Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Fig 1.

Ecoclimate teleconnection concepts and simulation experiments.

(a) Ecoclimate teleconnections propagate land-atmosphere energy disturbances from the local region of disturbance to remote regions potentially having ecological consequences (taken from [14]). (b) In our experiments, forest is converted to grass in three scenarios to illustrate the ecoclimate teleconnections: (1) western North America (wNA) only; (2) the Amazon basin only; and (3) both wNA and the Amazon simultaneously (wNA+Amazon). Red boxes highlight three focal areas that show changes in GPP associated with teleconnections with mechanistic relationships discuss in the text: (A) Eurasia; (B) southeastern North America (SENA); and (C) eastern South America (ESA).

More »

Fig 1 Expand

Fig 2.

Climatic and ecological responses to Amazon and wNA forest loss.

Anomalies in annually averaged temperature in Kelvin (panels a, c, e) and annual gross primary productivity in gC/m2yr (panels b, d, f), calculated as the difference between the control and experimental case of forest loss in western North America alone (wNA, panels a, b); the Amazon alone (panels c, d) and the wNA+Amazon together (panels e, f). Values that do not pass a significance test at 95% confidence are not included.

More »

Fig 2 Expand

Fig 3.

Mechanisms driving ecological responses.

Anomalies in averaged monthly GPP in gC/m2/day between the control and experimental scenarios in three regions (see Fig 1B): (a) Eurasia, (b) southeastern North America (SENA), and (c) eastern South America (ESA). Key climatically-influenced mechanisms contributing to changes in GPP include: (d) conversion of soil moisture to ice in Eurasia; (e) VPD-induced responses in stomatal conductance (gs) in SENA; (f) Amazon forest loss alone leads to increases in precipitation in Dec-Mar and wNA forest loss alone leads to declines in temperatures in Jun-Oct. These seasonal changes contribute to an annual increase in GPP with simultaneous wNA+Amazon forest loss due to release from soil moisture limitation (not shown). Shading in ae shows the ±1 SE estimated from the control.

More »

Fig 3 Expand