Skip to main content

Cultivation of Hypericum Perforatum (St. John’s Wort) and Biotechnological Approaches for Improvement of Plant Raw Material Quality

  • Chapter
  • First Online:
Medicinal Plants

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 28))

Abstract

Hypericum perforatum L. is a species long used in traditional medicine of Central and Eastern Europe, including Poland. Since many years, it possesses the important position in official medicine in EU countries as a medicinal species for allopathic and homeopathic use. Hypericum perforatum herb, which is the raw material derived from this species, has a very rich chemical composition, containing naphtodianthrone derivatives (dimeric anthraquinones), flavonoids, catechins and their derivatives, phenolic acids, xanthones, phloroglucinol derivatives and essential oil. The generous chemical composition of this raw material determines its numerous possible therapeutic applications. This raw material is used in allopathy to treat digestive tract ailments, and in particular gallbladder dysfunction. It is also applied in the treatment of depressive disorders. The newest lines of biological activity documented by professional studies include neuroprotective, antibacterial, antiviral, anti-inflammatory and anticancer actions. H. perforatum can be found in plentiful natural locations in Europe; however, its natural resources are quickly depleted due to a very large demand for the raw material. For this reason, it is commercially cultivated on a large scale and with great success not only in European countries. Cultivation obviously ensures control and high quality of the raw material. The article reviews basic information on the morphology, ecology and distribution of this plant species. Taxonomic problems are also signaled. Chemical composition, traditional medicinal uses and new directions of biological activity confirmed by scientific researches are presented in detail, and cultivation requirements were thoroughly discussed. Moreover, numerous biotechnological studies of this species have been characterized. They are mostly related to the development of micropropagation protocols and procedures for endogenous production of secondary metabolites in various types of in vitro cultures. Some studies have also focused on elucidation of biogenetic pathways of different groups of secondary metabolites under in vitro conditions. A single study has explored the biotransformation potential of cells cultured in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam P, Arigoni D, Bacher A et al (2002) Biosynthesis of hyperforin in Hypericum perforatum. J Med Chem 45:4786–4793

    Article  CAS  PubMed  Google Scholar 

  • Agapouda A, Booker A, Kiss T et al (2019) Quality control of Hypericum perforatum L. analytical challenges and recent progress. J Pharm Pharmacol 71:15–37

    Article  CAS  Google Scholar 

  • Agostinis P, Vandenbogaerde A, Donella-Deana A et al (1995) Photosensitized inhibition of growth factor-regulated protein kinases by hypericin. Biochem Pharmacol 49:1615–1622

    Article  CAS  PubMed  Google Scholar 

  • Alan AR, Murch SJ, Saxena PK (2015) Evaluation of ploidy variations in Hypericum perforatum L. (St. John’s wort) germplasm from seeds, in vitro germplasm collection, and regenerants from floral cultures. Vitro Cel Dev Biol Plant 51:1–11

    Google Scholar 

  • Albert D, Zündorf I, Dingermann T et al (2002) Hyperforin is a dual inhibitor of cyclooxygenase-1 and 5-lipoxygenase. Biochem Pharmacol 64:1767–1775

    Article  CAS  PubMed  Google Scholar 

  • Apaydin EA, Maher AR, Shanman R et al (2016) A systematic review of St. John’s wort for major depressive disorder. Syst Rev 5:148

    Google Scholar 

  • Asgarpanah J (2012) Phytochemistry, pharmacology and medicinal properties of Hypericum perforatum L. Afr J Pharm Pharmacol 6:1387–1394

    Article  CAS  Google Scholar 

  • Bais HP, Vepachedu R, Lawrence CB et al (2003) Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s Wort (Hypericum perforatum L.). J Biol Chem 278:32413–32422

    Article  CAS  PubMed  Google Scholar 

  • Barnes J, Anderson LA, Phillipson JD (2001) St John’s wort (Hypericum perforatum L.): a review of its chemistry, pharmacology and clinical properties. J Pharm Pharmacol 53:583–600

    Article  CAS  PubMed  Google Scholar 

  • Barnes J, Anderson LA, Phillipson D (eds) (2007) Herbal medicines. Pharmaceutical Press, London, Chicago

    Google Scholar 

  • Bodeker G, Ryan TJ, Volk A et al (2017) Integrative skin care: dermatology and traditional and complementary medicine. J Altern Complement Med 23:479–486

    Article  PubMed  Google Scholar 

  • Booker A, Agapouda A, Frommenwiler DA et al (2018) St John’s wort (Hypericum perforatum) products—an assessment of their authenticity and quality. Phytomedicine 40:158–164

    Article  CAS  PubMed  Google Scholar 

  • Bork PM, Bacher S, Schmitz ML et al (1999) Hypericin as a non-antioxidant inhibitor of NF-κB. Planta Med 65:297–300

    Article  CAS  PubMed  Google Scholar 

  • Borrelli F, Izzo AA (2009) Herb–drug interactions with St John’s wort (Hypericum perforatum): an update on clinical observations. AAPS J 11:710–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brasili E, Giulia Praticó G, Marini F et al (2014) A non-targeted metabolomics approach to evaluate the effects of biomass growth and chitosan elicitation on primary and secondary metabolism of Hypericum perforatum in vitro roots. Metabolomics 10:1186–1196

    Article  CAS  Google Scholar 

  • Brenn A, Grube M, Jedlitschky G et al (2014) St. John’s wort reduces beta-amyloid accumulation in a double transgenic Alzheimer’s disease mouse model—role of p-glycoprotein. Brain Pathol 24:18–24

    Article  PubMed  Google Scholar 

  • Brondz I, Greibrokk T, Groth PA et al (1982) The relative stereochemistry of hyperforin-an antibiotic from Hypericum perforatum L. Tetrahedron Lett 23:1299–1300

    Article  CAS  Google Scholar 

  • Brunarska Z, Węgiel J, Wiatr E et al (1984) Możliwości ochrony zasobów dziurawca zwyczajnego Hypericum perforatum L. jako wartościowego surowca farmaceutycznego. Studia Nat A 25:51–66

    Google Scholar 

  • Bruni R, Sacchetti G (2009) Factors affecting polyphenol biosynthesis in wild and filed grown St John’s Wort (Hypericum perforatum L. Hypericaceae/Guttiferae). Molecules 14:682–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrelle A, Dell’Aica I, Melchiori L et al (2007) Hyperforin down-regulates effector function of activated T lymphocytes and shows efficacy against Th1-triggered CNS inflammatory-demyelinating disease. J Leukoc Biol 83:212–219

    Article  PubMed  CAS  Google Scholar 

  • Cao Z, Wang F, Xiu C et al (2017) Hypericum perforatum extract attenuates behavioral, biochemical, and neurochemical abnormalities in aluminum chloride-induced Alzheimer’s disease rats. Biomed Pharmacother 91:931–937

    Article  CAS  PubMed  Google Scholar 

  • Cellarova E, Kimakova K, Brutovska R (1992) Multiple shoot formation and phenotypic changes of R0 regenerants in Hypericum perforatum L. Acta Biotechnol 12:445–452

    Article  Google Scholar 

  • Chauhan RS, Vashistha RK, Nautiyal MC et al (2011) Essential oil composition of Hypericum perforatum L. from cultivated source. J Essent Oil Res 23:20–25

    Article  CAS  Google Scholar 

  • Chrubasik-Hausmann S, Vlachojannis J, McLachlan AJ (2019) Understanding drug interactions with St John’s wort (Hypericum perforatum L.): impact of hyperforin content. J Pharm Pharmacol 71:129–138

    Article  CAS  PubMed  Google Scholar 

  • Chung PS, Rhee CK, Kim KH et al (2000) Intratumoral hypericin and KTP laser therapy for transplanted squamous cell carcinoma. Laryngoscope 110:1312–1316

    Article  CAS  PubMed  Google Scholar 

  • Colasanti A, Kisslinger A, Liuzzi R et al (2000) Hypericin photosensitization of tumor and metastatic cell lines of human prostate. J Photochem Photobiol B 54:103–107

    Article  CAS  PubMed  Google Scholar 

  • Conceição L, Ferrares F, Tavares R et al (2006) Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochem 67:149–155

    Article  CAS  Google Scholar 

  • Cosmetic Ingredient database (2021) https://ec.europa.eu/growth/sectors/cosmetics/cosing_en. Accessed on 10 Jan 2021

  • Coste A, Pop C, Halmagyi A et al (2021) Secondary metabolites in shoot cultures of Hypericum. In: Ramawat KG, Ekiert HM, Goyal S (eds) Plant cell and tissue differentiation and secondary metabolites. Reference series in phytochemistry. Springer, Cham, pp 273–307

    Google Scholar 

  • Crockett SL, Robson NKB (2011) Taxonomy and chemotaxonomy of the genus Hypericum. Med Aromat Plant Sci Biotechnol 5:1–13

    PubMed  PubMed Central  Google Scholar 

  • Crushes S, Zhou Y (2016) Invasive plant risk assessment: St John’s wort (Hypericum perforatum). Department of Agriculture and Fisheries, State of Queensland, Australia

    Google Scholar 

  • Cui XH, Murthy HN, Paek KY (2014) Pilot-scale culture of Hypericum perforatum L. adventitious roots in airlift bioreactors for the production of bioactive compounds. Appl Biochem Biotechnol 174:784–792

    Article  CAS  PubMed  Google Scholar 

  • Danova K (2014) Biotechnological utilization of the indigenous biosynthetic capacity of medicinal and aromatic plants. Experience in genera Hypericum, Pulsatilla and essential oil bearing Artemisia alba characteristic for the Balcan Region. In: Govil JN, Kumar PA (eds) Recent progress in medicinal plants, vol 39 Studium Press LLC, USA, pp 355–391

    Google Scholar 

  • Dauncey EA, Irving JTW, Allkin R (2019) A review of issues of nomenclature and taxonomy of Hypericum perforatum L. and Kew’s medicinal plant names services. J Pharm Pharmacol 71:4–14

    Article  CAS  PubMed  Google Scholar 

  • De Witte P, Agostinis P, Van Lint J et al (1993) Inhibition of epidermal growth factor receptor tyrosine kinase activity by hypericin. Biochem Pharmacol 46:1929–1936

    Article  PubMed  Google Scholar 

  • Drugs.com (2020) St. John’s wort uses, side effects & warnings—Drugs.com. https://www.drugs.com/mtm/st-john-s-wort.html. Accessed on 20 Dec 2020

  • Dyrała A, Kaleta-Richter M, Cylupa K et al (2015) Zastosowanie hiperycyny w terapii fotodynamicznej—przegląd badań przedklinicznych. Acta Bio-Opt Inform Med 21:209–215

    Google Scholar 

  • Ernst E, Rand JI, Barnes J et al (1998) Adverse effects profile of the herbal antidepressant St. John’s wort (Hypericum perforatum L.). Eur J Clin Pharmacol 54:589–594

    Article  CAS  PubMed  Google Scholar 

  • European Medicines Agency (2009) Community herbal monograph on Hypericum perforatum L. herba (traditional use). Committee on Herbal Medicinal Products, London

    Google Scholar 

  • European Pharmacopoeia 10.0 (2020) European directorate for the quality of medicines, Strasburg

    Google Scholar 

  • European Scientific Cooperative on Phytotherapy Monographs (2018) Hyperici Herba—St. John’s Wort. ESCOP, Exeter

    Google Scholar 

  • Feißt C, Pergola C, Rakonjac M et al (2009) Hyperforin is a novel type of 5-lipoxygenase inhibitor with high efficacy in vivo. Cell Mol Life Sci 66:2759–2771

    Article  PubMed  CAS  Google Scholar 

  • Franco P, Potenza I, Moretto F et al (2014) Hypericum perforatum and neem oil for the management of acute skin toxicity in head and neck cancer patients undergoing radiation or chemo-radiation: a single-arm prospective observational study. Radiat Oncol 9:297

    Article  PubMed  PubMed Central  Google Scholar 

  • Franklin G, Dias ACP (2006) Organogenesis and embryogenesis in several Hypericum perforatum genotypes. Vitro Cell Dev Biol Plant 42:324–330

    Article  CAS  Google Scholar 

  • Franklin G, Oliveira M, Dias ACP (2007) Production of transgenic Hypericum perforatum plants via particle bombardment-mediated transformation of novel organogenic cell suspension cultures. Plant Sci 172:1193–1203

    Article  CAS  Google Scholar 

  • Gadzovska S, Maury S, Delaunay A et al (2007) Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell Tiss Org 89:1–13

    Article  CAS  Google Scholar 

  • Gadzovska S, Maury S, Delaunay A et al (2013) The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell Tiss Org 113:25–39

    Article  CAS  Google Scholar 

  • Gadzovska-Simic S, Tusevski O, Antevski S et al (2012) Secondary metabolite production in Hypericum perforatum L. cell suspensions upon elicitation with fungal mycelia from Aspergillus flavus. Arch Biol Sci 64:113–121

    Article  Google Scholar 

  • Gadzovska-Simic S, Tusevski O, Delaunay A et al (2014) Effects of polysaccharide elicitors on secondary metabolite production and antioxidant response in Hypericum perforatum L. shoot cultures. Sci World J. https://doi.org/10.1155/2014/609649

  • Gadzovska-Simic S, Tusevski O, Maury S et al (2015a) Polysaccharide elicitors enhance phenylpropanoid and naphtodianthrone production in cell suspension cultures of Hypericum perforatum. Plant Cell Tiss Org 122:649–663

    Google Scholar 

  • Gadzovska-Simic S, Tusevski O, Maury S et al (2015b) Fungal elicitor mediated enhancement in phenylpropanoid and naphtodianthrone contents of Hypericum perforatum L. cell cultures. Plant Cell Tiss Org 122: 213–226

    Google Scholar 

  • Galeotti N, Ghelardini C (2013) St. John’s wort reversal of meningeal nociception: a natural therapeutic perspective for migraine pain. Phytomedicine 20:930–938

    Article  CAS  PubMed  Google Scholar 

  • Germplasm Resources Information Network (2020) https://npgsweb.ars-grin.gov/gringlobal/search.aspx. Accessed on 05 Apr 2020

  • Global Biodiversity Information Facility (2020) https://www.gbif.org/species/3189486. Accessed on 10 Apr 2020

  • Goel M, Bisht NS, Kukreja AK (2009) In vitro manipulations in St. John’s wort (Hypericum perforatum L.) for incessant and scale up micropropagation using adventitious roots in liquid medium and assessment of clonal fidelity using RAPD analysis. Plant Cell Tiss Org 96:1–9

    Article  Google Scholar 

  • Gomez del Rio MA, Sánchez-Reus MI, Iglesias I et al (2013) Neuroprotective properties of standardized extracts of Hypericum perforatum on rotenone model of Parkinson’s disease. CNS Neurol Disord Drug Targets 12:665–679

    Article  CAS  PubMed  Google Scholar 

  • Greeson JM, Sanford B, Monti DA (2001) St. John’s wort (Hypericum perforatum): a review of the current pharmacological, toxicological, and clinical literature. Psychopharmacology 153:402–414

    Article  CAS  PubMed  Google Scholar 

  • Gurley BJ, Swain A, Williams DK et al (2008) Gauging the clinical significance of P-glycoprotein-mediated herb-drug interactions: comparative effects of St. John’s wort, Echinacea, clarithromycin, and rifampin on digoxin pharmacokinetics. Mol Nutr Food Res 52:772–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer KD, Hillwig ML, Solco AK et al (2007) Inhibition of prostaglandin E2 production by anti-inflammatory Hypericum perforatum extracts and constituents in RAW264 7 mouse macrophage cells. J Agric Food Chem 55:7323–7331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heilmann J, Winkelmann K, Sticher O (2003) Studies on the antioxidative activity of phloroglucinol derivatives isolated from Hypericum species. Planta Med 69:202–206

    Article  CAS  PubMed  Google Scholar 

  • Hoban CL, Byard RW, Musgrave IF (2015) A comparison of patterns of spontaneous adverse drug reaction reporting with St. John’s Wort and fluoxetine during the period 2000–2013. Clin Exp Pharmacol Physiol 42:747–751

    Article  CAS  PubMed  Google Scholar 

  • Hofrichte J, Krohn M, Schumacher T et al (2013) Reduced Alzheimer’s disease pathology by St. John’s Wort treatment is independent of hyperforin and facilitated by ABCC1 and microglia activation in mice. Curr Alzheimer Res 10:1057–1069

    Article  CAS  Google Scholar 

  • Hou W, Shakya P, Franklin G (2016) A perspective on Hypericum perforatum genetic transformation. Front Plant Sci 7:879. https://doi.org/10.3389/fpls.2016.00879

    Article  PubMed  PubMed Central  Google Scholar 

  • Hudson JB, Lopez-Bazzocchi I, Towers GHN (1991) Antiviral activities of hypericin. Antivir Res 15:101–112

    Article  CAS  PubMed  Google Scholar 

  • Istikoglou CI, Mavreas V, Geroulanos G (2010) History and therapeutic properties of Hypericum Perforatum from antiquity until today. Psychiatriki 21:332–338

    CAS  PubMed  Google Scholar 

  • Jakovljevic V, Popovic M, Mimica-Dukic N et al (2000) Pharmacodynamic study of Hypericum perforatum L. Phytomedicine 7:449–453

    Article  CAS  PubMed  Google Scholar 

  • Jürgenliemk C, Nahrstedt A (2002) Phenolic compounds from Hypericum perforatum. Planta Med 68:88–91

    Article  PubMed  Google Scholar 

  • Kamuhabwa AR, Agostinis P, D’Hallewin MA et al (2000) Photodynamic activity of hypericin in human urinary bladder carcinoma cells. Anticancer Res 20:2579–2584

    CAS  PubMed  Google Scholar 

  • Kang BY, Chung SW, Kim TS (2001) Inhibition of interleukin-12 production in lipopolysaccharide-activated mouse macrophages by parthenolide, a predominant sesquiterpene lactone in Tanacetum parthenium: involvement of nuclear factor-κB. Immunol Lett 77:159–163

    Article  CAS  PubMed  Google Scholar 

  • Karppinen K, Hokkanen J, Tolonen A (2007) Biosynthesis of hyperforin and adhyperforin from amino acid precursors in shoot cultures of Hypericum perforatum. Phytochemistry 68:1038–1045

    Article  CAS  PubMed  Google Scholar 

  • Khan SA, Verma P, Akshata Arbat A et al (2018) Development of enhanced hypericin yielding transgenic plants and somaclones: high throughput direct organogenesis from leaf and callus explants of Hypericum perforatum. Ind Crops Prod 111:544–554

    Article  CAS  Google Scholar 

  • Khan T, Khan MA, Mashwani ZUR et al (2021) Therapeutic potential of medicinal plants against COVID-19: the role of antiviral medicinal metabolites. Biocatal Agric Biotechnol 31:101890. https://doi.org/10.1016/j.bcab.2020.101890

  • Kiesslich T, Krammer B, Plaetzer K (2006) Cellular mechanisms and prospective applications of hypericin in photodynamic therapy. Curr Med Chem 13:2189–2204

    Article  CAS  PubMed  Google Scholar 

  • Kirakosyan A, Hayashi H, Inoue K et al (2000) Stimulation of the production of hypericins by mannan in Hypericum perforatum shoot cultures. Phytochemistry 53:345–348

    Article  CAS  PubMed  Google Scholar 

  • Kirakosyan A, Gibson DM, Kaufman PB (2008) The production of dianthrones and phloroglucinol derivatives in St. John’s wort. In: Ramawat KG, Mérillon JM (eds) Bioactive molecules and medicinal plants. Springer, Berlin, pp 149–164

    Google Scholar 

  • Koeberle A, Rossi A, Bauer J et al (2011) Hyperforin, an anti-inflammatory constituent from St. John’s wort, inhibits microsomal prostaglandin E2 synthase-1 and suppresses prostaglandin E2 formation in vivo. Front Pharmacol 2. https://doi.org/10.3389/fphar.2011.00007

  • Kołodziej B (ed) (2018) Poradnik dla plantatorów. PWRiL, Warszawa

    Google Scholar 

  • Kwiecień I, Szydłowska A, Kawka B et al (2015) Accumulation of biologically active phenolic acids in agitated shoot cultures of three Hypericum perforatum cultivars: ‘Elixir’, ‘Helos’ and ‘Topas.’ Plant Cell Tiss Org 123:273–281

    Article  CAS  Google Scholar 

  • Kwiecień I, Smolin J, Beerhues L et al (2018) The impact of media composition on production of flavonoids in agitated shoot cultures of the three Hypericum perforatum L. cultivars ‘Elixir’, ‘Helos’, and ‘Topas.’ Vitro Cell Dev Biol-Plant 54:332–340

    Article  CAS  Google Scholar 

  • Lavie G, Valentine F, Levin B et al (1989) Studies of the mechanisms of action of the antiretroviral agents hypericin and pseudohypericin. Proc Natl Acad Sci 86:5963–5967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CD, Kwan D, Saxton RE et al (2000) Hypericin and photodynamic therapy decreases human pancreatic cancer in vitro and in vivo. J Surg Res 93:137–143

    Article  CAS  PubMed  Google Scholar 

  • Liu XN, Zhang XQ, Zhang SX et al (2007) Regulation of metabolite production by precursors and elicitors in liquid cultures of Hypericum perforatum. Plant Cell Tiss Org 91:1–7

    Article  CAS  Google Scholar 

  • Mannel M (2004) Drug interactions with St John’s wort. Drug Saf 27:773–797

    Article  CAS  PubMed  Google Scholar 

  • Marrelli M, Statti G, Conforti F (2020) Hypericum spp.: an update on the biological activities and metabolic profiles. Mini-Rev Med Chem 20:66–87

    Article  CAS  PubMed  Google Scholar 

  • McCutcheon A (2017) On adulteration of St. John’s wort (Hypericum perforatum). Bot Adulterans Bull. http://www.botanicaladulerants.com Accesed on 20 Jan 2020

  • Meruelo D, Lavie G, Lavie D (1988) Therapeutic agents with dramatic antiretroviral activity and little toxicity at effective doses: aromatic polycyclic diones hypericin and pseudohypericin. Proc Natl Acad Sci 85:5230–5234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mir MY, Hamid S, Kamili AN et al (2019) Sneak peek of Hypericum perforatum L.: phytochemistry, phytochemical efficacy and biotechnological interventions. J Plant Biochem Biot 28:357–373

    Article  CAS  Google Scholar 

  • Mullaicharam AR, Halligudi N (2019) St John’s wort (Hypericum perforatum L.): a review of its chemistry, pharmacology and clinical properties. Int J Res Phytochem Pharmacol 1:5–11

    Google Scholar 

  • Murch SJ, Choffe KL, Victor JMR et al (2000a) Thidiazuron-induced plant regeneration from hypocotyl cultures of St. John’s wort (Hypericum perforatum, cv ‘Anthos’). Plant Cell Rep 19:576–581

    Google Scholar 

  • Murch SJ, KrshnaiRaj S, Saxena PK et al (2000b) Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John's wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep 19:698–704

    Google Scholar 

  • Nagia M, Gaid M, Biedermann E et al (2019) Sequential regiospecific gem-diprenylation of tetrahydroxyxanthone by prenyltransferases from Hypericum sp. New Phytol 222:318–334

    Article  CAS  PubMed  Google Scholar 

  • Nahrstedt A, Butterweck V (1997) Biologically active and other chemical constituents of the herb Hypericum perforatum L. Pharmacopsychiatry 30:129–134

    Article  CAS  PubMed  Google Scholar 

  • Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–79

    CAS  Google Scholar 

  • NCCIH (National Center for Complementary and Integrative Health) (2020) US National Institutes of Health https://www.nccih.nih.gov. Accessed on 12 Dec 2020

  • Nowack R (2008) Cytochrome P450 enzyme, and transport protein mediated herb–drug interactions in renal transplant patients: grapefruit juice, St John’s Wort and beyond! Nephrology 13:337–347

    Article  CAS  PubMed  Google Scholar 

  • Okmen G, Balpınar N (2017) The biological activities of Hypericum perforatum L. Afr J Tradit Complement Altern Med 14:213–218

    Article  CAS  PubMed  Google Scholar 

  • Osińska E, Rosłon W (2016) Zioła. Uprawa i zastosowanie. Hortpress Sp. Z o.o, Warszawa

    Google Scholar 

  • Palmer CD, Keller WA (2011) Plant regeneration from petal explants of Hypericum perforatum L. Plant Cell Tiss Org 105:129–134

    Article  CAS  Google Scholar 

  • Panossian AG, Gabrielian E, Manvelian V et al (1996) Immunosuppressive effects of hypericin on stimulated human leukocytes: inhibition of the arachidonic acid release, leukotriene B4 and interleukin-Iα production, and activation of nitric oxide formation. Phytomedicine 3:19–28

    Article  CAS  PubMed  Google Scholar 

  • Parker V, Wong ABH, Boon HS et al (2001) Adverse reactions to St John’s wort. Can J Psychiatry 46:77–79

    Article  CAS  PubMed  Google Scholar 

  • Pasqua G, Avato P, Monacelli B et al (2003) Metabolites in cell suspension cultures, calli, and in vitro regenerated organs of Hypericum perforatum cv. Topas. Plant Sci 165:977–982

    Article  CAS  Google Scholar 

  • Patočka J (2003) The chemistry, pharmacology, and toxicology of the biologically active constituents of the herb Hypericum perforatum L. J Appl Biomed 1:55–59

    Article  Google Scholar 

  • Pavlik M, Vacek J, Klejdus B et al (2007) Hypericin and hyperforin production in St. John’s wort in vitro culture: influence of saccharose, polyethylene glycol, methyl jasmonate, and Agrobacterium tumefaciens. J Agric Food Chem 55:6147–6153

    Article  CAS  PubMed  Google Scholar 

  • Pawełczak A (2010) Plonowanie i jakość generatywnie i wegetatywnie rozmnażanych form dziurawca zwyczajnego i czterobocznego—Hypericum perforatum L. i H. maculatum Cr. PhD dissertation, SGGW, Warszawa

    Google Scholar 

  • Phatak RS (2001) Materia medica leków homeopatycznych. Similimum, Nowy Sącz

    Google Scholar 

  • Piekoszewska A, Ekiert H, Zubek S (2010) Arbutin production in Ruta graveolens L. and Hypericum perforatum L. in vitro cultures. Acta Physiol Plant 32:223–229

    Article  CAS  Google Scholar 

  • Pirbalouti GA, Fatahi-Vanani M, Craker L et al (2014) Chemical composition and bioactivity of essential oils of Hypericum helianthemoides, Hypericum perforatum and Hypericum scabrum. Pharm Biol 52:175–181

    Article  CAS  Google Scholar 

  • Ploss O, Petereit F, Nahrstedt A (2001) Procyanidins from the herb of Hypericum perforatum. Pharmazie 56:509–511

    CAS  PubMed  Google Scholar 

  • Poutaraud A, Girardin P (2005) Improvement of medicinal plant quality: a Hypericum perforatum literature review as an example. Plant Genet Resour 3:178–189

    Article  Google Scholar 

  • Poutaraud A, Di Gregorio F, Tin VC et al (2001a) Effect of light on hypericins contents in fresh flowering top parts and in an extract of St John’s Wort (Hypericum perforatum). Planta Medica 67:254–259

    Google Scholar 

  • Poutaraud A, Lobstein A, Girardin P et al (2001b) Improved procedure for the quality control of Hypericum perforatum L. Phytochem Anal 12:355–362

    Google Scholar 

  • Pretto FR, Santarém ER (2000) Callus formation and plant regeneration from Hypericum perforatum leaves. Plant Cell Tissue Organ Cult 62:107–113

    Article  CAS  Google Scholar 

  • Quave CL (2018) Wound healing with botanicals: a review and future perspectives. Curr Dermatol Rep 7:287–295

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahimi R, Abdollahi M (2012) An update on the ability of St. John’s wort to affect the metabolism of other drugs. Expert Opin Drug Metab Toxicol 8:691–708

    Article  PubMed  Google Scholar 

  • Rani V, Raina SN (2000) Genetic fidelity of organized meristem-derived micropropagated plants: a critical reappraisal. Vitro Cell Dev Biol Plant 36:319–330

    Article  CAS  Google Scholar 

  • Rizzo P, Altschmied L, Ravindran BM et al (2020) The biochemical and genetic basis for the biosynthesis of bioactive compounds in Hypericum perforatum L., one of the largest medicinal crops in Europe. Genes 11:1210. https://doi.org/10.3390/genes11101210

  • Robson NKB (2003) Hypericum botany. In: Ernst E (ed) Hypericum: the Genus Hypericum. Medicinal and Aromatic Plants-Industrial Profiles. Taylor and Francis, London, pp 1–22

    Google Scholar 

  • Rumińska A (ed) (1991) Poradnik plantatora ziół. PWRiL, Poznań

    Google Scholar 

  • Russo E, Scicchitano F, Whalley B et al (2013) Hypericum perforatum: pharmacokinetic, mechanism of action, tolerability, and clinical drug-drug interactions. Phytother Res 28:643–655

    Article  PubMed  CAS  Google Scholar 

  • Savio LEB, Astarita LV, Santarém ER (2012) Secondary metabolism in micropropagated Hypericum perforatum L. grown in nonaerated liquid medium. Plant Cell Tiss Org 108:465–472

    Article  CAS  Google Scholar 

  • Schempp CM, Pelz K, Wittmer A et al (1999) Antibacterial activity of hyperforin from St John’s wort, against multiresistant Staphylococcus aureus and gram-positive bacteria. Lancet 353:2129

    Article  CAS  PubMed  Google Scholar 

  • Schempp C, Winghofer B, Lüdtke R et al (2000) Topical application of St John’s wort (Hypericum perforatum L.) and of its metabolite hyperforin inhibits the allostimulatory capacity of epidermal cells. Br J Dermatol 142:979–984

    Article  CAS  PubMed  Google Scholar 

  • Schempp CM, Kirkin V, Simon-Haarhaus B et al (2002a) Inhibition of tumour cell growth by hyperforin, a novel anticancer drug from St. John's wort that acts by induction of apoptosis. Oncogene 21:1242–1250

    Google Scholar 

  • Schempp C, Simon-Haarhaus B, Simon J (2002b) Phototoxic and Apoptosis-Inducing Capacity of Pseudohypericin. Planta Med 68:171–173

    Google Scholar 

  • Schempp CM, Winghofer B, Müller K et al (2003) Effect of oral administration of Hypericum perforatum extract (St. John’s wort) on skin erythema and pigmentation induced by UVB, UVA, visible light and solar simulated radiation. Phytother Res 17:141–146

    Article  CAS  PubMed  Google Scholar 

  • Scotti F, Löbel K, Booker A et al (2019) St. John’s wort (Hypericum perforatum) products—how variable is the primary material? Front Plant Sci 9:1973

    Google Scholar 

  • Seidler-Lozykowska K, Dąbrowska J (1996) Topaz—polska odmiana dziurawca zwyczajnego (Hypericum perforatum L.). Herba Pol 43:143–143

    Google Scholar 

  • Šemeláková M, Jendželovský R, Fedoročko P (2016) Drug membrane transporters and CYP3A4 are affected by hypericin, hyperforin or aristoforin in colon adenocarcinoma cells. Biomed Pharmacother 81:38–47

    Article  PubMed  CAS  Google Scholar 

  • Senderski ME (2004) Prawie wszystko o ziołach. MOMAG S.A, Podkowa Leśna

    Google Scholar 

  • Shakya P, Marslin G, Siram K (2017) Elicitation as a tool to improve the profiles of high-value secondary metabolites and pharmacological properties of Hypericum perforatum. J Pharm Pharmacol 71:70–82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharafi E, Nekoei SM, Fotokian MH et al (2013) Improvement of hypericin and hyperforin production using zinc and iron nano-oxides as elicitors in cell suspension culture of St John’s wort (Hypericum perforatum L.). J Med Plants by-Prod 2:177–184

    Google Scholar 

  • Shipochliev T (1981) Extracts from a group of medicinal plants enhancing uterine tonus. Vet Med Nauki 18:94–98

    CAS  PubMed  Google Scholar 

  • Sood H, Shitiz K, Sharma N (2015) Rapid method for in vitro multiplication of hypericin rich shoots of Hypericum perforatum. J Plant Sci 3:279–284

    Google Scholar 

  • Sosa S, Pace R, Bornanciny A, Morazzoni P et al (2007) Topical anti-inflammatory activity of extracts and compounds from Hypericum perforatum L. J Pharm Pharmacol 59:703–709

    Article  CAS  PubMed  Google Scholar 

  • Sytar O, Švedienė J, Ložienė K et al (2016) Antifungal properties of hypericin, hypericin tetrasulphonic acid and fagopyrin on pathogenic fungi and spoilage yeasts. Pharm Biol 54:3121–3125

    Article  CAS  PubMed  Google Scholar 

  • Szafer W, Kulczyński S, Pawłowski B (1988) Rośliny polskie: opisy i klucze do oznaczania wszystkich gatunków roślin naczyniowych rosnących w Polsce bądź dziko, bądź też zdziczałych lub częściej hodowanych. PWN Warszawa

    Google Scholar 

  • Takahashi I, Nakanishi S, Kobayashi E et al (1989) Hypericin and pseudohypericin specifically inhibit protein kinase C: possible relation to their antiretroviral activity. Biochem Biophys Res Commun 165:1207–1212

    Article  CAS  PubMed  Google Scholar 

  • Teufel-Mayer R, Gleitz J (1997) Effects of long-term administration of Hypericum extracts on the affinity and density of the central serotonergic 5-HT1 A and 5-HT2 A receptors. Pharmacopsychiatry 30:113–116

    Article  CAS  PubMed  Google Scholar 

  • Thakur M, Sujata Bhattacharya S, Khosla PK et al (2019) Improving production of plant secondary metabolites through biotic and abiotic elicitation. J Appl Res Med Aroma 12:1–12. https://doi.org/10.1016/j.jarmap.2018.11.004

    Article  Google Scholar 

  • Tirillini B, Ricci A, Pintore G et al (2006) Induction of hypericins in Hypericum perforatum in response to chromium. Fitoterapia 77:164–170

    Article  CAS  PubMed  Google Scholar 

  • Turek S (2005) Ziele dziurawca zwyczajnego—składniki czynne i potencjalne zastosowanie lecznicze. Postępy Fitoter 6:80–86

    Google Scholar 

  • Tusevski O, Stanoeva JP, Stefova M et al (2013a) Phenolic profile of dark-grown and photoperiod-exposed Hypericum perforatum L. hairy root cultures. Sci World J. https://doi.org/10.1155/2013/602752

  • Tusevski O, Stanoeva JP, Stefova M et al (2013b) Hairy roots of Hypericum perforatum L.: a promising system for xanthone production. Cent Eur J Biol 8:1010–1022

    Google Scholar 

  • Tusevski O, Stanoeva JP, Stefova M et al (2015) Agrobacterium enhances xanthone production in Hypericum perforatum cell suspensions. Plant Growth Regul 76:199–210

    Article  CAS  Google Scholar 

  • Tusevski O, Stanoeva JP, Markoska E et al (2016) Callus cultures of Hypericum perforatum L. a novel and efficient source for xanthone production. Plant Cell Tiss Org 125:309–319

    Article  CAS  Google Scholar 

  • Tusevski O, Petreska-Stanoeva J, Stefova M et al (2019) State of antioxidant systems and phenolic compounds’ production in Hypericum perforatum L. hairy roots. Acta Physiol Plant 41:132. https://doi.org/10.1007/s11738-019-2919-5

  • U.S. National Library of Medicine (2020) Ranolazine: medlineplus drug information. https://medlineplus.gov/druginfo/meds/a606015.html. Accessed on 20 Dec 2020

  • United States Pharmacopeial Convention (2015) St. John’s wort, St. John’s wort powder, and St. John’s wort powdered extract. In: United States Pharmacopeia 38 and National Formulary 33. United States Pharmacopeial Convention, Rockville, MD, USA

    Google Scholar 

  • Upton R, Graff A, Swisher D (1997) American herbal pharmacopoeia and therapeutic compendium: St. John’s wort. Hypericum perforatum L. quality control, analytical, and therapeutic monograph. American Herbal Pharmacopoeia, Santa Cruz, CA, USA

    Google Scholar 

  • Uzbay TI (2008) Hypericum perforatum and substance dependence: a review. Phytother Res 22:578–582

    Article  PubMed  Google Scholar 

  • Valletta A, De Angelis G, Badiali C et al (2016) Acetic acid acts as an elicitor exerting a chitosan-like effect on xanthone biosynthesis in Hypericum perforatum L. root cultures. Plant Cell Rep 35:1009–1020

    Article  CAS  PubMed  Google Scholar 

  • Vecchia DD, Schamne MG, Ferro MM et al (2015) Effects of Hypericum perforatum on turning behavior in an animal model of Parkinson’s disease. Braz J Pharm Sci 51:111–115

    Article  CAS  Google Scholar 

  • Velingkar VS, Gupta GL, Hegde NB (2017) A current update on phytochemistry, pharmacology and herb-drug interactions of Hypericum perforatum. Phytochem Rev 16:725–744

    Article  CAS  Google Scholar 

  • Vilà M, Gómez A, Maron JL (2003) Are alien plants more competitive than their native conspecifics? A test using Hypericum perforatum L. Oecologia 137:211–215

    Article  PubMed  Google Scholar 

  • Vinterhalter B, Ninkovic S, Cingel A (2006) Shoot and root culture of Hypericum perforatum L. transformed with Agrobacterium rhizogenes A4M70GUS. Biol Plant 50:767–770

    Article  Google Scholar 

  • Walker TS, Bais HP, Vivanco JM (2002) Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry 60:289–293

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Qian J, Yao L et al (2015) Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Bioresour Bioprocess 2:5. https://doi.org/10.1186/s40643-014-0033-5

    Article  Google Scholar 

  • Weber ND, Murray BK, North JA et al (1994) The antiviral agent hypericin has in vitro activity against HSV-1 through non-specific association with viral and cellular membranes. Antivir Chem Chemother 5:83–90

    Article  CAS  Google Scholar 

  • Wenk M, Todesco L, Krähenbühl S (2004) Effect of St John’s wort on the activities of CYP1A2, CYP3A4, CYP2D6, N-acetyltransferase 2, and xanthine oxidase in healthy males and females. Br J Clin Pharmacol 57:495–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2004) Who monographs on selected medicinal plants, vol 2, Herba Hyperici. World Health Organization, Geneva

    Google Scholar 

  • Wójcik A, Podstolski A (2007) Leaf explant response in in vitro culture of St. John’s wort (Hypericum perforatum L.). Acta Physiol Plant 29:151–156

    Article  CAS  Google Scholar 

  • Wölfle U, Seelinger G, Schempp CM (2014) Topical application of St. Johnʼs wort (Hypericum perforatum). Planta Med 80:109–120

    PubMed  Google Scholar 

  • Wood S, Huffman J, Weber N et al (1990) Antiviral activity of naturally occurring anthraquinones and anthraquinone derivatives. Planta Med 56:651–652

    Article  Google Scholar 

  • Wright CW, Gott M, Grayson B, Smith AG et al (2003) Correlation of hyperforin content of Hypericum perforatum (St John’s wort) extracts with their effects on alcohol drinking in C57Bl/6J mice: a preliminary study. J Psychopharmacol 17:403–408

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Dong J, Zhang X (2008) Signal interaction between nitric oxide and hydrogen peroxide in heat shock-induced hypericin production of Hypericum perforatum suspension cells. Sci China Ser C 51:676–686

    Article  CAS  Google Scholar 

  • Zimowska B, Machowicz-Stefaniak Z (2004) Grzyby zagrażające uprawie Dziurawca zwyczajnego (Hypericum perforatum L.) w województwie lubelskim. Acta Sci Pol Hortorum Cultus 3:61–74

    Google Scholar 

  • Zirak N, Shafiee M, Soltani G et al (2019) Hypericum perforatum in the treatment of psychiatric and neurodegenerative disorders: current evidence and potential mechanisms of action. J Cell Physiol 234:8496–8508

    Article  CAS  PubMed  Google Scholar 

  • Zobayed SMA, Saxena PK (2003) In vitro grown roots: a superior explant for prolific shoot regeneration of St. John’s wort (Hypericum perforatum L. cv ‘New Stem’) in a temporary immersion bioreactor. Plant Sci 165:463–470

    Article  CAS  Google Scholar 

  • Zobayed S, Saxena PK (2004) Production of St. John’s wort plants under controlled environment for maximizing biomass and secondary metabolites. Vitro Cel Dev Biol Plant 40:108–114

    Article  CAS  Google Scholar 

  • Zobayed SMA, Murch SJ, Rupasinghe HPV (2003) Elevated carbon supply altered hypericin and hyperforin contents of St. John’s wort (Hypericum perforatum) grown in bioreactors. Plant Cell Tiss Org 75:143–149

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Inga Kwiecień or Halina Ekiert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kwiecień, I., Nicosia, N., Ekiert, H. (2021). Cultivation of Hypericum Perforatum (St. John’s Wort) and Biotechnological Approaches for Improvement of Plant Raw Material Quality. In: Ekiert, H.M., Ramawat, K.G., Arora, J. (eds) Medicinal Plants. Sustainable Development and Biodiversity, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-74779-4_8

Download citation

Publish with us

Policies and ethics