Skip to main content
Log in

Ballast crushing probability model considering the influence of particle morphology and size

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The non-uniform shape and diverse dimensions exert a substantial influence on the distribution of forces within the ballast, hence affecting its bearing capacity. The objective of this work was to investigate the interrelated impact of particle shape and size on ballast strength, and then construct a prediction model that could estimate the chance of ballast crushing. For these purposes, both three-dimensional scanning and single-particle compression tests were undertaken. The morphology of ballast particles at various scales was comprehensively characterized by computing diverse parameters based on the scanning results. The present study systematically assessed the impact of size, overall shape and roundness on particle crushing behavior and parameters. Then a novel approach was introduced to calculate characteristic strength, taking into account the influence of particle morphology. A ballast crushing probability distribution model was established, which incorporated the Weibull model. The anticipation of ballast crushing probabilities can be achieved within this framework by analyzing particle size and morphology parameters. At last, the actual crushing probabilities were compared to the predicted probabilities for a sample of 50 randomly chosen ballasts. The results revealed that 80% of the particles displayed a deviation of less than 10%, which proved the accuracy of the applied method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Indraratna, B., Salim, W., Rujikiatkamjorn, C.: Advanced Rail Geotechnology—Ballasted Track. CRC Press/Balkema, Boca Raton (2011)

    Book  Google Scholar 

  2. Indraratna, B., Ngo, T., Rujikiatkamjorn, C.: Performance of ballast influenced by deformation and degradation: laboratory testing and numerical modeling. Int. J. Geomech. 20, 04019138 (2020). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001515

    Article  Google Scholar 

  3. Lim, W.L., McDowell, G.R., Collop, A.C.: The application of Weibull statistics to the strength of railway ballast. Granul. Matter 6, 229–237 (2004). https://doi.org/10.1007/s10035-004-0180-z

    Article  Google Scholar 

  4. Zhou, W., Yang, L., Ma, G., Chang, X., Lai, Z., Xu, K.: DEM analysis of the size effects on the behavior of crushable granular materials. Granul. Matter 18, 64 (2016). https://doi.org/10.1007/s10035-016-0656-7

    Article  Google Scholar 

  5. Huang, Q.S., Zhou, W., Ma, G., Ng, T.T., Xu, K.: Experimental and numerical investigation of Weibullian behavior of grain crushing strength. Geosci. Front. 11, 401–411 (2020). https://doi.org/10.1016/j.gsf.2019.07.007

    Article  Google Scholar 

  6. Zhang, X., Liu, X., Xu, Y., Wang, G., Zang, M.: Fragmentation modes of single coral particles under uniaxial compression: Microstructural insights. Constr Build Mater. 344, 128186 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128186

  7. Xiao, Y., Sun, Z., Desai, C.S., Meng, M.: Strength and surviving probability in grain crushing under acidic erosion and compression. Int. J. Geomech. 19, 04019123 (2019). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001508

    Article  Google Scholar 

  8. Yan, W.M., Shi, Y.: Evolution of grain grading and characteristics in repeatedly reconstituted assemblages subject to one-dimensional compression. Geotech Lett. 4, 223–229 (2014). https://doi.org/10.1680/geolett.14.00039

    Article  Google Scholar 

  9. Xiao, Y., Liu, H., Chen, Y., Jiang, J.: Strength and deformation of rockfill material based on large-scale triaxial compression tests. I: influences of density and pressure. J. Geotech. Geoenviron. 140, 04014070 (2014). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001176

    Article  Google Scholar 

  10. Liu, J.X., Sysyn, M., Liu, Z.Y., Kou, L., Wang, P.: Studying the strengthening effect of railway ballast in the direct shear test due to insertion of middle-size ballast particles. J. Appl. Comput. Mech. 8, 1387–1397 (2022). https://doi.org/10.22055/jacm.2022.40206.3537

    Article  Google Scholar 

  11. Kalasin, T., Khamchan, C., Aoddej, A.: Effects of particle size and soil bed on the shear strength of materials in the direct shear test. Period Polytech.-Civ. (2022). https://doi.org/10.3311/PPci.20416

    Article  Google Scholar 

  12. Xiao, Y., Meng, M.Q., Daouadji, A., Chen, Q.S., Wu, Z.J., Jiang, X.: Effects of particle size on crushing and deformation behaviors of rockfill materials. Geosci. Front. 11, 375–388 (2020). https://doi.org/10.1016/j.gsf.2018.10.010

    Article  Google Scholar 

  13. Zhou, H.J., Ma, G., Yuan, W., Wei, Z.: Size effect on the crushing strengths of rock particles. Rock Soil Mech. 38, 2425–2433 (2017). https://doi.org/10.16285/j.rsm.2017.08.032

    Article  Google Scholar 

  14. Zhao, X.L., Zhu, J.A., Jia, Y., Colliat, J.B., Bian, H.B., Zhang, Q.: Experimental and numerical study of size effects on the crushing strength of rockfill particles. Int. J. Numer. Anal. Met. 46, 2060–2086 (2022). https://doi.org/10.1002/nag.3379

    Article  Google Scholar 

  15. Wang, Y.H., Ma, G., Mei, J.Z., Zou, Y.X., Zhang, D.R., Zhou, W., Cao, X.X.: Machine learning reveals the influences of grain morphology on grain crushing strength. Acta Geotech. 16, 3617–3630 (2021). https://doi.org/10.1007/s11440-021-01270-1

    Article  Google Scholar 

  16. Zheng, S.F., Liu, Y., Zhang, N., Li, X., Gao, L.: Experimental studies on shape and size effects on particle breakage of railway ballast. Transp. Geotech. 37, 100883 (2022). https://doi.org/10.1016/j.trgeo.2022.100883

    Article  Google Scholar 

  17. Aman, S., Tomas, J., Kalman, H.: Breakage probability of irregularly shaped particles. Chem. Eng. Sci. 65, 1503–1512 (2010). https://doi.org/10.1016/j.ces.2009.10.016

    Article  Google Scholar 

  18. Kim, J., Park, B.S., Woo, S.I., Choi, Y.T.: Evaluation of ballasted-track condition based on aggregate-shape characterization. Constr. Build. Mater. 232, 117082 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117082

    Article  Google Scholar 

  19. Xu, Y., Yu, W.Y., Qie, L.C., Wang, H., Ning, N.: Analysis of influence of ballast shape on abrasion resistance using discrete element method. Constr. Build. Mater. 273, 121708 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121708

    Article  Google Scholar 

  20. Guo, Y.L., Markine, V., Song, J.N., Jing, G.Q.: Ballast degradation: effect of particle size and shape using Los Angeles Abrasion test and image analysis. Constr. Build. Mater. 169, 414–424 (2018). https://doi.org/10.1016/J.CONBUILDMAT.2018.02.170

    Article  Google Scholar 

  21. Jing, G.Q., Ji, Y.M., Qiang, W.L., Zhang, R.: Experimental and numerical study on ballast flakiness and elongation index by direct shear test. Int. J. Geomech. 20, 04020169 (2020). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001791

    Article  Google Scholar 

  22. Danesh, A., Mirghasemi, A.A., Palassi, M.: Evaluation of particle shape on direct shear mechanical behavior of ballast assembly using discrete element method (DEM). Transp. Geotech. 23, 100357 (2020). https://doi.org/10.1016/j.trgeo.2020.100357

    Article  Google Scholar 

  23. Wadell, H.: Volume, shape, and roundness of rock particles. J. Geol. 40, 443–451 (1932)

    Article  ADS  Google Scholar 

  24. Blott, S.J., Pye, K.: Particle shape: a review and new methods of characterization and classification. Sedimentology 55, 31–63 (2008). https://doi.org/10.1111/j.1365-3091.2007.00892.x

    Article  Google Scholar 

  25. Zhou, B., Wang, J., Wang, H.: Three-dimensional sphericity, roundness and fractal dimension of sand particles. Geotechnique 68, 18–30 (2018). https://doi.org/10.1680/jgeot.16.P.207

    Article  Google Scholar 

  26. Weibull, G.W.: A statistical distribution function of wide applicability. Appl. Mech. 18, 293–297 (1951)

    Article  Google Scholar 

  27. Al-Saoudi, N.K.S., Hassan, K.H.: Evaluation of indirect tensile strength of track ballast using weibull statistics. Geotech. Geol. Eng. 30, 1097–1102 (2012). https://doi.org/10.1007/s10706-012-9525-2

    Article  Google Scholar 

  28. Mcdowell, G.R., Amon, A.: The application of Weibull statistics to the fracture of soil particles. Soils Found. 40, 133–141 (2000). https://doi.org/10.3208/sandf.40.5_133

    Article  Google Scholar 

  29. Krumbein, W.C.: Measurement and geological significance of shape and roundness of sedimentary particles. J. Sed. Petrol. 11, 64–72 (1941). https://doi.org/10.1306/D42690F3-2B26-11D7-8648000102C1865D

    Article  Google Scholar 

  30. Corey, A.T.: Influence of Shape on Fall Velocity of Sand Grains. Colorado A&M College, Colorado (1949)

    Google Scholar 

  31. Sneed, E.D., Folk, R.L.: Pebbles in the lower colorado river, Texas a study in particle morphogenesis. J. Geol. 66, 114–150 (1958). https://doi.org/10.2307/30058239

    Article  ADS  Google Scholar 

  32. Aschenbrenner, B.C.: A new method of expressing particle sphericity. J. Sediment. Res. 26, 15–31 (1956)

    Google Scholar 

  33. Nie, Z.H., Liang, Z.Y., Wang, X.: A three-dimensional particle roundness evaluation method. Granul. Matter 20, 1–11 (2018). https://doi.org/10.1007/s10035-018-0802-5

    Article  Google Scholar 

  34. Hayakawa, Y., Oguchi, T.: Evaluation of gravel sphericity and roundness based on surface-area measurement with a laser scanner. Comput. Geosci.-UK 31, 735–741 (2005). https://doi.org/10.1016/j.cageo.2005.01.004

    Article  ADS  Google Scholar 

  35. Cornea, N.D., Silver, D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comput. Graph. 13, 530–548 (2007). https://doi.org/10.1109/TVCG.2007.1002

    Article  Google Scholar 

  36. Zheng, J.X., He, H.T., Alimohammadi, H.: Three-dimensional Wadell roundness for particle angularity characterization of granular soils. Acta Geotech. 16, 133–149 (2021). https://doi.org/10.1007/s11440-020-01004-9

    Article  Google Scholar 

  37. Darlington, W.J., Ranjith, P.G., Choi, S.K.: The effect of specimen size on strength and other properties in laboratory testing of rock and rock-like cementitious brittle materials. Rock Mech. Rock Eng. 44, 513–529 (2011). https://doi.org/10.1007/s00603-011-0161-6

    Article  ADS  Google Scholar 

  38. Yu, Q.L., Zhu, W.C., Ranjith, P.G., Shao, S.S.: Numerical simulation and interpretation of the grain size effect on rock strength. Geomech. Geophys. Geo-resour. 4, 157–173 (2018). https://doi.org/10.1007/s40948-018-0080-z

    Article  Google Scholar 

  39. Skipochka, S., Krukovskyi, O., Palamarchuk, T., Prokhorets, L.: On the methodology for considering scale effect of rock strength. Min. Miner. Deposits. 14, 24–30 (2020). https://doi.org/10.33271/mining14.04.024

    Article  Google Scholar 

  40. Hu, G.J., Li, Y., Ma, G.: Research on the size effect of roughness on rock uniaxial compressive strength and characteristic strength. Sci. Eng. Compos. Mater. 28, 613–627 (2021). https://doi.org/10.1515/secm-2021-0058

    Article  Google Scholar 

  41. Antonyuk, S., Tomas, E., Heinrich, S., Morl, L.: Breakage behaviour of spherical granulates by compression. Chem. Eng. Sci. 60, 4031–4044 (2005). https://doi.org/10.1016/j.ces.2005.02.038

    Article  Google Scholar 

  42. Zhong, S., Baitalow, F., Nikrityuk, P., Gutte, H., Meyer, B.: The effect of particle size on the strength parameters of German brown coal and its chars. Fuel 125, 200–205 (2014). https://doi.org/10.1016/j.fuel.2014.02.022

    Article  Google Scholar 

  43. Dong, J., Cheng, Y.P., Hu, B., Hao, C.M., Tu, Q.Y., Liu, Z.D.: Experimental study of the mechanical properties of intact and tectonic coal via compression of a single particle. Powder Technol. 325, 412–419 (2018). https://doi.org/10.1016/j.powtec.2017.11.029

    Article  Google Scholar 

  44. Cheshomi, A., Mousavi, E., Ahmadi-Sheshde, E.: Evaluation of single particle loading test to estimate the uniaxial compressive strength of sandstone. J. Petrol. Sci. Eng. 135, 421–428 (2015). https://doi.org/10.1016/j.petrol.2015.09.031

    Article  Google Scholar 

  45. Zagar, G., Pejchal, V., Kissling, M., Mortensen, A.: On the diametric compression strength test of brittle spherical particles. Eur. J. Mech. A-Solid. 72, 148–154 (2018). https://doi.org/10.1016/j.euromechsol.2018.04.016

    Article  Google Scholar 

  46. Jaeger, J.C.: Failure of rocks under tensile conditions. Int. J. Rock Mech. Min. 4, 219–227 (1967). https://doi.org/10.1016/0148-9062(67)90046-0

    Article  Google Scholar 

  47. Lee, D.M.: The Angles of Friction of Granular Fills. University of Cambridge, Cambridge (1992)

    Google Scholar 

  48. Scholtes, L., Donze, F.V., Khanal, M.: Scale effects on strength of geomaterials, case study: coal. J. Mech. Phys. Solids 59, 1131–1146 (2011). https://doi.org/10.1016/j.jmps.2011.01.009

    Article  ADS  Google Scholar 

  49. Petalas, Y.G., Parsopoulos, K.E., Vrahatis, M.N.: Memetic particle swarm optimization. Ann. Oper. Res. 156, 99–127 (2007). https://doi.org/10.1007/s10479-007-0224-y

    Article  MathSciNet  Google Scholar 

  50. Beheshti, Z., Shamsuddin, S.M.H.: CAPSO: centripetal accelerated particle swarm optimization. Inform. Sci. 258, 54–79 (2014). https://doi.org/10.1016/j.ins.2013.08.015

    Article  MathSciNet  Google Scholar 

  51. van Zyl, J.P., Engelbrecht, A.P.: Set-based particle swarm optimisation: a review. Math.-Basel. 11, 2980 (2023). https://doi.org/10.3390/math11132980

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (NSFC) (Grant Nos. 51878521, 51178358). The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, R., Yuan, Z., Hu, Q. et al. Ballast crushing probability model considering the influence of particle morphology and size. Granular Matter 26, 45 (2024). https://doi.org/10.1007/s10035-024-01414-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-024-01414-6

Keywords

Navigation