Skip to main content
Log in

Variability of the western Pacific warm pool structure associated with El Niño

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Sea surface temperature (SST) structure inside the western Pacific warm pool (WPWP) is usually overlooked because of its distinct homogeneity, but in fact it possesses a clear meridional high–low–high pattern. Here we show that the SST low in the WPWP is significantly intensified in July–October of El Niño years (especially extreme El Niño years) and splits the 28.5 °C-isotherm-defined WPWP (WPWP split for simplification). Composite analysis and heat budget analysis indicate that the enhanced upwelling due to positive wind stress curl anomaly and western propagating upwelling Rossby waves account for the WPWP split. Zonal advection at the eastern edge of split region plays a secondary role in the formation of the WPWP split. Composite analysis and results from a Matsuno–Gill model with an asymmetric cooling forcing imply that the WPWP split seems to give rise to significant anomalous westerly winds and intensify the following El Niño event. Lead-lag correlation shows that the WPWP split slightly leads the Niño 3.4 index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Balmaseda MA, Vidard A, Anderson DL (2008) The ECMWF ocean analysis system: ORA-S3. Mon Weather Rev 136:3018–3034. doi:10.1175/2008MWR2433.1

    Article  Google Scholar 

  • Brown JN, Maes C, Gupta AS, Matear R, Cravatte S, Langlais C, other workshop participants (2012) Reinvigorating research on the western Pacific warm pool–first workshop. Clivar Exch 59:34–35

    Google Scholar 

  • Brown JN, Langlais C, Maes C (2013) Zonal structure and variability of the Western Pacific dynamic warm pool edge in CMIP5. Clim Dyn 42:3061–3076. doi:10.1007/s00382-013-1931-5

    Article  Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017. doi:10.1175/2007MWR1978.1

    Article  Google Scholar 

  • Chen G, Fang L (2005) Improved scheme for determining the thermal centroid of the oceanic warm pool using sea surface temperature data. J Oceanogr 61:295–299

    Article  Google Scholar 

  • Chen G, Fang C, Zhang C, Chen Y (2004) Observing the coupling effect between warm pool and “rain pool” in the Pacific Ocean. Remote Sens Environ 91:153–159. doi:10.1016/j.rse.2004.02.010

    Article  Google Scholar 

  • Clement AC, Seager R, Murtugudde R (2005) Why Are there tropical warm pools? J Clim 18:5294–5311. doi:10.1175/JCLI3582.1

    Article  Google Scholar 

  • Cravatte S, Delcroix T, Zhang D, McPhaden M, Leloup J (2009) Observed freshening and warming of the western Pacific warm pool. Clim Dyn 33:565–589. doi:10.1007/s00382-009-0526-7

    Article  Google Scholar 

  • Cronin MF, McPhaden MJ (1997) The upper ocean heat balance in the western equatorial Pacific warm pool during September–December 1992. J Geophys Res 102:8533–8554

    Article  Google Scholar 

  • Gill A (1980) Some simple solutions for heat induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Graham N, Barnett T (1987) Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science 238:657–659

    Article  Google Scholar 

  • Guan C, Chen Y, Wang F (2013) Seasonal variability of zonal heat advection in the mixed layer of the tropical Pacific. Chin J Oceanol Limnol 31:1344–1355. doi:10.1007/s00343-014-3019-4

    Article  Google Scholar 

  • Hsin YC, Qiu B (2012) The impact of Eastern-Pacific versus Central-Pacific El Niños on the North Equatorial Countercurrent in the Pacific Ocean. J Geophys Res Oceans 117:C11017. doi:10.1029/2012JC008362

    Google Scholar 

  • Hu S, Hu D (2012) Heat center of the western Pacific warm pool. Chin J Oceanol Limnol 30:169–176. doi:10.1007/s00343-012-1193-9

    Article  Google Scholar 

  • Hu S, Hu D (2014) Variability of the Pacific North Equatorial Current from repeated shipboard acoustic Doppler current profiler measurements. J Oceanogr 70:559–571. doi:10.1007/s10872-014-0253-5

    Article  Google Scholar 

  • Hu S, Hu D (2016) Review on western Pacific warm pool study. Stud Mar Sin 51:37–48. doi:10.12036/hykxjk20160724001

    Google Scholar 

  • Hu S, Sprintall J (2016) Interannual variability of the Indonesian throughflow: the salinity effect. J Geophys Res 121(4):2596–2615. doi:10.1002/2015JC011495

    Article  Google Scholar 

  • Hu D, Wu L, Cai W, Gupta AS, Ganachaud A, Qiu B, Gordon AL, Lin X, Chen Z, Hu S, Wang G, Wang Q, Sprintall J, Qu T, Kashino Y, Wang F, Kessler W (2015) Pacific western boundary currents and their roles in climate. Nature 522:299–308. doi:10.1038/nature14504

    Article  Google Scholar 

  • Hu S, Hu D, Guan C, Wang F, Zhang L, Wang F, Wang Q (2016) Interannual variability of the Mindanao Current/Undercurrent in direct observations and numerical simulations. J Phys Oceanogr 46(2):483–499. doi:10.1175/JPO-D-15-0092.1

    Article  Google Scholar 

  • Johnson NC, Xie S-P (2010) Changes in the sea surface temperature threshold for tropical convection. Nat Geosci 3:842–845

    Article  Google Scholar 

  • Kim W, Cai W (2013) The importance of the eastward zonal current for generating extreme El Niño. Clim Dyn 42:3005–3014. doi:10.1007/s00382-013-1792-y

    Article  Google Scholar 

  • Kim YY, Qu T, Jensen T, Miyama T, Mitsudera H, Kang HW, Ishida A (2004) Seasonal and interannual variations of the North Equatorial Current bifurcation in a high-resolution OGCM. J Geophys Res 109:C03040. doi:10.1029/2003JC002013

    Google Scholar 

  • Kim ST, Yu JY, Lu MM (2012) The distinct behaviors of Pacific and Indian Ocean warm pool properties on seasonal and interannual time scales. J Geophys Res 117:D05128. doi:10.1029/2011JD016557

    Google Scholar 

  • Lin CY, Ho CR, Lee YH, Kuo NJ, Liang SJ (2012) Thermal variability of the Indo-Pacific warm pool. Glob Planet Change 100:234–244. doi:10.1016/j.gloplacha.2012.10.022

    Article  Google Scholar 

  • Lukas R, Webster P, Picaut J (eds) (1991) Oceanography and meteorology of the western Pacific warm pool: papers from the western Pacific international meeting and workshop on TOGA/COARE. J Geophys Res 96: Supplement to JGR-Atmospheres and -Oceans, 313 pp

  • Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn 44:25–43

    Article  Google Scholar 

  • McPhaden MJ (1999) Genesis and evolution of the 1997–1998 El Niño. Science 283:950–954

    Article  Google Scholar 

  • McPhaden MJ, Yu X (1999) Equatorial waves and the 1997–1998 E1 Niño. Geophys Res Lett 26:2961–2964

    Article  Google Scholar 

  • Menkes CE, Lengaigne M, Vialard J, Puy M, Marchesiello P, Cravatte S, Cambon G (2014) About the role of Westerly Wind Events in the possible development of an El Niño in 2014. Geophys Res Lett 41:6476–6483. doi:10.1002/2014GL061186

    Article  Google Scholar 

  • Picaut J, Ioualalen M, Menkès C, Delcroix T, McPhaden M (1996) Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO. Science 274:1486–1489. doi:10.1126/science.274.5292.1486

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496. doi:10.1175/2007JCLI1824.1

    Article  Google Scholar 

  • Schott F, Stramma L, Wang W, Giese B, Zantopp R (2008) Pacific subtropical cell variability in the SODA 2.0. 2/3 assimilation. Geophys Res Lett 35:L10607. doi:10.1029/2008GL033757

    Article  Google Scholar 

  • Stevenson JW, Niiler PP (1983) Upper ocean heat budget during the Hawaii-to-Tahiti shuttle experiment. J Phys Oceanogr 13:1894–1907. doi:10.1175/1520-0485(1983)013<1894:UOHBDT>2.0.CO;2

    Article  Google Scholar 

  • Wang B (1992) The vertical structure and development of the ENSO anomaly mode during 1979–1989. J Atmos Sci 49:698–712. doi:10.1175/1520-0469(1992)049<0698:TVSADO>2.0.CO;2

    Article  Google Scholar 

  • Wang C, Weisberg RH, Virmani JI (1999a) Western Pacific interannual variability associated with the El Niño Southern oscillation. J Geophys Res 104:5131–5149. doi:10.1029/1998JC900090

    Article  Google Scholar 

  • Wang B, Barcilon A, Fang Z (1999b) Stochastic dynamics of El Niño-Southern oscillation. J Atmos Sci 56:5–23

    Article  Google Scholar 

  • Wang B, Wu R, Lukas R (1999c) Roles of the western North Pacific wind variation in thermocline adjustment and ENSO phase transition. J Meteorol Soc Jpn 77:1–16

    Article  Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536. doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2

    Article  Google Scholar 

  • Webster PJ, Lukas R (1992) TOGA COARE: the coupled ocean-atmosphere response experiment. Bull Am Meteorol Soc 73:1377–1416. doi:10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2

    Article  Google Scholar 

  • Weisberg RH, Wang C (1997) A western Pacific oscillator paradigm for the El Niño-Southern oscillation. Geophys Res Lett 24:779–782

    Article  Google Scholar 

  • Xing N, Li J, Li Y (2014) Response of the tropical atmosphere to isolated equatorially asymmetric heating. Chin J Atmos Sci (in Chinese) 38:1147–1158. doi:10.3878/j.issn.1006-9895.1401.13275

    Google Scholar 

  • Yan XH, Ho CR, Zheng Q, Klemas V (1992) Temperature and size variabilities of the western Pacific warm pool. Science 258:1643–1645. doi:10.1126/science.258.5088.1643

    Article  Google Scholar 

  • Yan XH, He Y, Liu WT, Zheng Q, Ho CR (1997) Centroid motion of the western Pacific warm pool during three recent El Niño-Southern oscillation events. J Phys Oceanogr 27:837–845. doi:10.1175/1520-0485(1997)027<0837:CMOTWP>2.0.CO;2

    Article  Google Scholar 

  • Yu L, Weller RA (2007) Objectively analyzed air sea heat fluxes for the global ice-free oceans (1981–2005). Bull Am Meteorol Soc 88:527. doi:10.1175/BAMS-88-4-527

    Article  Google Scholar 

  • Zhang X, McPhaden MJ (2010) Surface layer heat balance in the eastern equatorial Pacific Ocean on interannual time scales: influence of local versus remote wind forcing. J Clim 23:4375–4394. doi:10.1175/2010JCLI3469.1

    Article  Google Scholar 

  • Zhang Y, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J Geophys Res 109:D19105. doi:10.1029/2003JD004457

    Article  Google Scholar 

  • Zhou Y, Yan X, Ding X, Liao X, Zheng D, Liu W, Pan J, Fang M, He M (2004) Excitation of non-atmospheric polar motion by the migration of the Pacific warm pool. J Geodesy 78:109–113. doi:10.1007/s00190-004-0380-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors would express their sincere gratitude to the NOAA, ECMWF, WHOI OAFlux Project, AVISO, University of Maryland and Texas A&M University for their valuable datasets. We are obliged to Drs Lixin Wu, William Kessler, Weiqing Han, Kentang Le and Chuanyu Liu for beneficial discussion with them on this paper. Comments and suggestions from two anonymous reviewers are of much help in improving the manuscript. This work is supported by the Key Research Program of Frontier Sciences, CAS (Number QYZDB-SSW-SYS023) and the National Natural Science Foundation of China under Grants 41406016 and 41421005 as a part of the NPOCE program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijian Hu.

Appendix: Atmospheric responses to an asymmetric forcing

Appendix: Atmospheric responses to an asymmetric forcing

To study atmospheric responses to steady-state forcing, the advection term is neglected and the dissipative process is included in the model (Matsuno 1966; Gill 1980):

$$ \varepsilon u - \frac{1}{2}yv = - \frac{\partial p}{\partial x} $$
(13)
$$ \varepsilon v + \frac{1}{2}yu = - \frac{\partial p}{\partial y} $$
(14)
$$ \varepsilon p + \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = - Q $$
(15)
$$ w = \varepsilon p + Q $$
(16)

In these equations (x, y) is non-dimensional distance with x eastwards and y measured northwards from the equator, (u, v) is proportional to horizontal velocity and p is proportional to the pressure perturbation. Q is proportional to the heating rate, \( u{\raise0.7ex\hbox{${\partial T}$} \!\mathord{\left/ {\vphantom {{\partial T} {\partial x}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\partial x}$}}_{160E} + v{\raise0.7ex\hbox{${\partial T}$} \!\mathord{\left/ {\vphantom {{\partial T} {\partial y}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\partial y}$}}_{12N} - v{\raise0.7ex\hbox{${\partial T}$} \!\mathord{\left/ {\vphantom {{\partial T} {\partial y}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\partial y}$}}_{EQ} \) is the decay factor.

For a given equatorial asymmetric forcing Q, it could expand in the form of parabolic cylinder functions (Xing et al. 2014)

$$ Q\left( {x,y} \right) = Ag\left( x \right)\exp \left( { - \frac{1}{4}\left( {y + d} \right)^{2} } \right), $$
(17)
$$ g\left( x \right) = \left\{ {\begin{array}{*{20}l} {\cos kx\quad \left| x \right| \le L} \hfill \\ {0\quad \left| x \right| > L} \hfill \\ \end{array} ,\quad k = \frac{\pi }{2L}} \right., $$
(18)
$$ Q = Q_{n} \left( {x,y} \right) = AF_{n} \left( x \right)D_{n} \left( y \right), $$
(19)

where

$$ F_{n} \left( x \right) = c_{n} \left( x \right) = \left( { - 1} \right)^{n} \frac{1}{n!}\left( {\frac{d}{2}} \right)^{n} \exp \left( { - \frac{1}{8}d^{2} } \right)g\left( x \right). $$
(20)

Parabolic cylinder functions \( u{\raise0.7ex\hbox{${\partial T}$} \!\mathord{\left/ {\vphantom {{\partial T} {\partial x}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\partial x}$}}_{160E} + v{\raise0.7ex\hbox{${\partial T}$} \!\mathord{\left/ {\vphantom {{\partial T} {\partial y}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\partial y}$}}_{12N} - v{\raise0.7ex\hbox{${\partial T}$} \!\mathord{\left/ {\vphantom {{\partial T} {\partial y}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\partial y}$}}_{EQ} \) are given by

$$ \left\{ \begin{aligned} D_{0} \left( y \right) = \exp \left( { - \frac{1}{4}y^{2} } \right) \hfill \\ D_{1} \left( y \right) = y\exp \left( { - \frac{1}{4}y^{2} } \right) \hfill \\ D_{2} \left( y \right) = \left( {y^{2} - 1} \right)\exp \left( { - \frac{1}{4}y^{2} } \right) \hfill \\ D_{3} \left( y \right) = \left( {y^{3} - 3y} \right)\exp \left( { - \frac{1}{4}y^{2} } \right) \hfill \\ \cdots \cdots \hfill \\ \end{aligned} \right.. $$
(21)

To solve the above equations, Gill (1980) first introduced two new variables q and r to replace p and u, where q = p+u, r = pu, and assumed that solutions of the equations can be expanded in the form of parabolic cylinder functions \( D_{n} \left( y \right) \), where \( q = \sum\nolimits_{n = 0}^{\infty } {q_{n} \left( x \right)} D_{n} \left( y \right) \). The Rossby wave and Kelvin wave parts of the detailed solutions for the first two terms of expansion forcing source Q are given by Eq. (4.3), Eq. (4.8), Eq. (5.2) and Eq. (5.6) (Gill 1980). General solutions for the rest expansion terms (n ≥ 2) are as follows (Xing et al. 2014):

$$ I = \exp \left( {\frac{1}{8}d^{2} } \right) \cdot \left( {A\left( { - 1} \right)^{n} \frac{1}{n!}\left( {\frac{d}{2}} \right)^{n} } \right)^{ - 1} , $$
(22)
$$ \left\{ {\begin{array}{*{20}l} {\left( {\left( {2n + 3} \right)^{2} \varepsilon^{2} + k^{2} } \right)Iq_{n + 2} = - k\left( {1 + \exp \left( { - 2\left( {2n + 3} \right)\varepsilon L} \right)} \right)\exp \left( {\left( {2n + 3} \right)\varepsilon \left( {x + L} \right)} \right),} \hfill & {x < - L} \hfill \\ {\left( {\left( {2n + 3} \right)^{2} \varepsilon^{2} + k^{2} } \right)Iq_{n + 2} = - \left( {2n + 3} \right)\varepsilon \cos kx + k\left( {\sin kx - \exp \left( {\left( {2n + 3} \right)\varepsilon \left( {x - L} \right)} \right)} \right),} \hfill & {\left| x \right| \le L} \hfill \\ {\left( {\left( {2n + 3} \right)^{2} \varepsilon^{2} + k^{2} } \right)Iq_{n + 2} = 0,} \hfill & {x > L} \hfill \\ \end{array} ,} \right. $$
(23)
$$ \left\{ {\begin{array}{*{20}l} {p = \frac{1}{2}q_{n + 2} \left( x \right)D_{n + 2} \left( y \right) + \frac{1}{2}\left( {n + 2} \right)q_{n + 2} \left( x \right)D_{n} \left( y \right)} \hfill \\ {u = \frac{1}{2}q_{n + 2} \left( x \right)D_{n + 2} \left( y \right) - \frac{1}{2}\left( {n + 2} \right)q_{n + 2} \left( x \right)D_{n} \left( y \right)} \hfill \\ {v = 2\left( {n + 2} \right)\varepsilon q_{n + 2} \left( x \right)D_{n + 1} \left( y \right) + Q_{n} \left( {x,y} \right)} \hfill \\ {w = \varepsilon p + Q_{n} \left( {x,y} \right)} \hfill \\ \end{array} } \right.. $$
(24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Hu, D., Guan, C. et al. Variability of the western Pacific warm pool structure associated with El Niño. Clim Dyn 49, 2431–2449 (2017). https://doi.org/10.1007/s00382-016-3459-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3459-y

Keywords

Navigation