Skip to main content

The Goldfish Genome and Its Utility for Understanding Gene Regulation and Vertebrate Body Morphology

  • Protocol
  • First Online:
Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2707))

Abstract

Goldfish, widely viewed as an ornamental fish, is a member of Cyprinidae family and has a very long history in research for both genetics and physiology studies. Among Cyprinidae, the chromosomal locations of orthologs and the amino acid sequences are usually highly conserved. Adult goldfish are 1000 times larger than adult zebrafish (who are in the same family of fishes), which can make it easier to perform several types of experiments compared to their zebrafish cousins. Comparing mutant phenotypes in orthologous genes between goldfish and zebrafish can often be very informative and provide a deeper insight into the gene function than studying the gene in either species alone. Comparative genomics and phenotypic comparisons between goldfish and zebrafish will provide new opportunities for understanding the development and evolution of body forms in the vertebrate lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nasu M, Ohuchi Y (2016) Nishikigoi and Goldfish. Tokyo, Seibundo Shinkosha

    Google Scholar 

  2. Grunwald DJ, Streisinger G (1992) Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea. Genet Res 59(2):103–116

    Article  CAS  PubMed  Google Scholar 

  3. Golling G et al (2002) Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet 31(2):135–140

    Article  CAS  PubMed  Google Scholar 

  4. Walker C, Streisinger G (1983) Induction of mutations by gamma-rays in pregonial germ cells of zebrafish embryos. Genetics 103(1):125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Henke K et al (2017) Genetic screen for postembryonic development in the zebrafish (Danio rerio): dominant mutations affecting adult form. Genetics 207(2):609–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kon T et al (2020) The genetic basis of morphological diversity in domesticated goldfish. Curr Biol 30(12):2260–2274 e6

    Article  CAS  PubMed  Google Scholar 

  7. Braasch I (2020) Genome evolution: domestication of the allopolyploid goldfish. Curr Biol 30(14):R812–R815

    Article  CAS  PubMed  Google Scholar 

  8. Balon EK (2004) About the oldest domesticates among fishes. J Fish Biol 65(s1):1–27

    Article  Google Scholar 

  9. Tsai HY et al (2013) Embryonic development of goldfish (Carassius auratus): a model for the study of evolutionary change in developmental mechanisms by artificial selection. Dev Dyn 242(11):1262–1283

    Article  PubMed  PubMed Central  Google Scholar 

  10. Portavella M, Torres B, Salas C (2004) Avoidance response in goldfish: emotional and temporal involvement of medial and lateral telencephalic pallium. J Neurosci 24(9):2335–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10(10):725–732

    Article  PubMed  Google Scholar 

  12. Brawand D et al (2014) The genomic substrate for adaptive radiation in African cichlid fish. Nature 513(7518):375–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paape T et al (2018) Patterns of polymorphism and selection in the subgenomes of the allopolyploid Arabidopsis kamchatica. Nat Commun 9(1):3909

    Article  PubMed  PubMed Central  Google Scholar 

  14. Luo J et al (2020) From asymmetrical to balanced genomic diversification during rediploidization: subgenomic evolution in allotetraploid fish. Sci Adv 6(22):eaaz7677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen Z et al (2019) De novo assembly of the goldfish (Carassius auratus) genome and the evolution of genes after whole-genome duplication. Sci Adv 5(6):eaav0547

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen D et al (2020) The evolutionary origin and domestication history of goldfish (Carassius auratus). Proc Natl Acad Sci U S A 117(47):29775–29785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li JT et al (2021) Parallel subgenome structure and divergent expression evolution of allo-tetraploid common carp and goldfish. Nat Genet 53(10):1493–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ohno S, Wolf U, Atkin NB (1968) Evolution from fish to mammals by gene duplication. Hereditas 59(1):169–187

    Article  CAS  PubMed  Google Scholar 

  19. Bejerano G et al (2004) Ultraconserved elements in the human genome. Science 304(5675):1321–1325

    Article  CAS  PubMed  Google Scholar 

  20. Margulies EH et al (2003) Identification and characterization of multi-species conserved sequences. Genome Res 13(12):2507–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Woolfe A et al (2005) Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol 3(1):e7

    Article  PubMed  Google Scholar 

  22. Pennacchio LA et al (2006) In vivo enhancer analysis of human conserved non-coding sequences. Nature 444(7118):499–502

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y et al (2015) The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nat Genet 47(6):625–631

    Article  CAS  PubMed  Google Scholar 

  24. Xu P et al (2014) Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet 46(11):1212–1219

    Article  CAS  PubMed  Google Scholar 

  25. Prabhakar S et al (2006) Close sequence comparisons are sufficient to identify human cis-regulatory elements. Genome Res 16(7):855–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fornes O et al (2020) JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 48(D1):D87–D92

    CAS  PubMed  Google Scholar 

  27. Pang ZP et al (2011) Induction of human neuronal cells by defined transcription factors. Nature 476(7359):220–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wayne RK, Ostrander EA (2007) Lessons learned from the dog genome. Trends Genet 23(11):557–567

    Article  CAS  PubMed  Google Scholar 

  29. Matsui Y (1935) Kagaku to Shumi Kara Mita Kingyo no Kenkyuu. Tokyo, Seizando Syoten

    Google Scholar 

  30. Perathoner S et al (2014) Bioelectric signaling regulates size in zebrafish fins. PLoS Genet 10(1):e1004080

    Article  PubMed  PubMed Central  Google Scholar 

  31. Enyedi P, Czirjak G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90(2):559–605

    Article  CAS  PubMed  Google Scholar 

  32. Lesage F, Barhanin J (2011) Molecular physiology of pH-sensitive background K(2P) channels. Physiology (Bethesda) 26(6):424–437

    CAS  PubMed  Google Scholar 

  33. Fisher S, Halpern ME (1999) Patterning the zebrafish axial skeleton requires early chordin function. Nat Genet 23(4):442–446

    Article  CAS  PubMed  Google Scholar 

  34. Hammerschmidt M et al (1996) dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. Development 123:95–102

    Article  CAS  PubMed  Google Scholar 

  35. Schulte-Merker S et al (1997) The zebrafish organizer requires chordino. Nature 387(6636):862–863

    Article  CAS  PubMed  Google Scholar 

  36. Abe G et al (2014) The origin of the bifurcated axial skeletal system in the twin-tail goldfish. Nat Commun 5:3360

    Article  PubMed  Google Scholar 

  37. Raymond PA, Hitchcock PF, Palopoli MF (1988) Neuronal cell proliferation and ocular enlargement in Black Moor goldfish. J Comp Neurol 276(2):231–238

    Article  CAS  PubMed  Google Scholar 

  38. Easter SS Jr, Hitchcock PF (1986) The myopic eye of the Black Moor goldfish. Vis Res 26(11):1831–1833

    Article  PubMed  Google Scholar 

  39. Raymond P et al (1984) The telescopic eyes of Black Moor goldfish: elevated intraocular pressure and altered aqueous outflow pathways. Invest Ophthalmol Vis Sci 25:282

    Google Scholar 

  40. Veth KN et al (2011) Mutations in zebrafish lrp2 result in adult-onset ocular pathogenesis that models myopia and other risk factors for glaucoma. PLoS Genet 7(2):e1001310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Christ A et al (2015) LRP2 acts as SHH clearance receptor to protect the retinal margin from Mitogenic Stimuli. Dev Cell 35(1):36–48

    Article  CAS  PubMed  Google Scholar 

  42. Pober BR, Longoni M, Noonan KM (2009) A review of Donnai-Barrow and facio-oculo-acoustico-renal (DB/FOAR) syndrome: clinical features and differential diagnosis. Birth Defects Res A Clin Mol Teratol 85(1):76–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kawakami Y et al (2006) Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes Dev 20(23):3232–3237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nagayoshi S et al (2008) Insertional mutagenesis by the Tol2 transposon-mediated enhancer trap approach generated mutations in two developmental genes: tcf7 and synembryn-like. Development 135(1):159–169

    Article  CAS  PubMed  Google Scholar 

  45. Tatsumi Y et al (2014) TALEN-mediated mutagenesis in zebrafish reveals a role for r-spondin 2 in fin ray and vertebral development. FEBS Lett 588(24):4543–4550

    Article  CAS  PubMed  Google Scholar 

  46. Hassler C et al (2007) Kremen is required for neural crest induction in Xenopus and promotes LRP6-mediated Wnt signaling. Development 134(23):4255–4263

    Article  CAS  PubMed  Google Scholar 

  47. Bharti K et al (2006) The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye. Pigment Cell Res 19(5):380–394

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yamamoto T-O (1973) Inheritance of albinism in the goldfish, Carassius auratus. Jpn J Genet 48(1):53–64

    Article  Google Scholar 

  49. Lee ST et al (1994) Diverse mutations of the P gene among African-Americans with type II (tyrosinase-positive) oculocutaneous albinism (OCA2). Hum Mol Genet 3(11):2047–2051

    CAS  PubMed  Google Scholar 

  50. Brilliant MH (2001) The mouse p (pink-eyed dilution) and human P genes, oculocutaneous albinism type 2 (OCA2), and melanosomal pH. Pigment Cell Res 14(2):86–93

    Article  CAS  PubMed  Google Scholar 

  51. Beirl AJ et al (2014) oca2 Regulation of chromatophore differentiation and number is cell type specific in zebrafish. Pigment Cell Melanoma Res 27(2):178–189

    Article  CAS  PubMed  Google Scholar 

  52. Omori Y, Kon T (2019) Goldfish: an old and new model system to study vertebrate development, evolution and human disease. J Biochem 165(3):209–218

    Article  CAS  PubMed  Google Scholar 

  53. Green J et al (2009) A gain of function mutation causing skeletal overgrowth in the rapunzel mutant. Dev Biol 334(1):224–234

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshihiro Omori or Shawn M. Burgess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Omori, Y., Burgess, S.M. (2024). The Goldfish Genome and Its Utility for Understanding Gene Regulation and Vertebrate Body Morphology. In: Amatruda, J.F., Houart, C., Kawakami, K., Poss, K.D. (eds) Zebrafish. Methods in Molecular Biology, vol 2707. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3401-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3401-1_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3400-4

  • Online ISBN: 978-1-0716-3401-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics