * 1996-02-02 2005-03-24 Nitromed, Inc. Nitrosated and nitrosylated alpha-adrenergic receptor antagonist compounds, compositions and their uses
US6652874B2 (en) * 1997-01-24 2003-11-25 Femmepharma Pharmaceutical preparations and methods for their regional administration
US6472425B1 (en) 1997-10-31 2002-10-29 Nitromed, Inc. Methods for treating female sexual dysfunctions
US6350463B1 (en) 1998-05-23 2002-02-26 Andre Bieniarz Method of treatment for premature rupture of membranes in pregnancy (PROM)
US20070178139A1 (en) * 1998-11-18 2007-08-02 Yankov Vladimir I Vaginally administratable progesterone-containing tablets and method for preparing same
US20050181045A1 (en) * 1998-11-18 2005-08-18 Ferring Pharmaceuticals, Inc. Vaginally administrable progesterone-containing tablets and method for preparing same
US7300664B1 (en) 1998-11-18 2007-11-27 Ferring B.V. Vaginally administrable progesterone-containing tablets and method for preparing same
US20050008694A1 (en) * 1998-11-18 2005-01-13 Biosoma Ltd. Vaginally administratable progesterone-containing tablets and method for preparing same
US20060188571A1 (en) * 1998-11-18 2006-08-24 Ferring Pharmaceuticals A/S Vaginally administrable progesterone containing tablets and method for preparing the same
US7393543B2 (en) 1998-11-18 2008-07-01 Ferring B.V. Vaginally administratable progesterone-containing tablets and method for preparing same
US7320800B2 (en) 1998-11-18 2008-01-22 Ferring B.V. Vaginally administrable progesterone-containing tablets and method for preparing same
US6479067B2 (en) 1999-01-11 2002-11-12 Guilford Pharmaceuticals, Inc. Methods for treating ovarian cancer, poly (phosphoester) compositions, and biodegradable articles for same
US6350464B1 (en) 1999-01-11 2002-02-26 Guilford Pharmaceuticals, Inc. Methods for treating ovarian cancer, poly (phosphoester) compositions, and biodegradable articles for same
US20040071774A1 (en) * 1999-01-11 2004-04-15 Wenbin Dang Methods for treating ovarian cancer, poly (phosphoester) compositions, and biodegradable articles for same
US6641833B2 (en) 1999-01-11 2003-11-04 Guilford Pharmaceuticals, Inc. Methods for treating ovarian cancer, poly (phosphoester) compositions, and biodegradable articles for same
US6537566B1 (en) 1999-03-11 2003-03-25 John Alton Copland Compositions and methods for the non-invasive treatment of uterine fibroid cells
US6537585B1 (en) 1999-03-26 2003-03-25 Guilford Pharmaceuticals, Inc. Methods and compositions for treating solid tumors
US7101568B2 (en) 1999-03-26 2006-09-05 Guilford Pharmaceuticals, Inc. Methods and compositions for treating solid tumors
WO2001001899A1 (en) * 1999-07-07 2001-01-11 Andre Bieniarz Methods and materials for preterm birth prevention
US6375970B1 (en) * 1999-07-07 2002-04-23 Andre Bieniarz Methods and materials for preterm birth prevention
US7238814B2 (en) 2000-05-09 2007-07-03 Nitromed, Inc. Compositions of S-nitrosothiols and methods of use
US20040162243A1 (en) * 2000-05-09 2004-08-19 Nitromed, Inc. Compositions of S-nitrosothiols and methods of use
US6762202B2 (en) 2000-05-09 2004-07-13 Nitromed, Inc. Infrared thermography and methods of use
US8252305B2 (en) 2000-05-11 2012-08-28 A.P. Pharma Methods of treating emesis utilizing semi-solid delivery pharmaceutical compositions comprising granisetron
US6790458B2 (en) 2000-05-11 2004-09-14 Ap Pharma Inc. Pharmaceutical compositions using semi-solid delivery vehicle
US8252304B2 (en) 2000-05-11 2012-08-28 A. P. Pharma, Inc. Semi-solid delivery vehicle and pharmaceutical compositions for delivery of granisetron
US20100010104A1 (en) * 2000-05-11 2010-01-14 Ng Steven Y Semi-Solid Delivery Vehicle and Pharmaceutical Compositions
US6613355B2 (en) 2000-05-11 2003-09-02 A.P. Pharma, Inc. Semi-solid delivery vehicle and pharmaceutical compositions
US20050042194A1 (en) * 2000-05-11 2005-02-24 A.P. Pharma, Inc. Semi-solid delivery vehicle and pharmaceutical compositions
US8252306B2 (en) 2000-05-11 2012-08-28 A.P. Pharma, Inc. Process for preparing a semi-solid delivery vehicle comprising granisetron
US9913910B2 (en) 2000-05-11 2018-03-13 Heron Therapeutics, Inc. Methods of treating nausea utilizing semi-solid delivery vehicle compositions comprising granisetron
EP1301150A4 (en) * 2000-07-11 2004-08-11 Umd Inc Device and method for intravaginal or transvaginal treatment of fungal, bacterial, viral or parasitic infections
EP1301150A1 (en) * 2000-07-11 2003-04-16 UMD, Inc. Device and method for intravaginal or transvaginal treatment of fungal, bacterial, viral or parasitic infections
US7220414B2 (en) 2000-09-06 2007-05-22 A.P. Pharma, Inc. Degradable polyacetal polymers
US6822000B2 (en) 2001-05-11 2004-11-23 Ap Pharma, Inc. Bioerodible poly (orthoesters) from dioxolane-based diketene acetals
US20030134892A1 (en) * 2001-07-19 2003-07-17 Wenbin Dang Compositions for treatment of head and neck cancers, and methods of making and using the same
US20030133903A1 (en) * 2001-07-19 2003-07-17 Wenbin Dang Compositions for treatment of prostate cancers and methods of making and using the same
US20080182841A1 (en) * 2001-10-29 2008-07-31 Levine Howard L Vaginally administered anti-dysrhythmic agents for treating pelvic pain
US8425892B2 (en) 2001-10-29 2013-04-23 Columbia Laboratories, Inc. Extended, controlled-release pharmaceutical compositions using charged polymers
US20030211071A1 (en) * 2001-10-29 2003-11-13 Bologna William J. Extended, controlled-release pharmaceutical compositions using charged polymers
US20030114394A1 (en) * 2001-10-29 2003-06-19 Levine Howard L. Vaginally administered anti-dysrhythmic agents for treating pelvic pain
US8226972B2 (en) 2001-12-20 2012-07-24 Femmepharma Holding Company, Inc. Vaginal delivery of drugs
US20030143278A1 (en) * 2001-12-20 2003-07-31 Femmepharma, Inc. Vaginal delivery of drugs
US10471002B2 (en) 2002-06-25 2019-11-12 Durect Corporation Short duration depot formulations
US11179326B2 (en) 2002-06-25 2021-11-23 Durect Corporation Short duration depot formulations
US10201496B2 (en) 2002-06-25 2019-02-12 Durect Corporation Short duration depot formulations
US10471001B2 (en) 2002-06-25 2019-11-12 Durect Corporation Short duration depot formulations
US20040096506A1 (en) * 2002-11-15 2004-05-20 Jorge Heller Bioerodible poly(ortho esters) from dioxane-based di(ketene acetals), and block copolymers containing them
US7045589B2 (en) 2002-11-15 2006-05-16 A.P. Pharma, Inc. Bioerodible poly(ortho esters) from dioxane-based di(ketene acetals), and block copolymers containing them
US7666410B2 (en) 2002-12-20 2010-02-23 Kimberly-Clark Worldwide, Inc. Delivery system for functional compounds
US8409618B2 (en) 2002-12-20 2013-04-02 Kimberly-Clark Worldwide, Inc. Odor-reducing quinone compounds
US6780896B2 (en) 2002-12-20 2004-08-24 Kimberly-Clark Worldwide, Inc. Stabilized photoinitiators and applications thereof
US9173836B2 (en) * 2003-01-02 2015-11-03 FemmeParma Holding Company, Inc. Pharmaceutical preparations for treatments of diseases and disorders of the breast
US20040229813A1 (en) * 2003-01-02 2004-11-18 Femme Pharma, Inc. Pharmaceutical preparations for treatments of diseases and disorders of the breast
US20110212934A1 (en) * 2003-01-02 2011-09-01 Femmepharma Holding Company, Inc. Pharmaceutical preparations for treatments of diseases and disorders of the breast
US7812010B2 (en) * 2003-01-02 2010-10-12 Femmepharma, Inc. Pharmaceutical preparations for treatments of diseases and disorders of the breast
US20050085453A1 (en) * 2003-09-03 2005-04-21 Miscon Trading, S.A. Methods for the treatment of endometriosis
US9532995B2 (en) 2003-09-03 2017-01-03 Miscon Trading S.A. Methods for the treatment of endometriosis
US9468647B2 (en) 2003-09-03 2016-10-18 Miscon Trading S.A. Methods for the treatment of endometriosis
US20050095245A1 (en) * 2003-09-19 2005-05-05 Riley Thomas C. Pharmaceutical delivery system
US20060140990A1 (en) * 2003-09-19 2006-06-29 Drugtech Corporation Composition for topical treatment of mixed vaginal infections
US9789057B2 (en) 2003-09-19 2017-10-17 Perrigo Pharma International Designated Activity Company Pharmaceutical delivery system
US20050222106A1 (en) * 2004-04-01 2005-10-06 Stefan Bracht Drospirenone-containing preparations for transdermal use
US20060040904A1 (en) * 2004-08-17 2006-02-23 Ahmed Salah U Vaginal cream compositions, kits thereof and methods of using thereof
US20080070882A1 (en) * 2004-08-17 2008-03-20 Ahmed Salah U Vaginal cream compositions, kits thereof and methods of using thereof
US8715710B2 (en) 2004-09-28 2014-05-06 Heron Therapeutics, Inc. Semi-solid delivery vehicle and pharmaceutical compositions for delivery of granisetron
US10357570B2 (en) 2004-09-28 2019-07-23 Heron Therapeutics, Inc. Methods of treating nausea utilizing semi-solid delivery vehicle compositions comprising granisetron
US8388996B2 (en) 2005-03-25 2013-03-05 Kimberly-Clark Worldwide, Inc. Methods of manufacturing a medicated tampon assembly
US7744556B2 (en) 2005-03-25 2010-06-29 Kimberly-Clark Worldwide, Inc. Delivery tube assembly for an applicator
US7919453B2 (en) 2005-03-25 2011-04-05 Kimberly-Clark Worldwide, Inc. Dosage cap assembly for an applicator
US7993667B2 (en) 2005-03-25 2011-08-09 Kimberly-Clark Worldwide, Inc. Methods of manufacturing a medicated tampon assembly
US7708726B2 (en) 2005-04-28 2010-05-04 Kimberly-Clark Worldwide, Inc. Dosage form cap for an applicator
US20070110805A1 (en) * 2005-05-09 2007-05-17 Levinson R S Modified-release pharmaceutical compositions
EP1919290B1 (en) * 2005-07-12 2014-01-22 Ampio Pharmaceuticals, Inc. Methods and products for treatment of diseases
US8586568B2 (en) 2005-07-12 2013-11-19 Ampio Pharmaceuticals, Inc. Methods and products for treatment of diseases
US20110171307A1 (en) * 2005-07-12 2011-07-14 David Bar-Or Methods and products for treatment of diseases
US20070111972A1 (en) * 2005-07-12 2007-05-17 Dmi Biosciences, Inc. "methods and products for treatment of diseases"
EP1919290A2 (en) * 2005-07-12 2008-05-14 DMI Biosciences, Inc. Methods and products for treatment of diseases
US8722651B2 (en) 2005-07-12 2014-05-13 Ampio Pharmaceuticals, Inc. Methods and products for treatment of diseases
US20110171306A1 (en) * 2005-07-12 2011-07-14 David Bar-Or Methods and products for treatment of diseases
US8217024B2 (en) 2005-12-27 2012-07-10 Teva Women's Health, Inc. Conjugated estrogen compositions, applicators, kits, and methods of making and use thereof
US20070191321A1 (en) * 2005-12-27 2007-08-16 Ahmed Salah U Conjugated estrogen compositions, applicators, kits, and methods of making and use thereof
US8247393B2 (en) 2005-12-27 2012-08-21 Teva Women's Health, Inc. Conjugated estrogen compositions, applicators, kits, and methods of making and use thereof
US20080051377A1 (en) * 2005-12-27 2008-02-28 Duramed Pharmaceuticals, Inc. Conjugated estrogen compositions, applicators, kits, and methods of making and use thereof
US20070154516A1 (en) * 2006-01-05 2007-07-05 Drugtech Corporation Drug delivery system
US20070224226A1 (en) * 2006-01-05 2007-09-27 Drugtech Corporation Composition and method of use thereof
US20070264338A1 (en) * 2006-05-12 2007-11-15 Shah Devang T Base-stabilized polyorthoester formulations
US20070265329A1 (en) * 2006-05-12 2007-11-15 Devang Shah T Methods for the prevention of acute and delayed chemotherapy-induced nausea and vomiting (CINV)
US20080146531A1 (en) * 2006-09-19 2008-06-19 Solvay Pharmaceuticals Gmbh Therapeutically Active Triazoles and Their Use
US8080540B2 (en) 2006-09-19 2011-12-20 Abbott Products Gmbh Therapeutically active triazoles and their use
US20080153789A1 (en) * 2006-12-26 2008-06-26 Femmepharma Holding Company, Inc. Topical administration of danazol
US20100152146A1 (en) * 2006-12-26 2010-06-17 Femmepharma Holding Company, Inc. Topical Administration of Danazol
US20080287408A1 (en) * 2007-05-14 2008-11-20 Drugtech Corporation Endometriosis treatment
WO2009073782A3 (en) * 2007-12-04 2009-12-30 Ams Research Corporation Apparatus and methods for treatment of pathologic proliferative conditions of uterine tissue
WO2009073782A2 (en) * 2007-12-04 2009-06-11 Ams Research Corporation Apparatus and methods for treatment of pathologic proliferative conditions of uterine tissue
US10548904B2 (en) 2008-02-04 2020-02-04 Ferring B.V. Monolithic intravaginal rings comprising progesterone and methods of making and uses thereof
US11413294B2 (en) 2008-02-04 2022-08-16 Ferring B.V. Monolithic intravaginal rings comprising progesterone and methods of making and uses thereof
US10537584B2 (en) 2008-02-04 2020-01-21 Ferring B.V. Monolithic intravaginal rings comprising progesterone and methods of making and uses thereof
US8580293B2 (en) 2008-02-04 2013-11-12 Teva Women's Health, Inc. Monolithic intravaginal rings comprising progesterone and methods of making and uses thereof
US20090202612A1 (en) * 2008-02-04 2009-08-13 Ahmed Salah U Monolithic Intravaginal Rings Comprising Progesterone and Methods of Making and Uses Thereof
US20100152227A1 (en) * 2008-12-11 2010-06-17 A.P. Pharma, Inc. Methods for Enhancing Stability of Polyorthoesters and Their Formulations
US9504274B2 (en) 2009-01-27 2016-11-29 Frito-Lay North America, Inc. Methods of flavor encapsulation and matrix-assisted concentration of aqueous foods and products produced therefrom
US20110189353A1 (en) * 2009-01-27 2011-08-04 Frito-Lay North America, Inc. Methods of Flavor Encapsulation and Matrix-Assisted Concentration of Aqueous Foods and Products Produced Therefrom
US20100323991A1 (en) * 2009-06-22 2010-12-23 Dmi Acquisition Corp. Methods and products for treatment of diseases
US9987292B2 (en) 2009-06-22 2018-06-05 Ampio Pharmaceuticals, Inc. Method for treatment of diseases
US9233113B2 (en) 2009-06-22 2016-01-12 Ampio Pharmaceuticals, Inc. Method for treatment of diseases
US20100324005A1 (en) * 2009-06-22 2010-12-23 Dmi Acquisition Corp. Method for treatment of diseases
US20110003000A1 (en) * 2009-07-06 2011-01-06 Femmepharma Holding Company, Inc. Transvaginal Delivery of Drugs
WO2011006067A1 (en) * 2009-07-09 2011-01-13 Ams Research Corporation Apparatus and methods of treatment of pathologic proliferative conditions uterine tissue
US20110033545A1 (en) * 2009-08-06 2011-02-10 Absize, Inc. Topical pharmaceutical preparations having both a nanoparticle solution and a nanoparticle suspension and methods for the treatment of acute and chronic pain therewith
US9248136B2 (en) 2011-11-23 2016-02-02 Therapeuticsmd, Inc. Transdermal hormone replacement therapies
US8987237B2 (en) 2011-11-23 2015-03-24 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US11793819B2 (en) 2011-11-23 2023-10-24 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US8633178B2 (en) 2011-11-23 2014-01-21 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US8846649B2 (en) 2011-11-23 2014-09-30 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US11103516B2 (en) 2011-11-23 2021-08-31 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US10675288B2 (en) 2011-11-23 2020-06-09 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US8846648B2 (en) 2011-11-23 2014-09-30 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US11166963B2 (en) 2012-06-18 2021-11-09 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US8933059B2 (en) 2012-06-18 2015-01-13 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US11865179B2 (en) 2012-06-18 2024-01-09 Therapeuticsmd, Inc. Progesterone formulations having a desirable PK profile
US9301920B2 (en) 2012-06-18 2016-04-05 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US11529360B2 (en) 2012-06-18 2022-12-20 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US9006222B2 (en) 2012-06-18 2015-04-14 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US9289382B2 (en) 2012-06-18 2016-03-22 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US10471148B2 (en) 2012-06-18 2019-11-12 Therapeuticsmd, Inc. Progesterone formulations having a desirable PK profile
US8987238B2 (en) 2012-06-18 2015-03-24 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US10639375B2 (en) 2012-06-18 2020-05-05 Therapeuticsmd, Inc. Progesterone formulations
US9012434B2 (en) 2012-06-18 2015-04-21 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US11110099B2 (en) 2012-06-18 2021-09-07 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US11033626B2 (en) 2012-06-18 2021-06-15 Therapeuticsmd, Inc. Progesterone formulations having a desirable pk profile
US10052386B2 (en) 2012-06-18 2018-08-21 Therapeuticsmd, Inc. Progesterone formulations
US10806740B2 (en) 2012-06-18 2020-10-20 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US10058562B2 (en) 2012-12-19 2018-08-28 Ampio Pharmaceuticals, Inc. Methods of treatment of diseases
US9351979B2 (en) 2012-12-19 2016-05-31 Ampio Pharmaceuticals, Inc. Methods of treatment of diseases
US10888516B2 (en) 2012-12-21 2021-01-12 Therapeuticsmd, Inc. Soluble estradiol capsule for vaginal insertion
US10471072B2 (en) 2012-12-21 2019-11-12 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US11622933B2 (en) 2012-12-21 2023-04-11 Therapeuticsmd, Inc. Soluble estradiol capsule for vaginal insertion
US10806697B2 (en) 2012-12-21 2020-10-20 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US10568891B2 (en) 2012-12-21 2020-02-25 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US10835487B2 (en) 2012-12-21 2020-11-17 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US11497709B2 (en) 2012-12-21 2022-11-15 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US11351182B2 (en) 2012-12-21 2022-06-07 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US10537581B2 (en) 2012-12-21 2020-01-21 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US11065197B2 (en) 2012-12-21 2021-07-20 Therapeuticsmd, Inc. Soluble estradiol capsule for vaginal insertion
US9180091B2 (en) 2012-12-21 2015-11-10 Therapeuticsmd, Inc. Soluble estradiol capsule for vaginal insertion
US11304959B2 (en) 2012-12-21 2022-04-19 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US11266661B2 (en) 2012-12-21 2022-03-08 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US11116717B2 (en) 2012-12-21 2021-09-14 Therapeuticsmd, Inc. Soluble estradiol capsule for vaginal insertion
US11123283B2 (en) 2012-12-21 2021-09-21 Therapeuticsmd, Inc. Soluble estradiol capsule for vaginal insertion
US11246875B2 (en) 2012-12-21 2022-02-15 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US11241445B2 (en) 2012-12-21 2022-02-08 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US11103513B2 (en) 2014-05-22 2021-08-31 TherapeuticsMD Natural combination hormone replacement formulations and therapies
US10206932B2 (en) 2014-05-22 2019-02-19 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US10688072B2 (en) 2014-07-11 2020-06-23 Azanta Danmark A/S Misoprostol dispersible tablet
US10398708B2 (en) 2014-10-22 2019-09-03 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US10668082B2 (en) 2014-10-22 2020-06-02 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US10258630B2 (en) 2014-10-22 2019-04-16 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US10912783B2 (en) 2015-07-23 2021-02-09 Therapeuticsmd, Inc. Formulations for solubilizing hormones
US10328087B2 (en) 2015-07-23 2019-06-25 Therapeuticsmd, Inc. Formulations for solubilizing hormones
US10532059B2 (en) 2016-04-01 2020-01-14 Therapeuticsmd, Inc. Steroid hormone pharmaceutical composition
US9931349B2 (en) 2016-04-01 2018-04-03 Therapeuticsmd, Inc. Steroid hormone pharmaceutical composition
US10286077B2 (en) 2016-04-01 2019-05-14 Therapeuticsmd, Inc. Steroid hormone compositions in medium chain oils
US11400019B2 (en) 2020-01-13 2022-08-02 Durect Corporation Sustained release drug delivery systems with reduced impurities and related methods
US11771624B2 (en) 2020-01-13 2023-10-03 Durect Corporation Sustained release drug delivery systems with reduced impurities and related methods
US11633405B2 (en) 2020-02-07 2023-04-25 Therapeuticsmd, Inc. Steroid hormone pharmaceutical formulations

Also Published As

Publication number Publication date
DE69834025D1 (en) 2006-05-18
JP2001511773A (en) 2001-08-14
EP0977555B1 (en) 2006-03-29
CA2278541A1 (en) 1998-07-30
ATE321532T1 (en) 2006-04-15
JP2010138196A (en) 2010-06-24
DE69834025T2 (en) 2006-11-09
AU743157B2 (en) 2002-01-17
DK0977555T3 (en) 2006-07-10
PT977555E (en) 2006-06-30
EP0977555A1 (en) 2000-02-09
AU5922798A (en) 1998-08-18
WO1998032422A1 (en) 1998-07-30
CA2278541C (en) 2006-10-24
EP2316424A1 (en) 2011-05-04
ES2260828T3 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
US5993856A (en) Pharmaceutical preparations and methods for their administration
US6652874B2 (en) Pharmaceutical preparations and methods for their regional administration
TWI274589B (en) Porous drug matrices and methods of manufacture thereof
JP2974409B2 (en) Particulate drug composition
AU2003226021B2 (en) Drug microparticles
ES2742525T3 (en) Orally administered corticosteroid compositions
US20110171308A1 (en) Ph-sensitive solid pharmaceutical composition for oral preparation and preparation method thereof
CA2371912A1 (en) Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
Gupta et al. Exploring novel approaches to vaginal drug delivery
JP2016529314A (en) Corticosteroid-containing orally disintegrating tablet composition for eosinophilic esophagitis
JP3386349B2 (en) Aqueous suspension pharmaceutical composition
JP2023514606A (en) THERAPEUTIC NANOPARTICLES AND METHODS OF PREPARATION
SK285128B6 (en) A remedy with controlled release comprising tramadol hydrochloride and method for preparation thereof
US20050070501A1 (en) Water dispersible film
EP1611878A1 (en) Pharmaceutical preparations and methods for their regional administration
MXPA99006819A (en) Pharmaceutical preparations and methods for their regional administration
CA2689987A1 (en) Pharmaceutical composition of a new system for vaginal release of steroids
WO2002100407A1 (en) Itraconazole granulations: pharmaceutical formulations for oral administration and method of preparing same
Ye et al. Research progress of progesterone preparations: a mini review
WO2005065653A1 (en) Intimate coating of ibuprofen with poloxamers to enhance aqueous dissolution
Jain et al. Recent advances in mucoadhesive microspheres based novel drug delivery systems
US20050129777A1 (en) Elemental nanoparticles of substantially water insoluble materials
Barik et al. Introduction to different types of dosage forms and commonly used excipients
Kiran Kumar et al. A Review on Micro sponges Drug Delivery System
JPH024576B2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: FEMMEPHARMA,, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAGAVAN, VANAJA V.;DIPIANO, GERIANNE, M.;REEL/FRAME:008873/0327

Effective date: 19971217

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REFU Refund

Free format text: REFUND - SURCHARGE, PETITION TO ACCEPT PYMT AFTER EXP, UNINTENTIONAL (ORIGINAL EVENT CODE: R2551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: FEMMEPHARMA HOLDING COMPANY, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FEMMEPHARMA, INC.;REEL/FRAME:016087/0559

Effective date: 20050414

AS Assignment

Owner name: FEMMEPHARMA, INC., PENNSYLVANIA

Free format text: AFFIDAVIT REGARDING NAME OF BUSINESS;ASSIGNOR:FEMMEPHARMA;REEL/FRAME:019224/0105

Effective date: 20050623

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: U.S. HEALTHCARE I, LLC, NEW YORK

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:DRUGTECH CORPORATION;REEL/FRAME:025385/0498

Effective date: 20101117

AS Assignment

Owner name: DRUGTECH CORPORATION, DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. HEALTHCARE, LLC (AS ADMINISTRATIVE AND COLLATERAL AGENT);REEL/FRAME:025980/0024

Effective date: 20110317

FPAY Fee payment

Year of fee payment: 12