Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 275))

Abstract

Kelvin waves are one of the most dominant atmospheric waves in the tropical upper-troposphere and lower-stratosphere (UTLS). However, research related to the characteristics of Kelvin waves in the UTLS over the maritime continent is still limited. Here, we utilize long-term GPS RO measurements from January 2002 to December 2014 to study the characteristics of Kelvin waves over the maritime continent in the UTLS. The results show that the periodicity of the observed Kelvin wave over the Maritime Continent ranges from ~4–17 days and with the eastward zonal wavenumber of 1–4. The vertical wavelengths of the Kelvin wave are ranging from 2.8 to 4.9 km in the upper-troposphere, 2.8–7 km in the UTLS, and 4.9–12.1 km in the mid-stratosphere. It is also shown that the vertically propagating Kelvin wave has phase speed lines that tilt eastward with height and has a downward phase speed propagation in time. Furthermore, analysis of the Kelvin waves activity in the upper-troposphere reveals that propagation and phase speed of Kelvin waves are much slower than those in the UTLS and mid-stratosphere due to the convection. The seasonal analysis also indicates that Kelvin waves are stronger in the JJA and SON periods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CHAMP:

CHAllenging Minisatellite Payload

C/NOFS:

Communications/Navigation Outage Forecasting System

FORMOSAT-3/COSMIC:

FORMOsa SATellite mission-3/Constellation Observing System for Meteorology, Ionosphere, and Climate

GRACE:

GRavity And Climate Experiment

MetOp:

Meteorological Operational satellite

SAC-C:

Satelite de Aplicaciones Cientificas-C

References

  1. Andrews, D.G., Holton, J.R., Leovy, C.B.: Middle Atmospheric Dynamics. Academic Press (1987)

    Google Scholar 

  2. Anthes, R.A.: Exploring Earth’s atmosphere with radio occultation: contributions to weather, climate and space weather. Atmos. Meas. Tech. 4, 1077–1103 (2011). https://doi.org/10.5194/amt-4-1077-2011

    Article  Google Scholar 

  3. Brahmanandam, P.S., Chu, Y.H., Liu, J.: Observations of equatorial Kelvin wave modes in FORMOSAT-3COSMIC GPS RO temperature profiles. J. Terr. Atmos. Oceanic Sci. 21, 829–840 (2010). https://doi.org/10.3319/TAO.2010.01.06.01

    Article  Google Scholar 

  4. Das, U., Pan, C.J.: Strong Kelvin wave activity observed during the westerly phase speed of QBO—a case study. Ann. Geophys. 31, 581–590 (2013). https://doi.org/10.5194/angeo-31-581-2013

    Article  Google Scholar 

  5. Dhaka, S.K., Krishna, M.B.V., Nagpal, O.P., Rao, R.R., Sasi, M.N., Sundaresan, S.: A study of equatorial waves in the Indian zone. J. Atmos. Terr. Phys. 57, 1189–1202 (1995)

    Article  Google Scholar 

  6. Ern, M., Preusse, P.: Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere. Geophys. Res. Lett. 36, 1–5 (2009)

    Article  Google Scholar 

  7. Fathullah, N.Z., Lubis, S.W., Setiawan, S.: Characteristics of Kelvin waves and Mixed Rossby-Gravity waves in opposite QBO phase speeds. J. IOP Sci. (2017). https://doi.org/10.1088/1755-1315/54/1/012032

    Article  Google Scholar 

  8. Ferret, S., Yang, G.Y., Woolnough, S.J., Methven, J., Hodges, K., Holloway, C.E.: Linking extreme precipitation in Southeast Asia to equatorial waves. Q. J. Royal Meteorol. Soc. 146, 665–684 (2020). https://doi.org/10.1002/qj.3699

    Article  Google Scholar 

  9. Gorbunov, M.E., Benzon, H.H., Jensen, A.S., Lohmann, M.S., Nielsen, A.S.: Comparative analysis of radio occultation processing approaches based on Fourier integral operators. Radio Sci. 39 (2004). https://doi.org/10.1029/2003RS002916

  10. Harza, A., Lubis, S.W., Setiawan, S.: Activity of convective coupled equatorial wave in tropical tropopause layer in reanalysis and high-top CMIP5 models. IOP Conf. Ser.: Earth Environ. Sci. 149, 012012 (2018). https://doi.org/10.1088/1755-1315/149/1/012012

    Article  Google Scholar 

  11. Hayashi, Y.: Space-time spectral analysis and its applications to atmospheric waves. J. Meteorol. Soc. Jpn 60, 156–171 (1982)

    Article  Google Scholar 

  12. Holton, J.R., Alexander, M.J., Boehm, M.T.: Evidence for short vertical wavelength Kelvin waves in the department of energy-atmospheric radiation measurement Nauru99 radiosonde data. J. Geophys. Res. 106, 20125–20129 (2001). https://doi.org/10.1029/2001JD900108

    Article  Google Scholar 

  13. Holton, J.R.: An Introduction to Dynamic Meteorology, 4th edn. Elsevier, Washington (US) (2004)

    Google Scholar 

  14. Kawatani, Y., Sato, K., Dunkerton, T.J., Watanabe, S., Miyahara, S., Takashi, M.: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the Quasi-Biennial oscillation. Part I: zonal mean wave forcing. J. Atmos. Sci. 67, 963–980 (2010)

    Google Scholar 

  15. Kiladis, G.N., Wheeler, M.C., Haertel, P.T., Straub, K.H., Roundy, P.E.: Convectively coupled equatorial waves. Rev. Geophy. 47(2), 1–42 (2009)

    Google Scholar 

  16. Kursinski, E.R., Hajj, G.A., Schofield, J.T., Linfield, R.P., Hardy, K.R.: Observing Earth’s atmosphere with radio occultation measurements using the global positioning system. J. Geophys. Res. 102, 23429–23465 (1997). https://doi.org/10.1029/97JD01569

    Article  Google Scholar 

  17. Lubis, S.W., Jacobi, C.: The modulating influence of convectively coupled equatorial waves (CCEWs) on the variability of tropical precipitation. Int. J. Climatol. 35, 1465–1483 (2015). https://doi.org/10.1002/joc.4069

    Article  Google Scholar 

  18. Lubis, S.W., Respati, M.R.: Impacts of convectively coupled equatorial waves on rainfall extremes in Java, Indonesia. Int. J. Climatol. 41(4) (2020). https://doi.org/10.1002/joc.6967

  19. Lubis, S.W., Setiawan, S.: Identifikasi gelombang kelvin atmosfer di Indonesia berbasis data NCEP/NCAR Reanalysis I. Jurnal Fisika 10, 71–82 (2010)

    Google Scholar 

  20. Mawarti, M.N., Lubis, S.W., Setiawan, S., Muhammad, F.R.: On the interpretation of EOF analysis of the convectively coupled equatorial waves. Proceedings of SPIE 11372, Sixth international symposium on LAPAN-IPB Satellite 113720N (2019). https://doi.org/10.1117/12.2541531

  21. Mote, P.W., Dunkerton, T.J., Wu, D.: Kelvin waves in stratospheric temperature observed by the Microwave limb sounder. J. Geophys. Res. 107 (2002). https://doi.org/10.1029/2001JD001056

  22. Nababan, C.A.: Identifikasi gelombang kelvin di lapisan tropopause Indonesia bagian barat menggunakan data sounding NOAA. Jurnal Sains dan Teknologi Modifikasi Cuaca 11, 19–27 (2010)

    Article  Google Scholar 

  23. Ningrum, W.: Analisis penjalaran gelombang Kelvin di atas Kototabang berbasis data EAR (equatorial atmosphere radar). Thesis, IPB University (2010)

    Google Scholar 

  24. Noersomadi, Hadi, T.W.: Downward propagating equatorial kelvin wave over the Eastern Indian Ocean as revealed from radiosonde and GPS radio occultation (CHAMP) data. Jurnal Matematika dan Sains. 15, 39–45 (2010)

    Google Scholar 

  25. Randel, W.J., Wu, F.: Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements. J. Geophys. Res. 110, 1–13 (2005). https://doi.org/10.1029/2004JD005006

    Article  Google Scholar 

  26. Ratnam, M.V., Tsuda, T., Kozu, T., Mori, S.: Long-term behavior of the Kelvin waves revealed by CHAMP/GPS RO measurements and their effects on the tropopause structure. Ann. Geophys. 24, 1355–2136 (2006)

    Article  Google Scholar 

  27. Scherllin-Pirscher, B., Steiner, A.K., Kirchengatst, G., Kuo, Y.H., Foelsche, U.: Empirical analysis and modeling of errors of atmospheric profiles from GPS radio occultation. Atmos. Meas. Tech. 4, 1875–1890 (2011). https://doi.org/10.5194/amt-4-875-2011

    Article  Google Scholar 

  28. Scherllin-Pirscher, B., William, J.R., Joowan, K.: Tropical temperature variability and Kelvin-wave activity in the UTLS from GPS RO measurements. Atmos. Chem. Phys. 17, 793–806 (2017)

    Article  Google Scholar 

  29. Solihah, K.I., Lubis, S.W., Setiawan, S.: Influence of QBO on stratospheric Kelvin and mixed Rossby gravity waves in high-top CMIP5 models. IOP Conf. Ser.: Earth Environ. Sci. 149, 012011 (2018). https://doi.org/10.1088/1755-1315/149/1/012011

    Article  Google Scholar 

  30. Tsai, H.F., Tsuda, T., Hajj, G.A., Wickert, J., Aoyama, Y.: Equatorial Kelvin waves observed with GPS occultation measurements (CHAMP and SACC). J. Meteorol. Soc. Jpn 82, 397–406 (2004). https://doi.org/10.2151/jmsj.2004.397

    Article  Google Scholar 

  31. Tsuda, T., Murayama, Y., Wiryosumarto, H., Harijono, S.W.B., Kato, S.: Radiosonde observations of equatorial atmosphere dynamics over Indonesia 1. Equatorial waves and diurnal tides. J. Geophys. Res. 99, 10491–10505 (1994). https://doi.org/10.1029/94JD00355

  32. Yamazaki, Y., Miyoshi, Y., Xiong, C., Stolle, C., Soares, G., Yoshikawa, A.: Whole atmosphere model simulations of ultra-fast Kelvin wave effects in the ionosphere and thermosphere. J. Geophys. Res. Space Physics 125, 1–25 (2020). https://doi.org/10.1029/2020JA027939

    Article  Google Scholar 

  33. Yuni, A.R.E., Lubis, S.W., Setiawan, S.: Vertical structure of convectively coupled equatorial waves (CCEWs) during boreal summer and winter. IOP Conf. Ser.: Earth Environ. Sci. 284, 012010 (2019). https://doi.org/10.1088/1755-1315/284/1/012010

    Article  Google Scholar 

  34. Wallace, J.M., Kousky V.E.: Observational evidence of Kelvin waves in the tropical troposphere. J. Atmos. Sci. 25, 900–907 (1968). https://doi.org/10.1175/15200469(1968)025<0900:OEOKWI>2.0.CO;2

  35. Wheeler, M., Kiladis, G.N.: Convectively coupled equatorial waves analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci. 56, 374–399 (1999). https://doi.org/10.1175/15200469(1999)056<0374:CCEWAO>2.0.CO;2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diah A. Tiyas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tiyas, D.A., Lubis, S.W., Setiawan, S. (2022). Kelvin Wave Activity in the UTLS Over the Maritime Continent from GPS RO Measurements. In: Yulihastin, E., Abadi, P., Sitompul, P., Harjupa, W. (eds) Proceedings of the International Conference on Radioscience, Equatorial Atmospheric Science and Environment and Humanosphere Science, 2021. Springer Proceedings in Physics, vol 275. Springer, Singapore. https://doi.org/10.1007/978-981-19-0308-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0308-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0307-6

  • Online ISBN: 978-981-19-0308-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics