Skip to main content
Log in

Dynamic mechanical behaviors of coral sand under drop weight impact

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Dynamic mechanical characteristics of coral sand is of vital importance for foundation compaction. In the present study, a series of tests were conducted to estimate the dynamic behaviors of coral sand under drop weight impact. The coral sands with original and uniform gradations were impacted with different energies and different repeating times. The test results show that the dynamic force–displacement or the stress–strain response roughly undergoes the initial intense fluctuation, quasi-free fall, subsequent descending fluctuation and the inverse rebound periods. The reduction in the void ratio of coral sand increases with single impact energy increasing, while it decreases with the repetition of impact. The breakage of coral sand under impacting is progressive along the height of the sample, revealing by the multiple yield points in the e-logp curve. It is found that the predominant size fraction of fragmented particles corresponds well to the inflection interval of its initial PSD curve. The ratio of the dissipated energy to the absorbed energy generally reduces as the repetition of impact loading. The breakage index can be closely correlated to the dissipated energy. As compared to the original coral sand, the uniform coral sand exhibits more sensitive behaviors in terms of compressibility, particle crushing and energy dissipation. Furthermore, the scenario of few impacts at high energy level is proved to be more efficient than that of multiple impacts at low energy level in the reinforcement of coral sand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig.14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. ASTM D5550-14 (2014) Standard test method for specific gravity of soil solids by gas pycnometer. West Conshohocken, USA: ASTM International

  2. Banthia N, Mindess S, Bentur A, Pigeon M (1988) Impact Testing of concrete using a drop-weight impact machine. Exp Mech 29(1):63–69. https://doi.org/10.1007/BF02327783

    Article  Google Scholar 

  3. Bi JF, Luo XQ, Shen H (2018) Fractal dimensions of granular materials based on grading curves. J Mater Civil Eng 30(6):04018083. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002255

    Article  Google Scholar 

  4. Chen SS, Zhang JH, Long ZL, Kuang DM, Cai Y (2022) Effects of particle size on the particle breakage of calcareous sands under impact loadings. Constr Build Mater 341:127809. https://doi.org/10.1016/j.conbuildmat.2022.127809

    Article  Google Scholar 

  5. Coop MR, Sorensen KK, Freitas TB, Georgoutsos G (2004) Particle breakage during shearing of a carbonate sand. Geotechnique 54(3):157–163. https://doi.org/10.1680/geot.2004.54.3.157

    Article  Google Scholar 

  6. Hardin BO (1985) Crushing of soil particles. J Geotech Eng 111(10):1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177)

    Article  Google Scholar 

  7. Huang JY, Xu SL, Hu SS (2014) Influence of particle breakage on the dynamic compression responses of brittle granular materials. Mech Mater 68:15–28. https://doi.org/10.1016/j.mechmat.2013.08.002

    Article  ADS  Google Scholar 

  8. Ji WD, Zhang YT, Pei WB, Zuo DJ (2018) Influence of loading method and stress level on the particle crushing of coral calcareous sand. Chin J Rock Mech Eng 37(8):1953–1961

    Google Scholar 

  9. Ke JW, Luo ZM, Shi XM, Song YJ, Tan YZ (2021) Compressibility and crushing of coral sands under one-dimensional dynamic compaction. Granular Matter 23:95. https://doi.org/10.1007/s10035-021-01158-7

    Article  Google Scholar 

  10. Ladd RS (1978) Preparing test samples using undercompaction. Geotech Test J 1(1):16–23

    Article  Google Scholar 

  11. Liu HB, Zeng KF, Zou Y (2020) Particle breakage of calcareous sand and its correlation with input energy. Int J Geomech 20(2):04019151. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001541

    Article  Google Scholar 

  12. Lv YR, Liu JG, Xiong ZM (2019) One-dimensional dynamic compressive behavior of dry calcareous sand at high strain rates. J Rock Mech Geotech 11:192–201. https://doi.org/10.1016/j.jrmge.2018.04.013

    Article  Google Scholar 

  13. Lv YR, Wang Y, Zuo DJ (2019) Effect of particle size on dynamic constitutive relation and energy absorption of calcareous sand. Powder Technol 356:21–30. https://doi.org/10.1016/j.powtec.2019.07.088

    Article  CAS  Google Scholar 

  14. Ma LJ, Li Z, Wang MY, Wei HZ, Fan PX (2019) Effects of size and loading rate on the mechanical properties of single coral particles. Powder Technol 342:961–971. https://doi.org/10.1016/j.powtec.2018.10.037

    Article  CAS  Google Scholar 

  15. Marsal RJ (1973) Mechanical properties of rockfill. Embankment-Dam Engineering Casagrande Volume, Wiley, pp 109–200. https://doi.org/10.1016/0148-9062(75)90138-2

  16. McDowell GR, Daniell CM (2001) Fractal compression of soil. Geotechnique 51(2):173–176. https://doi.org/10.1680/geot.2001.51.2.173

    Article  Google Scholar 

  17. Miura N, O-hara S (1979) Particle-crushing of a decomposed granite soil under shear stresses. Soils Found 19(3):1–14. https://doi.org/10.3208/sandf1972.19.3_1

    Article  Google Scholar 

  18. Peng Y, Ding XM, Xiao Y, Deng X, Deng WT (2022) Detailed amount of particle breakage in multi-sized coral sands under impact loading. Eur J Environ Civ En 26(6):2344–2353. https://doi.org/10.1080/19648189.2020.1762750

    Article  Google Scholar 

  19. Sandra JS, Charles GS (1991) An automaton for fractal patterns of fragmentation. Nature 353:250–252. https://doi.org/10.1038/353250a0

    Article  ADS  Google Scholar 

  20. Shahnazari H, Rezvani R (2013) Effective parameters for the particle breakage of calcareous sands: an experimental study. Eng Geol 159:98–105. https://doi.org/10.1016/j.enggeo.2013.03.005

    Article  Google Scholar 

  21. Tarantino A, Hyde AFL (2005) An experimental investigation of work dissipation in crushable materials. Geotechnique 55(8):575–584. https://doi.org/10.1680/geot.2005.55.8.575

    Article  Google Scholar 

  22. Turcotte DL (1986) Fractals and fragmentation. J Geophys Res Solid Earth 91(B2):1921–1926. https://doi.org/10.1029/JB091iB02p01921

    Article  Google Scholar 

  23. Wang G, Wang ZN, Ye QG, Zha JJ (2021) Particle breakage evolution of coral sand using triaxial compression tests. J Rock Mech Geotech 13:321–334. https://doi.org/10.1016/j.jrmge.2020.06.010

    Article  Google Scholar 

  24. Wang TY, Ma LJ, Wang MY, Li Z, Zhang X, Geng HS (2022) Effects of particle shape on dynamic mechanical behaviours of coral sand under one-dimensional compression. Eng Geol 304:106624. https://doi.org/10.1016/j.enggeo.2022.106624

    Article  Google Scholar 

  25. Wang XZ, Jiao YY, Wang R, Hu MJ, Meng QS, Tan FY (2011) Engineering characteristics of the calcareous sand in Nansha Islands. South China Sea Eng Geol 120(1–4):40–47. https://doi.org/10.1016/j.enggeo.2011.03.011

    Article  Google Scholar 

  26. Xiao Y, Liu HL, Chen QS, Long LH, Xiang J (2017) Evolution of particle breakage and volumetric deformation of binary granular soils under impact load. Granular Matter 19(4):1–10. https://doi.org/10.1007/s10035-017-0756-z

    Article  ADS  CAS  Google Scholar 

  27. Xiao Y, Ling YY, Shi JQ, Sun Y, Liu HL (2022) Breakage and morphology of sands in drained shearing. Int J Geomech 22(9):04022140. https://doi.org/10.1061/(ASCE)GM.1943-5622.000252

    Article  Google Scholar 

  28. Xiao Y, Liu H, Xiao P, Xiang J (2016) Fractal crushing of carbonate sands under impact loading. Geotech Lett 6:1–6. https://doi.org/10.1680/jgele.16.00056

    Article  Google Scholar 

  29. Xiao Y, Wang CG, Shi JQ, Long LH, Liu HL (2022) Fracturing and ultimate state of binary carbonate sands. Int J Geomech 22(7):04022089. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002450

    Article  Google Scholar 

  30. Xiao Y, Wang CG, Wu HR, Desai CS (2021) New simple breakage index for crushable granular soils. Int J Geomech 21(8):04021136. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002091

    Article  Google Scholar 

  31. Xiao Y, Yuan ZX, Chu J, Liu HL, Huang JY, Luo SN, Wang S, Lin J (2019) Particle breakage and energy dissipation of carbonate sands under quasi-static and dynamic compression. Acta Geotech 14:1741–1755. https://doi.org/10.1007/s11440-019-00790-1

    Article  Google Scholar 

  32. Xiao Y, Yuan ZX, Desai CS, Zaman M, Ma QF, Chen QS, Liu HL (2020) Effects of load duration and stress level on deformation and particle breakage of carbonate sands. Int J Geomech 20(7):06020014. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001731

    Article  Google Scholar 

  33. Xiao Y, Yuan ZX, Lv Y, Wang L, Liu HL (2018) Fractal crushing of carbonate and quartz sands along the sample height under impact loading. Constr Build Mater 182:188–199. https://doi.org/10.1016/j.conbuildmat.2018.06.112

    Article  ADS  Google Scholar 

  34. Yamano H, Miyajima T, Koike I (2000) Importance of foraminifera for the formation and maintenance of a coral sand cay: Green Island. Australia Coral Reefs 19:51–58. https://doi.org/10.1007/s003380050226

    Article  Google Scholar 

  35. Yu FW (2016) Particle breakage and the critical state of sands. Géotechnique 67(8):713–719. https://doi.org/10.1680/jgeot.15.P.250

    Article  Google Scholar 

  36. Yu FW (2017) Particle breakage and the drained shear behavior of sands. Int J Geomech 17(8):04017041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000919

    Article  Google Scholar 

  37. Yu FW (2017) Particle breakage in granular soils: a review. Part Sci Technol 39(1):91–100. https://doi.org/10.1080/02726351.2019.1666946

    Article  CAS  Google Scholar 

  38. Yu FW (2018) Particle breakage in triaxial shear of a coral sand. Soils Found 58(4):866–880. https://doi.org/10.1016/j.sandf.2018.04.001

    Article  Google Scholar 

  39. Yu FW (2019) Influence of particle breakage on behavior of coral sands in triaxial tests. Int J Geomech 19(12):04019131. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001524

    Article  Google Scholar 

  40. Yu FW (2023) State-dependent behavior of a crushable sand in drained triaxial tests. J Test Eval 49(6):4506–4525. https://doi.org/10.1520/JTE20200546

    Article  Google Scholar 

  41. Yu FW, Su LJ (2016) Particle breakage and the mobilized drained shear strengths of sand. J Mt Sci 13(8):1481–1488. https://doi.org/10.1007/s11629-016-3870-1

    Article  Google Scholar 

  42. Fang-wei Y, Li-jun S, Peng X-Z (2022) Influence of particle breakage on the isotropic compressibility of sands. J Mt Sci 19(7):2086–2099. https://doi.org/10.1007/s11629-022-7390-x

    Article  Google Scholar 

  43. Yu FW, Zhao C, Liu WC (2022) On single particle breakage behavior of crushable weathered sands. J Mt Sci 19(12):3627–3644. https://doi.org/10.1007/s11629-022-7621-1

    Article  Google Scholar 

  44. Zhang JX, Li M, Liu Z, Zhou N (2017) Fractal characteristics of crushed particles of coal gangue under compaction. Power Technol 305:12–18. https://doi.org/10.1016/j.powtec.2016.09.049

    Article  CAS  Google Scholar 

  45. Zhao ZY, Qiu YY, Wang MY (2019) Effects of strain rate and initial density on the dynamic mechanical behaviour of dry calcareous sand. Shock Vib. https://doi.org/10.1155/2019/3526727

    Article  Google Scholar 

Download references

Acknowledgements

This research has been financed and supported by the National Natural Science Foundation of China (Grant No. 52222110) and Natural Science Foundation of Jiangsu Province of China (Grant No. BK20211230), which are greatly appreciated by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiewei Ke.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “Dynamic mechanical behaviors of coral sand under drop weight impact.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Ke, J., Chen, T. et al. Dynamic mechanical behaviors of coral sand under drop weight impact. Acta Geotech. 19, 699–716 (2024). https://doi.org/10.1007/s11440-023-01911-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-01911-7

Keywords

Navigation