WO2003023313A2 - Captive soft-point bullet - Google Patents

Captive soft-point bullet Download PDF

Info

Publication number
WO2003023313A2
WO2003023313A2 PCT/US2002/028000 US0228000W WO03023313A2 WO 2003023313 A2 WO2003023313 A2 WO 2003023313A2 US 0228000 W US0228000 W US 0228000W WO 03023313 A2 WO03023313 A2 WO 03023313A2
Authority
WO
WIPO (PCT)
Prior art keywords
core
bullet
nose
metal
mainly
Prior art date
Application number
PCT/US2002/028000
Other languages
French (fr)
Other versions
WO2003023313A3 (en
Inventor
Thomas J. Burczynski
Lawrence P. Head
Craig S. Pilarski
Original Assignee
Federal Cartridge Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal Cartridge Company filed Critical Federal Cartridge Company
Publication of WO2003023313A2 publication Critical patent/WO2003023313A2/en
Publication of WO2003023313A3 publication Critical patent/WO2003023313A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/34Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect expanding before or on impact, i.e. of dumdum or mushroom type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/72Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
    • F42B12/74Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body
    • F42B12/745Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body the core being made of plastics; Compounds or blends of plastics and other materials, e.g. fillers

Definitions

  • This invention relates to the development of a metal-jacketed, non-hollow point bullet intended for law enforcement use which exhibits optimum penetration and more reliable and consistent expansion than hollow point bullets when fired through dry materials such as wallboard, plywood and heavy clothing, while maintaining 100% weight retention.
  • the FBI does not have a specific requirement for bullet expansion.
  • the criterion is the volume of the wound.
  • wound volume is a direct result of the rate and extent of bullet expansion. That volume is measured as the product of the extent of penetration and the frusto area resulting from the expansion. They grade sample ammunition, and the wound volume is one of the parameters used in reaching a purchasing decision. Ammunition with less than twelve (12) inches of penetration is usually not purchased. Penetration beyond eighteen (18) inches is not utilized in calculating the wound volume.
  • the FBI protocol is the most stringent test protocol ever devised. Many of the ammunition manufacturers soon discovered that the hollow point bullets, which they had at that time, produced very poor results in gelatin after passing through dry barriers.
  • Hollow point bullets rely on simple hydraulic action to initiate radial expansion. This hydraulic action occurs as fluid enters and fills the bullet's nose cavity upon impact with a fluid-based target. Because of its dependence on fluid and the actual filling of its nose cavity with fluid, a hollow point bullet expands poorly, if at all, when impacting dry, intermediate targets such as wallboard, plywood and heavy fabric. In short, without the immediate presence of fluid, the hollow point bullet's nose cavity will clog severely after encountering almost any dry media. The material producing the worst effect on hollow point bullet performance is wallboard.
  • the gypsum dust has a tendency to pack tightly into the nose cavity which essentially transforms the bullet into a solid-nosed projectile which will, at best, exhibit minimal expansion due to the inherent strength of the core metal comprising its cavity wall.
  • the hollow point bullet is unable to take advantage of simple hydraulics.
  • the above bullet is comprised of a jacket of malleable metal, such as one formed predominantly of copper, and has a closed conventionally tapered nose portion and a rearward cylindrically shaped sidewall which is preferably open at its rear end.
  • the nose portions have circumferentially spaced weakened areas, which extend axially of its nose- defining wall and are preferably formed by deep internal scoring, although external scoring may be utilized.
  • Compressed within the closed forward end of the jacket and bearing against the interior surface thereof is a soft rubber or other polymer core, the rear portion of which terminates at, ahead of, or rearward of the inflection point. This inflection point is located at the juncture of the tapered nose portion and the forward end portion of the cylindrical wall of the jacket.
  • a metal core which bears against the rear end of the rubber core in compressing relation thereto.
  • the rear end of the metal core terminates adjacent the rear end of the cylindrical wall of the jacket, and the terminal portion of said wall thereat is crimped inwardly to lock the metal core therewithin in compressing relation to the rubber core.
  • the forward end surface of the metal core is preferably recessed with a concave or dished out configuration.
  • the metal core is preferably made of pure lead or some other metal which is softer than the metal of which the jacket is made.
  • Another suitable material would be metals mixed with polymer binders, such as a tungsten/polymer mixture.
  • This core may also be made of a polymeric material of suitable hardness.
  • the above bullet will penetrate such materials at least twelve (12) inches and the nose portion will expand radially in excess of 50%, while retaining its weight at approximately 100%. Actual measurements show the radial expansion as great as 70%.
  • Both the metal core and the rubber core will remain encapsulated by the metal jacket.
  • the front core is preferably made of rubber, urethane, silicone, or one of a substantial number of plastics, such as fluorocarbons, polycarbonates, polypropylenes, polystyrenes, polyethylenes, PVCTM, silicone rubber, NylonTM, or vinyl acetate, each of which has a hardness within a range of Shore A-20 to Rockwell R-122.
  • the rear core is preferably formed of a metal which is softer than that from which the jacket is made. Pure lead is the preferred material. Other suitable metals are copper, zinc, iron, steel, tin, lead, tungsten, copper, bismuth, green or sintered powdered metals, or alloys thereof. Another suitable material would be metals mixed with polymer binders, such as a tungsten/polymer mixture. This core may also be made of polymeric material of suitable hardness.
  • the bullet ogive can be frusto-conical in shape or it may comprise a curving ogive.
  • a further object is to provide a captive soft-point bullet which will expand radially to a relatively large diameter when fired into soft to medium hard targets and still penetrate to a depth of at least twelve (12) inches.
  • Another object is to provide a captive soft-point bullet which, when fired into soft to medium hard targets, will penetrate to at least twelve (12) inches while expanding radially to at least a 50-70% extent.
  • a still further object is to provide a captive soft-point bullet which provides 100% weight retention after first passing through intermediate barriers and thereafter impacting a soft to medium hard target.
  • Fig. 1 is a perspective view of the bullet jacket incorporated in the invention
  • Fig. 2 is a side elevational view of the jacket shown in Fig. 1 prior to seating of the rubber core therein, with a nose portion and a portion of the cylindrical wall broken away and shown in vertical section;
  • Fig. 3 is a side elevational view of the preferred form of the invention in its final form
  • Fig. 4 is a side elevational view of the bullet shown in Fig. 3, with a portion of the cylindrical sidewall broken away and a portion shown in vertical section and showing the thin web radially opposite and outside of the internal score;
  • Fig. 5 is a side elevational view of a modified version of the bullet in which portions are broken away to show the nose portion in section, the forward end of the metal core is concaved and the rubber core extends rearwardly to a point behind the inflection point;
  • Fig. 6 is a perspective view of our preferred bullet after it has struck and penetrated a target which included a back-up consisting of a block of 10% gelatin;
  • Fig. 7 is a side elevational view of our bullet with the near wall of the jacket broken away to show the interior in longitudinal section and with the rubber core extending rearwardly and terminating ahead of the inflection point;
  • Fig. 8 is a vertical sectional view, with portions shown in elevation, of a similar jacket in which the scoring is external.
  • Figs. 1-9 inclusive.
  • the jackets which are shown are all made of the same or similar material, and the forward end of the scoring may start at the closed end of the bullet or rearward thereof, and may terminate ahead of, at, or rearwardly of the inflection point which is at the rear end of the nose-defining portions.
  • Very narrow slits may be utilized in lieu of or in combination with the scoring. Basically, the narrow slits or the scoring constitute weakened areas of the nose portion of the bullet.
  • the jacket 10 As shown in Fig. 2, the jacket 10 as shown, has cylindrical wall 11 which tapers inwardly in nose-defining wall 12, which in turn terminates in a flat solid end plate 13.
  • Internal scoring 14 extends rearwardly from the flat nose end plate 13 and terminates ahead of the inflection point 15.
  • the scoring 14 which we utilize is deep, so as to leave only a very thin web 16 directly opposite and outwardly of the valley made by the scoring.
  • the nose-defining wall 12 of the jacket 10 encapsulates a rubber core 17, which occupies the nose portion behind the end plate 13 and extends rearwardly beyond to the inflection point 15.
  • the scores 14 extend rearwardly to the inflection point 15.
  • Disposed immediately behind the rubber core 17 is a soft metal core 18 which fills the entire cavity of the cylindrical wall 11 from the rear end 19 thereof, to the rear end of the rubber core 17.
  • the metal core 18 in each of the variations shown herein is disposed tightly across and against the rear end of the rubber core 17 so as to urge o the same against the inner surface of the end plate 13 and against the interior surface of the nose-defining portions 12.
  • the flat forward end 20 of the soft metal core engages and is compressed against the rear surface of the rubber core.
  • the jacket 10 is substantially the same in Fig. 5 as that shown in Fig. 4, except that the scoring 22 extends rearwardly from the inner surface of the nose plate 13 and 5 terminates rearwardly of the inflection point 15.
  • Fig. 5 The bullet shown in Fig. 5 is the preferred form of our invention.
  • the forward end of the metal core 23 is generally concaved or o dished out to a depth of about .150" to .300", and the cavity thereof is filled with the rear end portion of the rubber core 21. We have found that this combination facilitates the expansion of the nose-defining portions and the rubber core 21.
  • the rear end portion 11a of the cylindrical wall 11 is crimped inwardly around the rear end of the soft metal core 23 to effectively 5 hold the metal core 23 in pressure-bearing relation against the rubber core 21, thereby locking the metal core 23 within the jacket.
  • the crimped portion 11a is embedded by the swaging actions utilized in forming the bullet, after the rubber and soft metal cores have been positioned as shown.
  • Fig. 6 shows one of our bullets after it has been fired through a soft to medium hard target and penetrated through 10% gelatin a distance of approximately twelve (12) inches. It can be seen that the jacket 10 retained the metal core and the rubber core completely encapsulated. The nose portion is collapsed entirely, with the split jacket sections 30 thereof widely separated, and showing the axially collapsed and radially expanded sections 31 of the rubber core visible therebetween in confined relation. The flat end plate remains intact in support of the expanded sections 30 and 31. As a consequence, the bullet has retained 100% of its original weight.
  • Fig. 7 shows another form of our invention in which the scoring is located in a slightly different position.
  • the portions of the jacket which are the same as those shown in the other views are identified by the same numerals wherever they are the same or highly similar in construction.
  • Fig. 7 shows scoring 27 which extends rearwardly to a point forward of the inflection point 15. Since it is deep, as is the case in each of the bullets shown herein, such deep scoring leaves only a very thin web 28, which is disposed radially outwardly and directly opposite the bottom of the individual scores.
  • the scores 27 originate at or near the inner surface of the nose or end plate 13.
  • the rear end surface of the rubber core 26 terminates forwardly of the inflection point 15.
  • the flat forward end of the soft metal core 29 bears against the rear end surface of the rubber core 26, and compresses the same tightly against the inner surface of the nose plate 13 and the nose defining portion 12, as well as the web 28.
  • Fig. 8 shows a bullet similar to that shown in Fig. 7 except that the scoring is external, instead of internal.
  • the elements of Fig. 8 are identified with some of the same numerals as those shown in Fig. 7, with the exception of the external scoring 32 and the web 33 created thereby, in lieu of the outwardly disposed web 28 of Fig. 7.
  • the length of the scoring is the same, as is the depth thereof.
  • a retaining disc 34 may be secured behind the metal core by the inwardly crimped rear end 35 of the side
  • the jacket thickness can vary substantially, since the captive soft-point bullet described herein may be used for low velocity pistol applications, high velocity pistol applications, and certain rifle applications. The latter have very high velocity characteristics.
  • the thickness range of the jacket is approximately .007"
  • the usable range would be approximately between 0.010"- .090".
  • the jacket wall may be uniform originally in thickness, there is a substantial degree of wall taper in most pistol and rifle jackets which may be utilized in the formation of the jacket of our bullet.
  • An example of the above is a typical pistol jacket which may have a thickness of .015" near the radius of its closed end
  • the jackets shown herein are comprised of copper or a gilding metal. These are the most common (and popular) jacket materials used in the industry. A mild steel jacket, if thin enough and malleable enough might be another alternative.
  • Gilding metal is a commonly used term of the art and is comprised of a copper-zinc
  • Gilding metal usually contains either 95% copper and 5% zinc or 90% copper and 10% zinc.
  • the range of copper content is about 80% to 95%. The more zinc, the harder and less malleable will be a jacket formed thereof.
  • the forward nose or end plate 13 of our bullet is solid and closed.
  • both the rubber and soft metal cores are encapsulated by the jacket upon and after impact, since the nose plate is flat and closed.
  • the optimum number of scores appears to be six (6).
  • the number of scores may be either even or odd.
  • a greater velocity of approximately fourteen hundred (1400) feet per second or more is required to sufficiently expand such a bullet with only three (3) scores.
  • the greater the depth of the scores the weaker the bullet nose and thus, the more rapidly it expands on impact.
  • the greater the length of the scores the weaker the bullet will be and the more rapidly it will expand on impact.
  • Score length also regulates the diameter of expansion since the longer the scores, the larger the expansion.
  • the external scores can commence at or near the nose of the jacket and terminate forward of, at, or behind the inflection point 15. Like the internal scores, the external scores extend longitudinally of the nose-defining portions 12 and their length can be varied similarly. The depth of the external scores is similar in depth to that of the internal scores and as a consequence, the thickness of the web, which is left after the scoring is accomplished, is substantially the same as that resulting from the internal scoring. If desired, both the internal and external scoring can be made to such a depth that the thickness of the web approaches zero or, as a further alternative, a very narrow slit may be formed. Wherever hereinafter reference is made to the webs, it is intended to include a very narrow slit as an alternative for the web.
  • the scores allow the nose portion of the jacket to split.
  • the nose-defining portions commence to collapse axially and, in doing so, the bullet expands radially.
  • the jacket material behind the inflection point may stretch and tear. These tears originate from the rearmost terminus of each score. In essence, they become in-line extensions of the scores and travel into the unscored area of the jacket. This additional split-length in the unscored area adds to the diameter of the expanded bullet.
  • the forward end of the metal core of our bullet may have a flat solid forward portion or, as shown in Fig. 5, it can contain a hollow-forward portion.
  • the shape and size of the hollow point may vary. It may appear as shown in Fig.
  • Fig. 5 depicts the recess as being merely concave in form.
  • the actual rubber core may have a length within the range of .050"- .350". We have found that a web having a thickness of .002" is very effective. Webs which measure less than 25% of the jacket wall will function adequately at handgun velocities. The preferred thickness of the web approximates 20% of the jacket wall thickness, but it may be reduced to zero.
  • the preferred thickness of the cylindrical wall is .011". It will be seen by reference to the drawings that the front end 13 of the nose portion is thicker than the side wall of said portions and exceeds the thickness of the cylindrical wall slightly. This is a natural result of the forming of the jacket from a conventional bullet jacket having one closed end and the other end being open.
  • the bullets described hereinabove have been found to be highly effective, particularly for law enforcement purposes.
  • a bullet frequently must pass through soft to medium hard materials before engaging the true or ultimate target, and thereafter penetrate the body of the true or ultimate target.
  • This ultimate target will frequently include at least one or more layers of clothing before the bullet enters the flesh of the ultimate target which is relatively soft, much like 10% gelatin.
  • bones are encountered by the bullet and for that reason substantial penetration is desired.
  • the expanded bullet conveys substantial shock.
  • the bullets shown and described hereinabove have been found to be unusually effective for such law enforcement purposes. As indicated above, these bullets will
  • compositions can be successfully utilized in our above bullet.
  • assignee hereof desired an early issuance of the patent on our above
  • Fig. 9 is a side elevational view of a bullet in which portions are broken away to show the plastic nose core in section, and a plastic rear core partially in section.
  • Fig. 9 is similar to Fig. 5 of the parent
  • Silicone rubber has an acceptable hardness range of Shore A-20 to A-80.
  • the preferred hardness is Shore A-50. It has certain physical properties which lend themselves to produce a highly effective, collapsible nose portion which collapses axially and then expands extensively in a radial direction as sections 30, along with the expanded metal sections 31 of the nose section of the jacket. It compares favorably with the rubber of our above parent application, which has a hardness range of Shore A-20 to A-80, and a preferred hardness of Shore A-50, and is substantially equivalent in price.
  • Ethylene vinyl acetate also has hardness properties which will cause it to function as an adequate substitute for rubber in the soft nose core 14. We have also found that
  • NylonTM will function adequately when the soft nose core of our invention is formed from
  • low-density and high-density polyethylene have been tested and found to function in a suitable manner as a material from which the relatively soft nose core may be formed.
  • the typical high-velocity range for rifle bullets is about 2500 fps to 4000 fps.
  • the nose core durometer range for the low to medium velocity bullets is about Shore A-20 to Shore D-73.
  • the nose core durometer range for the high-velocity rifle bullets in our 25 invention is about Shore A-20 to Rockwell R-122.
  • the preferred jacket thickness for the medium-to-high velocity rifle bullets in our invention is from about 0.010" to 0.090".
  • the preferred jacket wall thickness for the low velocity (pistol) bullet is about .011" - .015".
  • the preferred range of thickness of the webs is about .002" - .008".
  • Some chemical compounds which will function as described above when used as nose cores in rifle bullets at the above-described velocities include polypropylene, fluorocarbons, polystyrene, and polycarbonate. Although they have higher measures of hardness than the rubbers, they will collapse axially and expand radially and quickly, upon the bullet striking a target.
  • the polypropylene has a hardness of R-80 to R- 102 and the preferred hardness is R- 80.
  • the polystyrene will function well when used as a nose core within a hardness range of R-75 to R-110.
  • the preferred hardness measure of this plastic for use in high velocity bullets is about R-75.
  • the polycarbonate also functions well when used as a nose core in high-velocity bullets if the hardness thereof is within the range of R-108 to R-122.
  • the preferred hardness level of the polycarbonates for use as nose cores in high-velocity bullets for rifles is about R-108.
  • rubber, urethane, silicone, or one of a substantial number of plastics such as fluorocarbons, polycarbonates, polypropylenes, polystyrenes, polyethylenes, PVCTM, silicone rubber, NylonTM, or vinyl acetate, each of which has a hardness within a range of
  • the metal cores may be comprised of lead, tungsten, copper, zinc, or tin.
  • suitable materials are iron, steel, bismuth, green or sintered powdered metals, or alloys thereof.
  • Another suitable material would be metals mixed with polymer binders, such as a tungsten/polymer mixture.
  • This core may also be made of a polymeric material of suitable hardness.
  • low-velocity bullets having a nose core comprised of silicone rubber function very well, in that the bullet nose, upon the bullet striking the target, will penetrate said target, and the nose portion will thereafter quickly collapse axially, and expand radially in all directions to a substantial extent. As a consequence, the bullet imparts substantial shock to the target, which is desirous. The bullet will continue in a relatively straight path within the target and will lodge within the interior of the same without any appreciable weight loss, which is desirous. By maintaining substantially 100% of its initial weight, such a bullet transmits maximum shock value to the target.
  • nose cores manufactured of all of the materials identified as suitable for that purpose will function adequately at the higher velocities, but the plastic materials having the high hardness durometer values will not function well at the lower velocities.
  • CIP Continuation-in-Part
  • the instant application is being filed to expedite the issuance of a patent upon application Serial No. 09/597,017 containing the allowed claims, and to avoid any possible issue of new matter.
  • the dictionary provides a meaning of "mainly” as being “for the most part”.
  • the Applicants have adopted this term and have defined the phrase "mainly metal”, in their claims hereinafter, as meaning that the metal core is comprised mainly (in excess of 50% by weight) of metal.
  • the term "mainly by weight,” as so defined, is utilized hereinafter to distinguish over volume, to thereby preclude avoidance of the patent claims by an accused infiinger by utilizing, for example, a combination of a core comprised of 49% by volume of metal and 51% by volume of polymeric material.
  • the dictionary fails to specify a definition of "primarily” in terms of percentages, but suggests “principally” as a synonym.
  • mainly metal to indicate a core which is comprised of a minimum of at least 50% by weight of metal.
  • mainly metal by weight it is intended to connote that the core is made of metal in an amount of at least 50% by weight, when measured on a weight basis.

Abstract

A bullet comprised of a jacket (10) of malleable metal having a closed nose portion (12) and a rear end portion defined by a cylindrical wall, the closed nose portion having wall-weakening areas (4) encapsulating a forward core (17) made of a deformable material which promptly deforms, collapses axially, and expands radially to a substantial extent along with the weakened wall areas, when the bullet strikes a target. These weakened wall areas are in the form of longitudinally extending, deep, internal or external, circumferentially spaced grooves with underlying web areas. This core is preferably made mainly of rubber, urethane, silicone, or one of a substantial number of plastics, such as fluocarbons, polycarbonates, polypropylenes, polystyrenes, polyethylenes, PVCTM, silicone rubber, NylonTM, and vynyl acetate, each of which has a hardness within a range of Shore A-20 to Rockwell R-122. A second core (18), made mainly of metal such as tungsten, lead zinc, copper, tin, iron or alloys thereof or hard plastic, is seated, under pressure, behind the nose core and within the rear end portion of the jacket.

Description

CAPTIVE SOFT-POINT BULLET I. DESCRIPTION
CROSS REFERENCE TO RELATED APPLICATIONS
This application is a Continuation-in-Part of Application Serial No. 09/597,017, filed June 20, 2000 (allowed June 15, 2001 ), which is a Continuation-in-Part of Application Serial No. 09/256,861, filed February 24, 1999, Patent No. 6,178,890, issued January 30, 2001, said applications also entitled "Captive Soft-Point Bullet."
BACKGROUND OF THE INVENTION
This invention relates to the development of a metal-jacketed, non-hollow point bullet intended for law enforcement use which exhibits optimum penetration and more reliable and consistent expansion than hollow point bullets when fired through dry materials such as wallboard, plywood and heavy clothing, while maintaining 100% weight retention.
In December of 1988, the Federal Bureau of Investigation Academy Firearms Training Unit designed and implemented a special test protocol for evaluating the effectiveness of modern ammunition using various types of bullets. Each cartridge and bullet type submitted for testing was used in eight different test events. All of the tests ultimately entailed the penetration of blocks of 10% ballistic gelatin, with and without intermediate barriers in front of the gelatin. These tests included firing bullets into bare gelatin at a distance of 10 feet and through the following materials placed in front of the gelatin; heavy clothing, sheet steel, wallboard (gypsum board), plywood, automobile glass, heavy clothing at 20 yards, and automobile glass at 20 yards.
The FBI does not have a specific requirement for bullet expansion. The criterion is the volume of the wound. However, wound volume is a direct result of the rate and extent of bullet expansion. That volume is measured as the product of the extent of penetration and the frusto area resulting from the expansion. They grade sample ammunition, and the wound volume is one of the parameters used in reaching a purchasing decision. Ammunition with less than twelve (12) inches of penetration is usually not purchased. Penetration beyond eighteen (18) inches is not utilized in calculating the wound volume. The FBI protocol is the most stringent test protocol ever devised. Many of the ammunition manufacturers soon discovered that the hollow point bullets, which they had at that time, produced very poor results in gelatin after passing through dry barriers. In an attempt to increase the robustness of their bullets, manufacturers developed bullet- weakening features to enhance post-dry-barrier expansion. These efforts were met with minimal success because ultimately, performance was still severely limited by the hollow point concept itself. Even today, many of the best hollow point bullets available perform only marginally well when tested using the FBI protocol.
Hollow point bullets rely on simple hydraulic action to initiate radial expansion. This hydraulic action occurs as fluid enters and fills the bullet's nose cavity upon impact with a fluid-based target. Because of its dependence on fluid and the actual filling of its nose cavity with fluid, a hollow point bullet expands poorly, if at all, when impacting dry, intermediate targets such as wallboard, plywood and heavy fabric. In short, without the immediate presence of fluid, the hollow point bullet's nose cavity will clog severely after encountering almost any dry media. The material producing the worst effect on hollow point bullet performance is wallboard. This is because the gypsum dust has a tendency to pack tightly into the nose cavity which essentially transforms the bullet into a solid-nosed projectile which will, at best, exhibit minimal expansion due to the inherent strength of the core metal comprising its cavity wall. Essentially, when a dry media is substituted for fluid in its cavity, the hollow point bullet is unable to take advantage of simple hydraulics. By utilizing a completely different expansion technology, the bullet described hereinafter overcomes the inherent limitations of hollow point bullets.
BRIEF SUMMARY OF THE INVENTION The design of our bullet is characterized by a collapsible nose portion. This type of bullet provides a limited but adequate degree of expansion while penetrating to the degree demanded by the FBI. While doing so, it retains substantially 100% of its weight.
The above bullet is comprised of a jacket of malleable metal, such as one formed predominantly of copper, and has a closed conventionally tapered nose portion and a rearward cylindrically shaped sidewall which is preferably open at its rear end. The nose portions have circumferentially spaced weakened areas, which extend axially of its nose- defining wall and are preferably formed by deep internal scoring, although external scoring may be utilized. Compressed within the closed forward end of the jacket and bearing against the interior surface thereof is a soft rubber or other polymer core, the rear portion of which terminates at, ahead of, or rearward of the inflection point. This inflection point is located at the juncture of the tapered nose portion and the forward end portion of the cylindrical wall of the jacket. Mounted within the cylindrical wall of the jacket is a metal core which bears against the rear end of the rubber core in compressing relation thereto. Preferably, the rear end of the metal core terminates adjacent the rear end of the cylindrical wall of the jacket, and the terminal portion of said wall thereat is crimped inwardly to lock the metal core therewithin in compressing relation to the rubber core. The forward end surface of the metal core is preferably recessed with a concave or dished out configuration.
The metal core is preferably made of pure lead or some other metal which is softer than the metal of which the jacket is made. Another suitable material would be metals mixed with polymer binders, such as a tungsten/polymer mixture. This core may also be made of a polymeric material of suitable hardness. When the above-described bullet strikes and penetrates a target which is of soft to medium hardness, the nose portion collapses axially, which increases the pressure upon the rubber core. This causes the latter to rupture the nose-defining portions at the scored or otherwise weakened areas, and to separate along the scoring lines. As this occurs, the metal of the nose portion and the rubber core expand substantially in a radial direction, while the cylindrical wall and the metal core therewithin remain directly therebehind, and retain substantially 100% of their weight.
The above bullet will penetrate such materials at least twelve (12) inches and the nose portion will expand radially in excess of 50%, while retaining its weight at approximately 100%. Actual measurements show the radial expansion as great as 70%.
Both the metal core and the rubber core will remain encapsulated by the metal jacket.
Our bullet will penetrate ten (10) layers of heavy denim cloth and still expand adequately in 10% ballistic gelatin. No conventional hollow-point bullet extant can duplicate or exceed this type of performance. The front core is preferably made of rubber, urethane, silicone, or one of a substantial number of plastics, such as fluorocarbons, polycarbonates, polypropylenes, polystyrenes, polyethylenes, PVC™, silicone rubber, Nylon™, or vinyl acetate, each of which has a hardness within a range of Shore A-20 to Rockwell R-122.
The rear core is preferably formed of a metal which is softer than that from which the jacket is made. Pure lead is the preferred material. Other suitable metals are copper, zinc, iron, steel, tin, lead, tungsten, copper, bismuth, green or sintered powdered metals, or alloys thereof. Another suitable material would be metals mixed with polymer binders, such as a tungsten/polymer mixture. This core may also be made of polymeric material of suitable hardness. The bullet ogive can be frusto-conical in shape or it may comprise a curving ogive. It is a general object of our invention to provide a captive soft-point bullet which will overcome the disadvantages of a hollow-point bullet and will thereby out-perform all extant hollow or soft-point bullets with respect to uniform, reliable expansion and adequate penetration when fired into soft to medium hard targets after first having passed through dry intermediate barriers such as wallboard or heavy clothing.
A further object is to provide a captive soft-point bullet which will expand radially to a relatively large diameter when fired into soft to medium hard targets and still penetrate to a depth of at least twelve (12) inches.
Another object is to provide a captive soft-point bullet which, when fired into soft to medium hard targets, will penetrate to at least twelve (12) inches while expanding radially to at least a 50-70% extent.
A still further object is to provide a captive soft-point bullet which provides 100% weight retention after first passing through intermediate barriers and thereafter impacting a soft to medium hard target. BRIEF DESCRIPTION OF THE DRAWINGS
These and other objects and advantages of the invention will more fully appear from the following description, made in connection with the accompanying drawings, wherein like reference characters refer to the same or similar parts throughout the several views, and in which: Fig. 1 is a perspective view of the bullet jacket incorporated in the invention;
Fig. 2 is a side elevational view of the jacket shown in Fig. 1 prior to seating of the rubber core therein, with a nose portion and a portion of the cylindrical wall broken away and shown in vertical section;
Fig. 3 is a side elevational view of the preferred form of the invention in its final form; Fig. 4 is a side elevational view of the bullet shown in Fig. 3, with a portion of the cylindrical sidewall broken away and a portion shown in vertical section and showing the thin web radially opposite and outside of the internal score;
Fig. 5 is a side elevational view of a modified version of the bullet in which portions are broken away to show the nose portion in section, the forward end of the metal core is concaved and the rubber core extends rearwardly to a point behind the inflection point;
Fig. 6 is a perspective view of our preferred bullet after it has struck and penetrated a target which included a back-up consisting of a block of 10% gelatin; Fig. 7 is a side elevational view of our bullet with the near wall of the jacket broken away to show the interior in longitudinal section and with the rubber core extending rearwardly and terminating ahead of the inflection point;
Fig. 8 is a vertical sectional view, with portions shown in elevation, of a similar jacket in which the scoring is external. DETAILED DESCRIPTION OF THE INVENTION
As described above, a number of variations of our invention are shown in Figs. 1-9, inclusive. The jackets which are shown are all made of the same or similar material, and the forward end of the scoring may start at the closed end of the bullet or rearward thereof, and may terminate ahead of, at, or rearwardly of the inflection point which is at the rear end of the nose-defining portions. Very narrow slits may be utilized in lieu of or in combination with the scoring. Basically, the narrow slits or the scoring constitute weakened areas of the nose portion of the bullet.
As shown in Fig. 2, the jacket 10 as shown, has cylindrical wall 11 which tapers inwardly in nose-defining wall 12, which in turn terminates in a flat solid end plate 13. Internal scoring 14 extends rearwardly from the flat nose end plate 13 and terminates ahead of the inflection point 15. The scoring 14 which we utilize is deep, so as to leave only a very thin web 16 directly opposite and outwardly of the valley made by the scoring.
In Fig.4, as shown, the nose-defining wall 12 of the jacket 10 encapsulates a rubber core 17, which occupies the nose portion behind the end plate 13 and extends rearwardly beyond to the inflection point 15. The scores 14 extend rearwardly to the inflection point 15. Disposed immediately behind the rubber core 17 is a soft metal core 18 which fills the entire cavity of the cylindrical wall 11 from the rear end 19 thereof, to the rear end of the rubber core 17. As described hereinafter, the metal core 18 in each of the variations shown herein is disposed tightly across and against the rear end of the rubber core 17 so as to urge o the same against the inner surface of the end plate 13 and against the interior surface of the nose-defining portions 12. As shown, the flat forward end 20 of the soft metal core engages and is compressed against the rear surface of the rubber core.
The jacket 10 is substantially the same in Fig. 5 as that shown in Fig. 4, except that the scoring 22 extends rearwardly from the inner surface of the nose plate 13 and 5 terminates rearwardly of the inflection point 15. The forward surface 24 of the rubber core
21 is compressed against the inner surface of the nose plate 13 by the concave forward end 25 of the metal core 23 which terminates at and bears against the rear surface of the rubber core 21. The bullet shown in Fig. 5 is the preferred form of our invention.
It will be noted that the forward end of the metal core 23 is generally concaved or o dished out to a depth of about .150" to .300", and the cavity thereof is filled with the rear end portion of the rubber core 21. We have found that this combination facilitates the expansion of the nose-defining portions and the rubber core 21.
As shown at the rear end of the bullet, the rear end portion 11a of the cylindrical wall 11 is crimped inwardly around the rear end of the soft metal core 23 to effectively 5 hold the metal core 23 in pressure-bearing relation against the rubber core 21, thereby locking the metal core 23 within the jacket. As shown, the crimped portion 11a is embedded by the swaging actions utilized in forming the bullet, after the rubber and soft metal cores have been positioned as shown.
Fig. 6 shows one of our bullets after it has been fired through a soft to medium hard target and penetrated through 10% gelatin a distance of approximately twelve (12) inches. It can be seen that the jacket 10 retained the metal core and the rubber core completely encapsulated. The nose portion is collapsed entirely, with the split jacket sections 30 thereof widely separated, and showing the axially collapsed and radially expanded sections 31 of the rubber core visible therebetween in confined relation. The flat end plate remains intact in support of the expanded sections 30 and 31. As a consequence, the bullet has retained 100% of its original weight.
Fig. 7 shows another form of our invention in which the scoring is located in a slightly different position. The portions of the jacket which are the same as those shown in the other views are identified by the same numerals wherever they are the same or highly similar in construction. Fig. 7 shows scoring 27 which extends rearwardly to a point forward of the inflection point 15. Since it is deep, as is the case in each of the bullets shown herein, such deep scoring leaves only a very thin web 28, which is disposed radially outwardly and directly opposite the bottom of the individual scores. It will be seen that the scores 27 originate at or near the inner surface of the nose or end plate 13. As is also shown, the rear end surface of the rubber core 26 terminates forwardly of the inflection point 15. The flat forward end of the soft metal core 29 bears against the rear end surface of the rubber core 26, and compresses the same tightly against the inner surface of the nose plate 13 and the nose defining portion 12, as well as the web 28.
Fig. 8 shows a bullet similar to that shown in Fig. 7 except that the scoring is external, instead of internal. In view thereof, the elements of Fig. 8 are identified with some of the same numerals as those shown in Fig. 7, with the exception of the external scoring 32 and the web 33 created thereby, in lieu of the outwardly disposed web 28 of Fig. 7. The length of the scoring is the same, as is the depth thereof. If desired, a retaining disc 34 may be secured behind the metal core by the inwardly crimped rear end 35 of the side
5 wall 36, but we have found this disc to be non-essential.
The jacket thickness can vary substantially, since the captive soft-point bullet described herein may be used for low velocity pistol applications, high velocity pistol applications, and certain rifle applications. The latter have very high velocity characteristics. For pistol bullets, the thickness range of the jacket is approximately .007"
LO to .040". For rifle bullets, the usable range would be approximately between 0.010"- .090". It should be noted that although the jacket wall may be uniform originally in thickness, there is a substantial degree of wall taper in most pistol and rifle jackets which may be utilized in the formation of the jacket of our bullet. An example of the above is a typical pistol jacket which may have a thickness of .015" near the radius of its closed end
L5 plate, and a jacket wall thickness of .009" at its open mouth end.
The jackets shown herein are comprised of copper or a gilding metal. These are the most common (and popular) jacket materials used in the industry. A mild steel jacket, if thin enough and malleable enough might be another alternative.
Gilding metal is a commonly used term of the art and is comprised of a copper-zinc
> o alloy commonly used for bullet jackets. Gilding metal usually contains either 95% copper and 5% zinc or 90% copper and 10% zinc. The range of copper content is about 80% to 95%. The more zinc, the harder and less malleable will be a jacket formed thereof.
In arriving at our invention, we were looking for relatively large expansion and adequate or sufficient penetration. When a bullet achieves deep penetration, it is usually at
15 the cost of expansion, in that the bullet fails to expand to a sufficiently large diameter. The opposite is equally true—if the bullet expands to a large degree, penetration is compromised. The captive soft-point bullet which we have developed, along with all others, remains locked into certain terminal ballistic parameters. However, our captive soft-point bullet produces relatively large expanded diameters and adequate penetration in soft to medium hard targets.
The forward nose or end plate 13 of our bullet is solid and closed. As a consequence, both the rubber and soft metal cores are encapsulated by the jacket upon and after impact, since the nose plate is flat and closed.
The optimum number of scores appears to be six (6). The number of scores may be either even or odd. We have found that with three (3) scores the expansion is somewhat limited, due to the additional strength provided by the extra width of the individual jacket sections 30. A greater velocity of approximately fourteen hundred (1400) feet per second or more is required to sufficiently expand such a bullet with only three (3) scores. The greater the depth of the scores the weaker the bullet nose and thus, the more rapidly it expands on impact. The greater the length of the scores, the weaker the bullet will be and the more rapidly it will expand on impact. Score length also regulates the diameter of expansion since the longer the scores, the larger the expansion.
The external scores, like the internal scores, can commence at or near the nose of the jacket and terminate forward of, at, or behind the inflection point 15. Like the internal scores, the external scores extend longitudinally of the nose-defining portions 12 and their length can be varied similarly. The depth of the external scores is similar in depth to that of the internal scores and as a consequence, the thickness of the web, which is left after the scoring is accomplished, is substantially the same as that resulting from the internal scoring. If desired, both the internal and external scoring can be made to such a depth that the thickness of the web approaches zero or, as a further alternative, a very narrow slit may be formed. Wherever hereinafter reference is made to the webs, it is intended to include a very narrow slit as an alternative for the web.
The pistol bullets described above have been tested by firing the same through various layers of denim. The greatest number of denim layers in any federal government test protocol is four (4). Our tests show that an expanding pistol bullet, made in accordance with the above, will expand markedly while passing through ten (10) layers of denim and yet will provide adequate penetration as it enters 10% back-up gelatin. There is no extant pistol bullet which will match this performance. The rubber core of the above bullets expands while penetrating the denim layers to a very substantial extent, prior to contacting the gelatin target which is disposed immediately behind the various layers of denim. The expansion occurs very rapidly in the denim, and the bullet continues expanding in the gelatin.
During the initial stages of our development of the above bullet, upon impact and depending on the degree of inertia generated, the rear core would sometimes slide forward within the jacket. However, recent prototypes have been developed to a point where we have nearly eliminated all forward-relative movement of the rear core at impact. Thus, the rear end portions of the rear core remain relatively flush with the base of the bullet. We have found that if the front portion of the metal core 23 is concaved, as shown in Fig. 5, the front portion of the soft metal core 23 will expand and stretch the jacket material behind the inflection point 15. This adds to the overall expanded diameter of the bullet as it reaches its maximum penetration.
It should be understood that upon impact, the scores allow the nose portion of the jacket to split. Immediately thereafter, the nose-defining portions commence to collapse axially and, in doing so, the bullet expands radially. In doing so, the jacket material behind the inflection point may stretch and tear. These tears originate from the rearmost terminus of each score. In essence, they become in-line extensions of the scores and travel into the unscored area of the jacket. This additional split-length in the unscored area adds to the diameter of the expanded bullet.
As shown in Figs. 1-4, 7, and 8, the forward end of the metal core of our bullet may have a flat solid forward portion or, as shown in Fig. 5, it can contain a hollow-forward portion. The shape and size of the hollow point may vary. It may appear as shown in Fig.
5, or it may have a deeper cavity or a cavity comprising a compound angle. Fig. 5 depicts the recess as being merely concave in form.
The actual rubber core may have a length within the range of .050"- .350". We have found that a web having a thickness of .002" is very effective. Webs which measure less than 25% of the jacket wall will function adequately at handgun velocities. The preferred thickness of the web approximates 20% of the jacket wall thickness, but it may be reduced to zero.
The preferred thickness of the cylindrical wall is .011". It will be seen by reference to the drawings that the front end 13 of the nose portion is thicker than the side wall of said portions and exceeds the thickness of the cylindrical wall slightly. This is a natural result of the forming of the jacket from a conventional bullet jacket having one closed end and the other end being open.
The bullets described hereinabove, as shown in the drawings hereof, have been found to be highly effective, particularly for law enforcement purposes. In law enforcement operations, a bullet frequently must pass through soft to medium hard materials before engaging the true or ultimate target, and thereafter penetrate the body of the true or ultimate target. This ultimate target will frequently include at least one or more layers of clothing before the bullet enters the flesh of the ultimate target which is relatively soft, much like 10% gelatin. Frequently, bones are encountered by the bullet and for that reason substantial penetration is desired. Also, the expanded bullet conveys substantial shock. The bullets shown and described hereinabove have been found to be unusually effective for such law enforcement purposes. As indicated above, these bullets will
penetrate as many as ten (10) layers of denim, and still sufficiently penetrate the target
therebehind, while continuing to expand a substantial distance radially to provide substantial shock and wound volume to the ultimate target. As indicated above, we have found that these bullets will expand radially as much as 50-70% and yet penetrate to a distance of approximately 12" or more. For these reasons, these bullets for use against soft to medium hard targets are much more effective than any extant bullet.
Since the filing of the parent patent application, U.S. Serial No. 09/256,861, filed
February 24, 1999 and entitled "CAPTIVE SOFT-POINT BULLET," (U.S. Patent No. 6, 178,890, issued January 31, 2001) we have confirmed that a number of additional
compositions can be successfully utilized in our above bullet. In view thereof, and in view of the fact that the assignee hereof desired an early issuance of the patent on our above
parent application, the continuation-in-part application, Serial No. 09/597,017 (allowed) was filed for the purpose of widening the scope of the protection as claimed in said parent application, and to enumerate and claim the specific additional materials which may be utilized in lieu of the materials disclosed and claimed in said parent application 09/256,861.
Fig. 9 is a side elevational view of a bullet in which portions are broken away to show the plastic nose core in section, and a plastic rear core partially in section.
We have added Fig. 9 in order to meet the requirement to show everything which is claimed in application Serial No. 09/597,017. Fig. 9 is similar to Fig. 5 of the parent
application, Serial No. 09/256,861, but differs in that plastic material is shown in the nose core 37 in lieu of rubber, and the rear core 38 is shown in a harder plastic form. The rear plastic core 38 must be sufficiently harder than the plastic nose core 37 so as to cause the latter to collapse and expand radially when the bullet strikes a target, without significantly deforming the rear core 38 and adversely affecting the performance of the bullet. If desired, a core comprised mainly by weight of metal may be utilized in lieu of plastic core 38.
Listed below are some materials which may be utilized in the nose core 17. We have obtained the hardness ranges listed below from Matweb, which is a website on the Internet. The website address is http://www.matweb.com/.
Figure imgf000015_0001
As suggested above, we have since determined that silicone rubber is an excellent material from which to make the soft nose core 17. Silicone rubber has an acceptable hardness range of Shore A-20 to A-80. The preferred hardness is Shore A-50. It has certain physical properties which lend themselves to produce a highly effective, collapsible nose portion which collapses axially and then expands extensively in a radial direction as sections 30, along with the expanded metal sections 31 of the nose section of the jacket. It compares favorably with the rubber of our above parent application, which has a hardness range of Shore A-20 to A-80, and a preferred hardness of Shore A-50, and is substantially equivalent in price.
We also contemplate the use of PVC, which is sold on the market under the
trademark Flexchem™, since it has properties which would make a similar bullet having a 5 soft nose core similar to the rubber nose core 17, which will function in an equally satisfactory manner.
Ethylene vinyl acetate also has hardness properties which will cause it to function as an adequate substitute for rubber in the soft nose core 14. We have also found that
Nylon™ will function adequately when the soft nose core of our invention is formed from
i o that material. Also, low-density and high-density polyethylene have been tested and found to function in a suitable manner as a material from which the relatively soft nose core may be formed.
We have also determined that desirable results can be obtained by using our invention in rifles, particularly at the higher velocities. We have found that, if the 15 velocities are increased, and the thickness of the cylindrical wall of the jacket is increased so as to avoid rupture of the cylindrical sidewall, very desirable results are obtained, because the nose portion will collapse axially and expand radially upon the bullet striking the target, in the same manner as that produced with a rubber nose core and a thinner side wall at the lower velocities. 2 o The typical low-velocity bullets (pistol) travel at a speed of about 600 fps to 1800 fps. The typical medium-velocity rifle bullets, travel at a velocity of about 1800 fps to
2500 fps. The typical high-velocity range for rifle bullets is about 2500 fps to 4000 fps.
The nose core durometer range for the low to medium velocity bullets is about Shore A-20 to Shore D-73. The nose core durometer range for the high-velocity rifle bullets in our 25 invention is about Shore A-20 to Rockwell R-122. The preferred jacket thickness for the medium-to-high velocity rifle bullets in our invention is from about 0.010" to 0.090". The preferred jacket wall thickness for the low velocity (pistol) bullet is about .011" - .015". The preferred range of thickness of the webs is about .002" - .008".
Some chemical compounds which will function as described above when used as nose cores in rifle bullets at the above-described velocities include polypropylene, fluorocarbons, polystyrene, and polycarbonate. Although they have higher measures of hardness than the rubbers, they will collapse axially and expand radially and quickly, upon the bullet striking a target.
The polypropylene has a hardness of R-80 to R- 102 and the preferred hardness is R- 80.
The polystyrene will function well when used as a nose core within a hardness range of R-75 to R-110. The preferred hardness measure of this plastic for use in high velocity bullets is about R-75.
The polycarbonate also functions well when used as a nose core in high-velocity bullets if the hardness thereof is within the range of R-108 to R-122. The preferred hardness level of the polycarbonates for use as nose cores in high-velocity bullets for rifles is about R-108.
Each of the other materials previously described as being suitable for use in nose cores, such as cores 14 and 27, will function to collapse and expand radially upon the bullet striking a target, as described above.
Thus rubber, urethane, silicone, or one of a substantial number of plastics, such as fluorocarbons, polycarbonates, polypropylenes, polystyrenes, polyethylenes, PVC™, silicone rubber, Nylon™, or vinyl acetate, each of which has a hardness within a range of
Shore A-20 to Rockwell R-122, will each function well in high, as well as in the low, velocity bullets. The metal cores may be comprised of lead, tungsten, copper, zinc, or tin. Other suitable materials are iron, steel, bismuth, green or sintered powdered metals, or alloys thereof. Another suitable material would be metals mixed with polymer binders, such as a tungsten/polymer mixture. This core may also be made of a polymeric material of suitable hardness.
The most satisfying material from which to manufacture the nose core of our captive soft-point bullet, that we have found to date, is silicone rubber.
We have found that low-velocity bullets having a nose core comprised of silicone rubber function very well, in that the bullet nose, upon the bullet striking the target, will penetrate said target, and the nose portion will thereafter quickly collapse axially, and expand radially in all directions to a substantial extent. As a consequence, the bullet imparts substantial shock to the target, which is desirous. The bullet will continue in a relatively straight path within the target and will lodge within the interior of the same without any appreciable weight loss, which is desirous. By maintaining substantially 100% of its initial weight, such a bullet transmits maximum shock value to the target.
Similar effects as described above can be accomplished if it is desired to obtain the same at rifle velocities. The higher the rifle bullet velocities being used, the harder the nose core material which may be used within the nose core to obtain results similar to those described above. We have found, however, that considerable variance is permissible in the selection from the various plastics which have durometer readings extending over a substantial range.
In general, nose cores manufactured of all of the materials identified as suitable for that purpose will function adequately at the higher velocities, but the plastic materials having the high hardness durometer values will not function well at the lower velocities. The preceding portions of this specification are essentially duplicates of the corresponding paragraphs of the entire specification of the allowed Continuation-in-Part (CIP) application, Serial No. 09/597,017 filed June 20, 2000 and allowed June 15, 2001, entitled Captive Soft-Point Bullet. The instant application is being filed to expedite the issuance of a patent upon application Serial No. 09/597,017 containing the allowed claims, and to avoid any possible issue of new matter. In this respect, the Applicants introduced into the above CIP application the use of the term "primarily" with respect to the polymeric core and "primarily by weight" with respect to metal core, on the ground that any core disclosed as being comprised of 100% metal, as is the case in the above allowed CIP application and its parent case, Patent No. 6, 178,890, is comprised mainly of metal. In order to avoid delay, it was agreed with the Examining Attorney that the Applicants would file the instant CIP application directed toward obtaining claims utilizing the terms "primarily polymeric" (or its equivalent) with respect to the core comprised of 100% or less polymeric material, and the term "primarily by weight" (or its equivalent) with respect to the core comprised of 100% or less metal, provided the metal core disclosed is comprised mainly (in excess of 50% by weight) of metal.
The dictionary provides a meaning of "mainly" as being "for the most part". The Applicants have adopted this term and have defined the phrase "mainly metal", in their claims hereinafter, as meaning that the metal core is comprised mainly (in excess of 50% by weight) of metal. The term "mainly by weight," as so defined, is utilized hereinafter to distinguish over volume, to thereby preclude avoidance of the patent claims by an accused infiinger by utilizing, for example, a combination of a core comprised of 49% by volume of metal and 51% by volume of polymeric material. The dictionary fails to specify a definition of "primarily" in terms of percentages, but suggests "principally" as a synonym. The dictionary, in turn, suggests "mainly" as a synonym for "principally" and provides "for the most part" as a definition for "mainly." In view thereof, the Applicants have adopted the term "mainly metal" to indicate a core which is comprised of a minimum of at least 50% by weight of metal. Wherever hereinafter, or in the claims, the term "mainly metal by weight" is used, it is intended to connote that the core is made of metal in an amount of at least 50% by weight, when measured on a weight basis.
Since filing application Serial No. 09/597,017 we have confirmed that the list of metals from which the mainly metal cores 18 and 29 may be made, and is hereby expanded to include copper, zinc, iron, steel, tin, lead, tungsten, copper, bismuth, and green or sintered powdered metal. These metals are all examples from which the soft malleable rear metal core 18 and 29 may be produced. We have also confirmed that a mixture of tungsten and a polymer, both in heated powdered form, in which the polymer functions as a binder and the mixture is mainly tungsten, provides an effective metal core which functions well as cores 18 and 29.
It will, of course, be understood that various changes may be made in the form, details, arrangement and proportions of the parts without departing from the scope of the invention which comprises the matter shown and described herein and set forth in the appended claims.

Claims

II. CLAIMS
1. An adequate penetration, optimum expansion bullet for use against targets of soft to medium hardness comprising:
(a) a jacket formed of a malleable metal and having a generally cylindrical 5 sidewall, a nose portion disposed forwardly of said cylindrical sidewall, a closed forward end, and a rear end portion;
(b) said nose portion having a nose-defining wall extending between said cylindrical wall and said closed forward end;
(c) said nose-defining wall having circumferentially spaced wall-weakening o scores formed therein and extending axially of said nose portion;
(d) a mainly polymeric core disposed in part at least within said nose-defining wall and against said closed forward end, said mainly polymeric core having a hardness or durometer within a range of Shore A-20 to Rockwell R-122; 5 (e) a mainly metal core seated behind said mainly polymeric core and within said generally cylindrical sidewall in close-fitting relation and extending rearwardly to a position adjacent said rear end portion of said generally cylindrical jacket sidewall; and (f) said nose-defining wall being weakened by said scores sufficiently to cause o said nose-defining wall, upon the bullet striking and penetrating a target, to rupture along said scores and thereafter to expand substantially in a radial direction.
2. The bullet defined in Claim 1, wherein the polymer of said mainly polymeric core 5 is taken from a group of polymers preferably including polypropylene, polystyrene, polycarbonate, fluorocarbons, polyethylene, urethanes, Nylon™, PVC™, ethylene, vinyl acetate, and silicone rubber.
3. The bullet defined in Claim 1, wherein said metal core is taken from a group of metals which preferably include lead, zinc, tin, tungsten, copper, bismuth, iron, steel, or combinations or alloys thereof, green or sintered powdered metal, or tungsten and polymer mixtures.
4. The bullet defined in Claim 1, wherein the polymer of said mainly polymeric core is mainly polypropylene.
5. The bullet defined in Claim 1, wherein said mainly polymeric core is preferably comprised mainly of polyethylene.
6. The bullet defined in Claim 1, wherein said metal core is preferably comprised mainly of lead.
7. The bullet defined in Claim 1, wherein said mainly metal core is comprised mainly of tungsten.
8. The bullet defined in Claim 1, wherein said nose portion of the jacket of the bullet expands in a radial direction, together with said polymeric core.
9. An adequate penetration, optimum expansion bullet for use against targets of soft to medium-hardness comprising:
(a) a jacket formed of a malleable metal and having a generally cylindrical side wall, a nose portion disposed forwardly of said cylindrical side wall, a closed forward end, and a rear end portion;
(b) said nose portion having a nose-defining wall extending between said cylindrical wall and said closed forward end;
(c) said nose-defining wall having circumferentially spaced wall-weakening scores formed therein and extending axially of said nose portion; 0 (d) a polymeric core disposed in part at least within said nose-defining wall and against said closed forward end, said polymeric core having a hardness or durometer within a range of Shore A-20 to Rockwell R-122;
(e) a core which is mainly metal by weight seated behind said polymeric core and within said generally cylindrical side wall in close-fitting relation and 5 extending rearwardly to a position adjacent said rear end portion of said generally cylindrical jacket side wall; and
(f) said nose-defining wall being weakened by said scores sufficiently to cause said nose-defining wall, upon the bullet striking and penetrating a target, to rupture along said scores and thereafter to expand substantially in a radial o direction.
10. The bullet defined in Claim 9, wherein said mainly polymeric core is taken from a group of polymers which include polyethylene, polypropylene, polystyrene, polycarbonate, fluorocarbon, natural rubber, rubber elastomers, silicone rubber, 5 Nylon™, PVC™, urethanes, and ethylene vinyl acetate, each of which has a hardness within a range of Shore A-20 to Rockwell R-122.
11. The bullet defined in Claim 9, wherein the polymer of said polymeric core is comprised of polypropylene.
12. The bullet defined in Claim 9, wherein the polymer of said polymeric core is comprised of silicone rubber.
13. The bullet defined in Claim 9, wherein said metal core is taken from a group of metals which preferably include lead, zinc, tin, tungsten, copper, bismuth, iron, steel, or combinations or alloys thereof, green or sintered powdered metal, or tungsten and polymer mixtures.
14. The bullet defined in Claim 9, wherein the metal of said metal core is comprised of lead.
15. The bullet defined in Claim 9, wherein the metal of said metal core is comprised of tungsten.
16. The bullet defined in Claim 9, wherein the polymer of said polymeric core is comprised of polyethylene.
17. An adequate penetration, optimum expansion bullet for use against targets of soft to medium-hardness comprising:
(a) a jacket formed of a malleable metal and having a generally cylindrical side wall, a nose portion disposed forwardly of said cylindrical wall, a closed forward end, and a rear end portion;
(b) said nose portion having a nose-defining wall extending between said cylindrical wall and said closed forward end;
(c) said nose-defining wall having circumferentially spaced wall-weakening scores formed therein and extending axially of said nose portion; 0 (d) a mainly polymeric core disposed in part at least within said nose defining wall and against said closed forward end, said polymeric core having a hardness or durometer within a range of Shore A-20 to Rockwell R-122
(e) a mainly metal core seated behind said mainly polymeric core and within said generally cylindrical side wall in close-fitting relation and extending s rearwardly to a position adjacent said rear end portion of said generally cylindrical jacket side wall; and
(f) said nose-defining wall being weakened by said scores sufficiently to cause said nose-defining wall, upon the bullet striking and penetrating a target, to rupture along said scores and thereafter to expand substantially in a radial o direction.
18. The bullet defined in Claim 17, wherein said mainly polymeric core is comprised mainly of polyethylene.
5 19. The bullet defined in Claim 17, wherein said mainly polymeric core is taken from a group of polymers which include polyethylene, natural rubber, rubber elastomers, silicone rubber, Nylon™, PVC™, urethanes and ethylene vinyl acetate.
20. The bullet defined in Claim 17, wherein said mainly polymeric core includes polyethylene as a polymeric component.
21. The bullet defined in Claim 17, wherein said mainly polymeric core is comprised of more than one polymer.
22. The bullet defined in Claim 17, wherein the metal of said metal core is taken from a group of metals which includes lead, zinc, tungsten, copper, iron, steel, tin and alloys thereof.
23. The bullet defined in Claim 17, wherein the metal of said metal core includes lead.
24. The bullet defined in Claim 17, wherein the metal of said metal core includes tungsten.
25. The bullet defined in Claim 17, wherein the metal of said metal core includes zinc.
26. The bullet defined in Claim 17, wherein the metal of said metal core includes tin.
27. The bullet defined in Claim 17, wherein said jacket is comprised mainly of copper.
28. The bullet defined in Claim 17, wherein said metal core is disposed primarily within said cylindrical side wall.
29. An adequate penetration, optimum expansion bullet for use against targets of soft to medium-hardness comprising:
5 (a) a jacket formed of a malleable metal and having a generally cylindrical side wall, a nose portion disposed forwardly of said cylindrical side wall, a closed forward end, and a rear end portion;
(b) said nose portion having a nose-defining wall extending between said cylindrical wall and said closed forward end; 0 (c) said nose-defining wall having circumferentially spaced wall-weakening scores formed therein and extending axially of said nose portion;
(d) a core disposed forwardly in part at least within said nose-defining wall and being made mainly of a material having a hardness durometer within the range of Shore A-20 to Rockwell R-122 and being deformable under 5 pressure;
(e) a mainly metal by weight rear core seated behind said forwardly disposed core and within said generally cylindrical side wall; and
(f) said nose-defining wall being weakened by said scores sufficiently to cause said nose-defining wall, upon the bullet striking and penetrating a target, to o rupture along said scores and thereafter to expand substantially in radial directions.
30. The bullet defined in Claim 29, wherein said rear core is comprised of a metal in which at least 50% thereof is tungsten.
5
31. The bullet defined in Claim 29, wherein said rear core is comprised mainly by weight of tungsten.
32. The bullet defined in Claim 29, wherein said rear core is comprised in part at least of a mixture of tungsten and a polymer.
33. The bullet defined in Claim 29, wherein said rear core is comprised mainly by weight of a metal taken from a group of metals including copper, lead, iron, zinc, tin, steel, tungsten and alloys thereof.
34. The bullet defined in Claim 29, wherein said rear core is comprised mainly by weight of lead.
PCT/US2002/028000 2001-09-07 2002-09-03 Captive soft-point bullet WO2003023313A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/948,198 US6530328B2 (en) 1999-02-24 2001-09-07 Captive soft-point bullet
US09/948,198 2001-09-07

Publications (2)

Publication Number Publication Date
WO2003023313A2 true WO2003023313A2 (en) 2003-03-20
WO2003023313A3 WO2003023313A3 (en) 2003-09-12

Family

ID=25487462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/028000 WO2003023313A2 (en) 2001-09-07 2002-09-03 Captive soft-point bullet

Country Status (2)

Country Link
US (1) US6530328B2 (en)
WO (1) WO2003023313A2 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815066B2 (en) * 2001-04-26 2004-11-09 Elliott Kenneth H Composite material containing tungsten, tin and organic additive
WO2003033751A1 (en) * 2001-10-16 2003-04-24 International Non-Toxic Composites Corp. Composite material containing tungsten and bronze
ATE399887T1 (en) * 2001-10-16 2008-07-15 Internat Non Toxic Composites HIGHER DENSITY NON-TOXIC COMPOSITES WHICH CONTAIN TUNGSTEN, OTHER METAL AND POLYMER POWDER
US7000547B2 (en) * 2002-10-31 2006-02-21 Amick Darryl D Tungsten-containing firearm slug
US7059233B2 (en) * 2002-10-31 2006-06-13 Amick Darryl D Tungsten-containing articles and methods for forming the same
US6845719B1 (en) * 2003-06-05 2005-01-25 Lockheed Martin Corporation Erosion resistant projectile
US20050183617A1 (en) * 2004-02-23 2005-08-25 Macdougall John Jacketed ammunition
US7740682B2 (en) * 2005-07-22 2010-06-22 Ragan Randall C High-density composite material containing tungsten powder
US7373887B2 (en) * 2006-07-01 2008-05-20 Jason Stewart Jackson Expanding projectile
US7966937B1 (en) 2006-07-01 2011-06-28 Jason Stewart Jackson Non-newtonian projectile
US20080134927A1 (en) * 2006-10-05 2008-06-12 Skellern Michael J Projectile with dispersible contents and method of manufacturing the same
US8186277B1 (en) 2007-04-11 2012-05-29 Nosler, Inc. Lead-free bullet for use in a wide range of impact velocities
US20090042057A1 (en) * 2007-08-10 2009-02-12 Springfield Munitions Company, Llc Metal composite article and method of manufacturing
US9052174B2 (en) 2007-08-31 2015-06-09 Ra Brands, L.L.C. Tipped projectiles
US8256352B2 (en) * 2008-03-05 2012-09-04 Olin Corporation Jacketed bullet with bonded core
WO2010083345A1 (en) * 2009-01-14 2010-07-22 Nosler, Inc. Bullets, including lead-free bullets, and associated methods
USD735289S1 (en) * 2011-07-26 2015-07-28 R.A. Brands, L.L.C. Firearm bullet
USD733252S1 (en) * 2011-07-26 2015-06-30 Ra Brands, L.L.C. Firearm bullet and portion of firearm cartridge
USD733837S1 (en) * 2011-07-26 2015-07-07 Ra Brands, L.L.C. Firearm bullet
US8752484B2 (en) 2011-07-26 2014-06-17 Ra Brands, L.L.C. Three component bullet with core retention feature and method of manufacturing the bullet
USD733835S1 (en) * 2011-07-26 2015-07-07 Ra Brands, L.L.C. Firearm bullet
USD733834S1 (en) * 2011-07-26 2015-07-07 Ra Brands, L.L.C. Firearm bullet
USD733836S1 (en) 2011-07-26 2015-07-07 Ra Brands, L.L.C. Firearm bullet
USD734419S1 (en) * 2011-07-26 2015-07-14 Ra Brands, L.L.C. Firearm bullet
US8950333B2 (en) 2011-07-26 2015-02-10 Ra Brands, L.L.C. Multi-component bullet with core retention feature and method of manufacturing the bullet
US9188414B2 (en) 2013-02-15 2015-11-17 Ra Brands, L.L.C. Reduced friction expanding bullet with improved core retention feature and method of manufacturing the bullet
US9534876B2 (en) 2013-05-28 2017-01-03 Ra Brands, L.L.C. Projectile and mold to cast projectile
US11268791B1 (en) 2014-05-23 2022-03-08 Vista Outdoor Operations Llc Handgun cartridge with shear groove bullet
US10082377B1 (en) 2016-03-01 2018-09-25 Sig Sauer, Inc. Hingeable ogive projectile
US10690465B2 (en) 2016-03-18 2020-06-23 Environ-Metal, Inc. Frangible firearm projectiles, methods for forming the same, and firearm cartridges containing the same
US10260850B2 (en) 2016-03-18 2019-04-16 Environ-Metal, Inc. Frangible firearm projectiles, methods for forming the same, and firearm cartridges containing the same
US10330447B2 (en) 2017-07-13 2019-06-25 Sig Sauer, Inc. Projectile with core-locking features and method of manufacturing
US11067370B2 (en) 2018-01-21 2021-07-20 Sig Sauer, Inc. Multi-piece cartridge casing and method of making
US11408717B2 (en) * 2020-04-29 2022-08-09 Barnes Bullets, Llc Low drag, high density core projectile
US11287230B1 (en) 2021-08-04 2022-03-29 Rama Technologies, LLC Less-than-lethal kinetic impact round

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2682224A (en) * 1950-08-12 1954-06-29 Braverman Shelley Bullet
US6016754A (en) * 1997-12-18 2000-01-25 Olin Corporation Lead-free tin projectile
US6158351A (en) * 1993-09-23 2000-12-12 Olin Corporation Ferromagnetic bullet
US6178890B1 (en) * 1999-02-24 2001-01-30 Federal Cartridge Company Captive soft-point bullet
US6305292B1 (en) * 1999-02-24 2001-10-23 Federal Cartridge Company Captive soft-point bullet

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA547096A (en) * 1957-10-08 M. Markle Cliff Expanding bullet
US594119A (en) * 1897-11-23 Rod-packing
GB189302344A (en) * 1893-02-02 1893-12-02 Charles Rigby Allport Improvements in Bullets for Firearms.
US1135357A (en) * 1914-02-11 1915-04-13 Robert G Clyne Mushroom-bullet.
US1328334A (en) * 1915-08-24 1920-01-20 Frank N Stone Projectile
GB417529A (en) * 1931-12-09 1934-10-08 Emil Leussler Improvements in or relating to projectiles
DE1428690A1 (en) * 1964-08-04 1969-01-16 Inst Nac De Ind Rifle bullet
DE2028238A1 (en) * 1970-06-09 1971-12-16 Umbach, Heinz, Dipl.-Ing., 4300 Essen Hunting rifle bullet with slit jacket
US3714896A (en) * 1970-12-31 1973-02-06 Aaa Corp Projectile, cartridge, and method
US3972286A (en) * 1972-03-23 1976-08-03 Canon Jack Y Bullet
US3791303A (en) * 1973-02-22 1974-02-12 Aai Corp Deterrent ammunition
DE2329665A1 (en) * 1973-06-09 1975-01-02 Rheinmetall Gmbh NON-FATAL FLOOR
US4338862A (en) * 1975-10-03 1982-07-13 The United States Of America As Represented By The Secretary Of The Army Bullet nose filler for improved lethality
DE2634518C2 (en) * 1976-07-31 1986-04-17 Dynamit Nobel Ag, 5210 Troisdorf Projectile with at least one pyrotechnic set, in particular a tracer set
US4108074A (en) * 1977-04-27 1978-08-22 Avco Corporation Frangible target practice projectile
BE1001874A3 (en) * 1988-12-05 1990-04-03 Nationale Herstal Fn Sa Fab Powerful shot.
US5105744A (en) * 1990-06-18 1992-04-21 Petrovich Paul A Jacketed projectile for ammunition
US5214237A (en) * 1990-07-09 1993-05-25 Bruce D. McArthur Fluorocarbon resin bullet and method of making same
RU2003033C1 (en) * 1992-06-15 1993-11-15 Климовский штамповочный завод Rifled gun hunting cartridge bullet
GB9313310D0 (en) * 1993-06-28 1993-08-11 Saxby Michael E A baton projectile
US5450795A (en) * 1993-08-19 1995-09-19 Adelman Associates Projectile for small firearms
US5454325A (en) * 1993-09-20 1995-10-03 Beeline Custom Bullets Limited Small arms ammunition bullet
WO1997020185A1 (en) * 1995-11-30 1997-06-05 Olin Corporation Dual core jacketed bullet
US5652407A (en) * 1996-02-13 1997-07-29 Academy Of Applied Science Non-lethal ammunition and method
IT1283696B1 (en) * 1996-08-07 1998-04-23 Fiocchi Munizioni Spa BULLET WITH FEATURES OF HIGH IMPACT DEFORMABILITY

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2682224A (en) * 1950-08-12 1954-06-29 Braverman Shelley Bullet
US6158351A (en) * 1993-09-23 2000-12-12 Olin Corporation Ferromagnetic bullet
US6016754A (en) * 1997-12-18 2000-01-25 Olin Corporation Lead-free tin projectile
US6178890B1 (en) * 1999-02-24 2001-01-30 Federal Cartridge Company Captive soft-point bullet
US6305292B1 (en) * 1999-02-24 2001-10-23 Federal Cartridge Company Captive soft-point bullet

Also Published As

Publication number Publication date
WO2003023313A3 (en) 2003-09-12
US6530328B2 (en) 2003-03-11
US20020020324A1 (en) 2002-02-21

Similar Documents

Publication Publication Date Title
US6530328B2 (en) Captive soft-point bullet
US6305292B1 (en) Captive soft-point bullet
CA2362404C (en) Captive soft-point bullet
US6805057B2 (en) Bullet for optimal penetration and expansion
US7299750B2 (en) Partial fragmentation and deformation bullets having an identical point of impact
US7487727B2 (en) Bullet with spherical nose portion
AU706851B2 (en) Non-toxic frangible bullet
US11226182B2 (en) Cartridge with combined effects projectile
US9316468B2 (en) Bullet
US6213022B1 (en) Cartridge for hunting or the like
HU227026B1 (en) Small-calibre deformation projectile and a method for the production of the same
US5394597A (en) Method for making high velocity projectiles
AU2003218604A1 (en) Piercing bullet and method for manufacturing thereof
ZA200408446B (en) Bullet with booster filling and its manufacture
US20040003747A1 (en) Method for expanding a bullet and a bullet
US20080216700A1 (en) Lead Free Monobloc Expansion Projectile and Manufacturing Process
RU2141096C1 (en) Cartridge for hunting gun ( versions ) and process of manufacture of bullet jacket
RU2087842C1 (en) Hunting cartridge bullet for rifled weapon (variants)
ZA200403448B (en) Bullet with spherical nose portion.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase