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9 Rossby Waves

(Holton Chapter 7, Vallis Chapter 5)

9.1 Non-divergent barotropic vorticity equation

We are now at a point that we can discuss our first fundamental application of the equations of motion:

non-divergent barotropic Rossby waves! For the derivation of these waves, we will use the simplifying

assumptions of

• two-dimensional flow

• barotropic flow

Even though these are rather strong approximations, the solutions turn out to be (surprisingly) relevant to the

real atmosphere - and provide deep insight into large-scale midlatitude dynamics. Recall that, in essence,

these assumptions are tied to the assumptions that the flow is in near hydrostatic and geostrophic balance

(recall that geostrophic flow is non-divergent to leading order on pressure surfaces).

As shown in the previous section, under these assumptions the prognostic equation for vorticity reads:

D⇣a

Dt
=

D

Dt
(⇣+ f) = 0 (9.1)

That is, the flow is governed by absolute vorticity conservation!

As discussed in lecture, this equation was used to provide the first numerical weather forecast! It was a

24-hour forecast (looking forward 24-hours) that took 24-hours to complete! However, it was considered an

ultimate success!

9.1.1 Preparing to solve the vorticity equation

Step 1: Linearization

Although 9.1 appears simple, we are not generally able to solve it an analytically. (By “solve”, we mean

determine an explicit equation for ⇣ that is a function of space and time). This is because the equation is non-

linear: the vorticity is a function of u and v, but so is the advection operator inside the material derivative.

Thus, our strategy will be to simplify things further by linearizing 9.1 about a basic (⇠ background) state.

(You have seen linearization before, for example, in the context of the boussinesq and anelastic equations).

First, we decompose the horizontal velocities into a basic state and a perturbation:

u = u0 + u 0 (9.2)
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The requirement for the basic state (as yet to be specified) is that it must be a solution to our equation 9.1.

The absolute vorticity can then be written as

⇣a = f+ ⇣0 + ⇣
0 (9.3)

and thus 9.1 becomes

D

Dt
(⇣+ f) = @t(⇣0 + ⇣

0) + (u0 + u 0)@x(⇣0 + ⇣
0) + (v0 + v 0)@y(f+ ⇣0 + ⇣

0) = 0 (9.4)

Step 2: Remove higher-order terms

The whole point of linearizing the set of equations around a basic state is that we can then easily neglect

the terms that are quadratic or of higher order in perturbations (i.e. throw out terms that are the product of

two perturbations or higher). This is only a good next step if the perturbation quantities are small, and we

will make this assumption here. That is, e.g.

u0 >> u 0 and ⇣0 >> ⇣ 0 (9.5)

In this case, the approximate vorticity equation becomes:

D

Dt
(⇣+ f) ⇡ @t(⇣0 + ⇣

0) + u0@x(⇣0 + ⇣
0) + u 0@x⇣0 + v0@y(f+ ⇣0 + ⇣

0) + v 0@y(f+ ⇣0) = 0 (9.6)

or collecting perturbations to the left-hand-side:

@t⇣
0 + u0@x⇣

0 + u 0@x⇣0 + v0@y⇣
0 + v 0@y(f+ ⇣0) = -@t⇣0 - u0@x⇣0 - v0@y(f+ ⇣0) (9.7)

The basic state terms on the right-hand-side may be interpreted as (“external”) forcing terms to the pertur-

bation vorticity.

Step 3: Rewrite in terms of the streamfunction  

You may think, well hold on, we have a lot of unknowns here and only one equation! This isn’t actually

correct though! In actuality, for a given basic state the above equation involves only one unknown! That

one unknown is the perturbation streamfunction. Recall that the streamfunction is related to the horizontal

velocities and the vorticity in the following way:

 =  0 + 
0, and (u 0, v 0) = (-@y 

0,@x 0), and (u0, v0) = (-@y 0,@x 0) (9.8)

and

⇣ 0 = @xv
0 - @yu

0 = @xx 
0 + @yy 

0 = r2
H 

0, similarly ⇣0 = r2
H 0 (9.9)

Step 4: Basic state simplifications
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If we now assume that the basic state flow is not only bigger than the perturbations, but also independent

of time and only has a component in the x-direction (i.e. only a u0 component, with v0 = 0) that is zonally

symmetric (i.e. varies only with y), or in math:

u0 = u0(y), v0 = 0 ) ⇣0 = -@yu0, and @t⇣0 = 0, @x⇣0 = 0 (9.10)

In this case, the absolute vorticity of the basic state is also only a function of y:

⇣0,a = f- @yu0 (9.11)

Taking these simplifications and plugging them into 9.7 leads to

@t⇣
0 + u0@x⇣

0 + @y⇣0,av
0 = 0 (9.12)

or in terms of the perturbation streamfunction:

(@t + u0@x)r2
H 

0 + @y⇣0,a@x 
0 = 0 (9.13)

9.2 Wave equation and solution

General wave solutions for this equation may be sought at this point, using a separation of variables.

However, straightforward solutions may be obtained by making the further simplifying assumption that

all coefficients are constant. By coefficients, we mean the basic-state terms in front of the perturbation

quantities. It is important to note that we make this assumption mainly for mathematical convenience, and

one need not make this assumption to solve the above equations.

• Assuming u0 = U = constant results in ⇣0,a = f.

• Assuming @y⇣0,a = constant is the �-plane approximation (i.e. @y⇣0,a = @yf = constant = �).

The resulting wave equation with constant coefficients then reads:

@t⇣
0 +U@x⇣

0 + �v 0 = 0 (9.14)

and for the streamfunction

(@t +U@x)r2
H 

0 + �@x 
0 = 0 (9.15)

Quick refresher for wave forms (https://en.wikipedia.org/wiki/Sine wave).
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Linearized partial differential equations (PDEs) with constant coefficients, as our equations above, lead

to plane wave solutions. In our 2-dimensional case:

 0(x, t) = <{ exp(i(K · x -!t))} =  R cos(kx+ ly-!t)-  I sin(kx+ ly-!t) (9.16)

which can be shown by recalling that ei✓ = (cos ✓+ i sin ✓) and writing

 0(x, t) = <{ exp(i(K · x -!t))} = <{( R + i I)(cos (kx+ ly-!t) + i sin (kx+ ly-!t))}

(9.17)

with

•  =  R + i I (the constant, and complex wave amplitude)

• x = (x,y)

• ! (the constant wave frequency, in units of radians/time)

• K ⌘ (k, l) (the constant wave number vector, in units of radians/length)

• the wave numbers are given by k ⌘ 2⇡/�x, l ⌘ 2⇡/�y with (�x, �y) the wavelengths

• the phase � = �(x, t) = K · x - !t = kx + ly - !t, seen also by writing the perturbation

streamfunction as  0 = <{ exp(i�)}

In our 2-D case, lines of constant phase can be written as

� = constant = kx+ ly-!t or y = -
k

l
x+

!

l
t+ constant (9.18)

The second form of this equation is an equation for a line, that is, it is a linear relationship. In 3-D, you

would get a linear planar relationship for the surfaces of constant phase. This is where the term “plane

waves” get their name.

Plane waves: https://en.wikipedia.org/wiki/Plane wave.

If 9.16 is truly a solution to 9.15, then we can plug 9.16 into 9.15 and show that the equality holds. Rather

than having to carry-around the < part, we can simply work with the complex solution ( 0 ⇠ exp (i�)) and

then take the < part as necessary. Note that one can only do this for linear problems! For nonlinear problems

you run into the problem that, for example, the real part of the product of two complex numbers is generally

not the product of the real parts.
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Continuing forward, it is helpful to recall the following:

@x 
0 = ik 0, r2

H 
0 = -(k2 + l2) 0, ) (9.19)

@x(r2
H 

0) = -ik(k2 + l2) 0, and @tr2
H 

0 = i!(k2 + l2) 0 (9.20)

Inserting the solution into 9.15 therefore gives:

i!(k2 + l2) 0 +-Uik(k2 + l2) 0 + �ik 0 = 0 (9.21)

[!(k2 + l2) +-Uk(k2 + l2) + �k] 0 = 0 (9.22)

Since  0 = 0 is a trivial solution, the expression in square brackets must then be zero. In this case, we

can solve for ! and obtain:

! = Uk-
�k

k2 + l2 or !̂ = !-Uk = -
�k

k2 + l2 (9.23)

Thus is the famous Rossby wave dispersion relation, where !̂ is the intrinsic (non-Doppler shifted) fre-

quency. As with all dispersion relationships, this equation relates properties of the wave to one another, i.e.

waves of different wave number (i.e. wave lengths) have different frequencies and propagate at different

speeds according to this relation.

9.3 Wave kinematics refresher (Vallis Chapter 5 Appendix)

9.3.1 Phase speed

Recall that our plane wave solution was

 0(x, t) = <{ exp(i(K · x -!t))} (9.24)

If we consider, for simplicity, the one dimenstional case of a wave traveling in the x-direction only. Then

our solution simplifies to

 0(x, t) = <{ exp(i(kx-!t))} = <{ exp(ik(x- cxpt))} (9.25)

where

cxp = !/k (9.26)

From these two equations one can see that the phase of the wave (�) propagates at the speed cxp and we call

this speed the phase speed. Similarly, the phase speed in the y-direction would be c
y
p = !/l. Generalizing
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to 2-dimensions, a wave traveling in the K direction would have phase speed . That is, in general the phase

speed is calculated as

cp =
!

|K|
=

!

(k2 + l2)1/2 (9.27)

The phase speed is the speed at which points of constant phase propagate. For example, consider a

monochromatic wave (of one frequency), and the phase speed would tell you the speed at which the crests

and troughs propagate.

Wikipedia phase speed: https://en.wikipedia.org/wiki/Phase velocity

9.3.2 Group velocity

Now consider a wave packet (a wave disturbance of finite extent) made of the superposition of many

monochromatic (single-wavelength) waves. An example of a wave packet is outlined in red in the figure

below.

Figure: A wave packet (red) made of a superposition of waves of multiple frequencies (blue). The red “envelope” travels at the

group velocity cg.

The speed at which this packet propagates, termed the group velocity, cg is not the same as the phase

velocity cp. The group velocity instead is defined as

~cg ⌘ rK! where rK ⌘ (@k,@l,@m) (9.28)

For one-dimensional waves, this reduces to

cxg =
@!

@k
(9.29)

Wikipedia group velocity: https://en.wikipedia.org/wiki/Group velocity
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9.4 Properties of Rossby waves

Back to Rossby waves, which as a reminder, have the dispersion relation

! = Uk-
�k

k2 + l2 (9.30)

The phase speed of Rossby waves in the x-direction is then given by

cxp =
!

k
= U-

�

k2 + l2 (9.31)

or equivalently

cxp =
!

k
= U-

�

K2 where K2 = k2 + l2 (9.32)

The intrinsic phase speed, or the phase speed relative to the background flow is

cxp -U = -
�

k2 + l2 = -
�

K2 (9.33)

that is, the intrinsic phase speed of Rossby waves is always negative (westward)! These waves always

propagate westward relative to the mean flow. Thus, bigger waves travel faster to the west!

The Rossby wave group velocity in the direction of the basic flow is

cxg =
@!

@k
= U- �

K2 - 2k2

K4 = U+ �
k2 - l2

(k2 + l2)2 (9.34)

For |k| > |l|, cxg > 0 (eastward), or in the opposite direction of the phase speed (see Group Velocity

Wikipedia animation to see an example of this).

The group velocity in the y direction is given by

cyg =
@!

@l
=

2�kl
K4 (9.35)
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Scales of stationary waves

Stationary waves are waves who’s phase lines are stationary relative to the ground. That is, cxp = 0

and so k2
S = �/U. Using typical midlatitude values for � ⇠ 10-11 1/(ms) and U ⇠ 10 m/s ...

What is the typical stationary wavelength in midlatitudes for l2 << k2?

k ⌘ 2⇡/�x and assuming l = 0, k2 = �/U and therefore �x = 2⇡/
p
(�/U) ⇡ 6000 km

What is the intrinsic period of these waves (inverse of frequency)?

1/!̂ = -k/� = -10-6/10-11 = -105 seconds per radian, and converting to days per wave cycle

-105 ⇥ 2⇡/(60 ⇥ 60 ⇥ 24) ⇡ 7 days.

What is the group velocity of these waves?

cxg = U+ �/k2 = U+U = 2U - that is, the wave group (and therefore energy) propagates

eastward at twice the basic state flow! This is related to “downstream development”.

9.5 Rossby wave propagation mechanism

Properties of the Rossby Wave Solutions

The Rossby wave phase speed in the direction of the basic state flow is given by:

cp,x ⌘ �

k
= U � �

K2
, with K2 ⌘ k2 + l2 .

The intrinsic phase speed cp.x � U = ��/K2 is always negative, i.e. westward (since � > 0
everywhere)! That is, these waves always propagate westward relative to the mean flow. The
Rossby wave group velocity in the direction of the basic state flow is given by:

cg,x ⌘ �k� = U � �
K2 � 2k2

K4
= U + �

k2 � l2

K4
.

For |k| > |l| the group velocity is positive (eastward) – in the opposite direction of the phase
speed (wave phases moving in the opposite direction to wave groups maybe hard to imagine –
watch the animation on the class website to visualize).

Stationary waves (phase lines not moving with respect to ground) have cp,x = 0, i.e. K2
S =

�/U . Using typical mid-latitude values for � � 10�11 m�1 s�1 and U � 10 m/s gives a typical
stationary wavelength in mid-latitudes of 2�/KS � 6000 km and a typical intrinsic period of
� 2�KS/� � 6 days – astonishingly close to the observed values for planetary waves. The
group velocity for stationary waves for l2 ⌧ k2 becomes cg,x ⇡ 2U , i.e. wave groups (and
therefore wave energy) propagate eastward at twice the basic state flow (related to downstream
development).

Illustration of Rossby Wave Mechanism

Vallis, Ch. 5.7:

  

Hoskins et al. (1985): Hoskins, McIntyre, Robinson, On the use and significance 
of isentropic potential vorticity maps, QJRMS, 1985.

30

Figure: Two ways of looking at Rossby wave propagation and why the intrinsic phase speed is always westward.

The intrinsic westward progression of the phase lines of Rossby waves result from the wave perturba-
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tions in vorticity acting on the wave itself. In a way, the wave is advecting itself. Note how that �- effect is

crucial for the Rossby wave mechanism. That is, differential rotation (a changing f) provides the restoring

mechanism for Rossby waves.

9.6 Linear waves are nonlinear solution

What happens if we insert the wave solution  0 into the full non-linear equation?

D(⇣+ f)

Dt
=

⇥
@t + (U+ u 0)@x + v 0@y

⇤
⇣ 0 + �v 0

=
⇥
@t + (U- @y 

0)@x + @x 
0@y

⇤
r2 0 + �@x 

0

=
⇥
-@y 

0@x + @x 
0@y

⇤
r2 0

= @x 
0 [-l/k@x + @y]r2 0

= @x 
0r2 ⇥

-l/k@x 
0 + @y 

0⇤ = @x 
0r2 ⇥

-l/k@x 
0 + l/k@x 

0⇤ = 0 .

The third step above uses the fact that we already know the linear part of the equation is zero, the fourth and

fifth steps use @y 0 = l/k@x 
0. We therefore find that these Rossby waves have the special property (not

shared by other waves) that they are also a solution of the full non-linear equations (even though the waves

themselves are linear)!

9.7 Insight into the existence of jet-streams (Vallis 12.1)

Consider a Rossby wave source located in the x-y plane. Theory tells us that the energy and wave packet

will propagate away from the source (group velocity away from the source), and theory tells us that the wave

packet will propagate along great circle routes. For the meridional propagation then, we expect the group

velocity to be positive northward of the source and negative southward of the source. That is,

cyg ⌘ @!

@l
=

2�kl
(k2 + l2)2 (9.36)

• northward of the source we require c
y
g > 0 and therefore kl > 0

• southward of the source we require c
y
g < 0 and therefore kl < 0

Now consider the meridional flux of zonal momentum (often simply called the momentum flux) for

barotropic Rossby waves:

u 0v 0 = -@x 0@y 0 / -kl / -cg,y (9.37)

where overbars denote zonal averages (see derivation at the end of this section).
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Thus, the meridional flux of zonal momentum is in the opposite direction of the group velocity in the

meridional direction! This result is quite profound. It tells us that as the waves propagate away from the

source region (the midlatitudes), eastward zonal momentum will be fluxed back into the midlatitudes (see

figure below)! This is in essence why we have westerlies/jet-streams in the midlatitudes. Moreover, this is

why the midlatitude jet-stream is referred to as the midlatitude, eddy-driven jet stream.

12.1 Maintenance of a Barotropic Jet 515

Figure 12.3 Pseudomomentum
stirring, which in reality occurs
via baroclinic instability, is con-
fined to midlatitudes. Because of
Rossyby wave propagation away
from the source region, the distri-
bution of pseudomomentum dissi-
pation is broader, and the sum of
the two leads to the zonal wind
distribution shown, with positive
(eastward) values in the region of
the stirring. See also Fig. 12.8.

will not locally balance in the region of the forcing, producing no net winds. That can
only occur if the dissipation is confined to the region of the forcing, but this is highly
unlikely because Rossby waves are generated in the forcing region, and these propagate
meridionally before dissipating, as we now discuss.

12.1.4 III. Rossby waves and momentum flux

We have seen that the presence of a mean gradient of vorticity is an essential ingredient
in the mechanism whereby a mean flow is generated by stirring. Given such, we expect
Rossby waves to be excited, and we now show how Rossby waves are intimately related
to the momentum flux maintaining the mean flow.

If a stirring is present in midlatitudes then we expect that Rossby waves will be
generated there. To the extent that the waves are quasi-linear and do not interact then

Fig. 12.4 Generation of zonal flow on a ˇ-plane or on a rotating sphere.
Stirring in midlatitudes (by baroclinic eddies) generates Rossby waves that
propagate away from the disturbance. Momentum converges in the region
of stirring, producing eastward flow there and weaker westward flow on its
flanks.

Figure: Illustration from Vallis (Chapter 12) of Rossby waves propagating away from a midlatitude source and fluxing

momentum back into the midlatitudes to form a zonal jet-stream.

Derivation of 9.37

We recall that the solution for the perturbation streamfunction can be written as:

 0 = <{( R + i I)(cos�+ i sin�)} (9.38)

where � = (kx+ ly-!t) to make notation easier and  is a complex constant. Then

u 0 = -
@ 0

@y
= -<{( R + i I)il(cos�+ i sin�)} = l( R sin�+  I cos�) (9.39)

v 0 =
@ 0

@x
= <{( R + i I)ik(cos�+ i sin�)} = -k( R sin�+  I cos�) (9.40)

Plugging this in we get

u 0v 0 = -kl 2
R sin2�+  2

I cos2�+ 2 R I cos� sin� (9.41)

= -kl
⇣
 2
Rsin2�+  2

Icos2�+ 2 R Icos� sin�
⌘

(9.42)

Recalling that the overbar denotes a zonal mean, and assuming periodic boundary conditions around a

latitude circle,

sin2� = cos2� =
1
2

and sin� cos� = 0 (9.43)

leads to

u 0v 0 = -
1
2
 2kl / -kl (9.44)
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