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Abstract 

In the heating and cooling sector, borehole heat exchangers (BHE) have become increasingly 

popular for supplying renewable energy. When grouped in compact arrays, BHEs represent 

suitable thermal energy storage systems for fluctuating heat sources such as solar energy or 

district heating grids. Tapping into greater depth allows for storage operation on a higher 

temperature level. This so-called medium deep borehole thermal energy storage (BTES) 

requires negligible groundwater flow in the reservoir rock and the thermal insulation of the 

upper part of the boreholes to meet legal requirements and to improve the BHEs’ performance. 

Medium deep BTES is characterized by a slow thermal response and a large storage capacity, 

which makes it particularly suitable for seasonal heat storage applications. 

However, the economic feasibility of these systems is compromised by high investment costs, 

especially by the expensive drilling of the boreholes. Therefore, a priori numerical simulations 

of the storage operation are imperative for the systems’ planning and design. Only fully 

discretized models can account for depth-dependent borehole properties like insulated sections, 

but the model setup is cumbersome and the simulations come at high computational cost. 

Hence, these models are often not suitable for the simulation of larger installations and are 

difficult to handle in mathematical optimization applications. This thesis presents a versatile 

tool for the simulation and optimization of medium deep BTES systems. The Borehole Heat 

Exchanger Array Simulation and Optimization tool (BASIMO) includes models for the three 

most common BHE types: U-pipe, double U-pipe and coaxial pipe BHEs. In a dual-continuum 

approach, the simulator couples a numerical subsurface model with an analytical solution for 

the BHEs, which allows for the efficient, but detailed consideration of the relevant 

thermo-physical and operational parameters. With the presented tool, many aspects of BTES 

systems can be simulated and optimized. 

The concept of medium deep BTES has not been put into practice so far. However, simulations 

yield promising results and show that large-scale medium deep BTES can achieve more than 

80 % storage efficiency. The performance is sensitive to many geological, material and 

operational parameters, but also to the interaction between the BHE array and the downstream 

heating system. Therefore, future research should focus on coupled simulations including the 

above ground facilities and, more importantly, on the realization of field experiments including 

first and foremost a pilot plant, which could help to push this promising technology to economic 

viability.  
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Kurzfassung 

Erdwärmesonden kommen zur Bereitstellung erneuerbarer Wärme und Kälte immer stärker 

zum Einsatz. Als engständige Sondenfelder stellen Erdwärmesonden Speichersysteme dar, die 

für Wärme aus fluktuierenden Quellen wie Solarthermie oder Nahwärmenetzen geeignet sind. 

Werden dabei im Untergrund von einem Sondenfeld größere Tiefen erschlossen, sind höhere 

Betriebstemperaturen im Wärmespeicher möglich. Solche sogenannten mitteltiefen 

Erdwärmesondenspeicher erfordern Standorte mit vernachlässigbar geringem 

Grundwasserfluss im Reservoir und eine thermische Isolierung im oberen Abschnitt der 

Bohrlöcher, um dem Grundwasserschutz gerecht zu werden und um die Entzugstemperaturen 

der Erdwärmesonden zu verbessern. Mitteltiefe Erdwärmesondenspeicher zeichnen sich durch 

ein verhältnismäßig träges thermisches Verhalten und hohe Speicherkapazitäten aus. Dadurch 

ist diese Technologie für die saisonale Speicherung von Wärme besonders geeignet. 

Hohe Investitionskosten, besonders bedingt durch teure Bohrungen, stellen ein Risiko dar und 

können die Wirtschaftlichkeit eines Erdwärmesondenspeichers gefährden. Deshalb sind vorab 

numerische Simulationen des Speicherbetriebs zwingend für die Planung und Dimensionierung 

solcher Systeme erforderlich. Bisher konnten nur voll diskretisierte Modelle tiefenabhängige 

Eigenschaften wie die teilweise Isolierung des Bohrlochs berücksichtigen. Das Erstellen und die 

Simulation solcher Modelle sind jedoch aufwändig und sehr rechenintensiv. Daher sind voll 

diskretisierte Modelle für die Simulation großer Sondenfelder meist ungeeignet. Darüber 

hinaus ist eine mathematische Optimierung in den Simulationsprogrammen gewöhnlich nicht 

vorgesehen. In dieser Dissertation wird ein neues, vielseitiges Softwaretool vorgestellt, dass für 

die Simulation und Optimierung von mitteltiefen Erdwärmesondenspeichern geeignet ist. Das 

Borehole Heat Exchanger Array Simulation and Optimization (BASIMO) Tool kann Modelle mit 

den drei gängigen Erdwärmesondentypen U-Sonde, Doppel U-Sonde und Koaxialsonde, 

berechnen. In einem Zwei-Kontinuumsmodell wird die numerische Berechnung des 

Wärmetransports im Untergrund mit einer analytischen Lösung für die thermische Interaktion 

der Erdwärmesonden gekoppelt. Dies ermöglicht eine effiziente, aber detaillierte Modellierung 

der Erdwärmesonden, welche die relevanten thermo-physikalischen Material- und 

Betriebsparameter berücksichtigt. Mit dem diesem Simulationstool können viele Aspekte von 

Erdwärmesondenspeichern simuliert und optimiert werden.  

Die mitteltiefe Speicherung von thermischer Energie mittels Erdwärmesonden wurde bisher 

noch nicht umgesetzt. Die Simulationen ergeben jedoch vielversprechende Ergebnisse: mit 

großen Sondenfeldern und entsprechend großen Wärmemengen, lassen sich 

Speichernutzungsgrade von über 80 % erzielen. Dabei ist die Leistung der 

Erdwärmesondenspeicher sowohl von geologischen, als auch von Material- und 

Betriebsparametern abhängig. Es zeigt sich aber, dass auch die dynamische Interaktion 

zwischen Erdwärmesondenspeicher und nachgeschaltetem Heizsystem eine große Rolle spielt. 

Zukünftige Forschung sollte sich deshalb auf gekoppelte Simulationen der 

Erdwärmesondenspeicher und der obertägigen Anlagen konzentrieren, vor allem jedoch auf die 

Umsetzung erster Demonstrationsprojekte, mit deren Hilfe diese vielversprechende 

Technologie zur Marktreife gebracht werden kann.  
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Preface 

This PhD thesis is associated with the dissertation of my colleague Bastian Welsch within the 

joint project “Simulation and evaluation of coupling and storage concepts for renewable forms 

of energy for heat supply” (Simulation und Evaluierung von Kopplungs- und Speicherkonzepten 

regenerativer Energieformen zur Heizwärmeversorgung). The participating project partner was 

the local energy producer HEAG Südhessische Energie AG (HSE), now known as ENTEGA. The 

project (HA project no. 375/13-14) was funded within the framework of Hessen 

ModellProjekte, financed with funds of Energietechnologieoffensive Hessen – Projektförderung 

in den Bereichen Energieerzeugung, Energiespeicherung, Energietransport und 

Energieeffizienz. It was launched in 2013 and completed in 2015. My own research was funded 

through a scholarship by the Darmstadt Graduate School of Excellence Energy Science and 

Engineering (GSC 1070), which is financed by the Deutsche Forschungsgemeinschaft (DFG) in 

the framework of the Excellence Initiative.  

The objective of the project was to develop simulation tools for coupled models, which consider 

the subsurface heat transport and the operation of above ground installations. The results were 

used to gather virtual experiences with medium deep borehole thermal energy storage (BTES) 

systems in order to prepare a proposal for the construction of a pilot facility. My accompanying 

research allowed for the in-house development of the simulation tool BASIMO (Borehole Heat 

Exchanger Array Simulation and Optimization) based on MATLAB instead of using the 

commercial software FEFLOW. This opened up possibilities to optimize the design of BTES 

systems mathematically and added value to the project beyond the initially proposed goals.  

Here, I present a cumulative dissertation that includes the five publications following below. 

They reflect the course of my research and my growing contributions to the joint scientific effort. 

The publications listed below are attached as an appendix to this thesis. The accompanying 

manuscript contains verbatim sections of my first-author publications that are not explicitly 

referenced. As BASIMO was only publishable as a general synaptic description at the time this 

thesis was drafted, a comprehensive description of the simulator and the mathematical 

optimization approach is part of the presented enveloping manuscript together with a general 

introduction to the topic of medium deep BTES systems. 

Appendix A: Bär K, Rühaak W, Welsch B, Schulte DO, Homuth S and Sass I (2015): Seasonal 

high temperature storage with medium deep borehole heat exchangers, Energy Procedia, v. 76, 

p. 351-360, doi:10.1016/j.egypro.2015.07.841. 

Appendix B: Welsch B, Rühaak W, Schulte DO, Bär K and Sass I (2016): Characteristics of 

medium deep borehole thermal energy storage, International Journal of Energy Research, v. 40, 

no. 13, p. 1855-1868, doi: 10.1002/er.3570. 

Appendix C: Schulte DO, Rühaak W, Oladyshkin S, Welsch B and Sass I (2016): Optimization 

of Medium-Deep Borehole Thermal Energy Storage Systems, Energy Technology, v. 4, 

p. 104-113, doi:10.1002/ente.201500254. 

Appendix D: Schulte DO, Welsch B, Boockmeyer A, Rühaak W, Bär K, Bauer S and Sass I (2016) 

Modeling insulated borehole heat exchangers, Environmental Earth Sciences, v. 75, p. 1-12, 

doi:10.1007/s12665-016-5638-x. 

Appendix E: Schulte DO, Rühaak W, Welsch B and Sass I (2016): BASIMO – borehole heat 

exchanger array simulation and optimization tool, Energy Procedia, v. 97, p. 210-217, doi:/10.1016/j.egypro.2016.10.057. 
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Appendix A is the first publication of the joint project “Simulation and evaluation of coupling 

and storage concepts for renewable forms of energy for heat supply” and lays the foundation 

for the research published in the papers mentioned hereafter. It introduces the concept of 

seasonal high temperature storage with medium deep borehole heat exchangers (BHE). The 

publication describes the key features of BTES and the general behavior of such systems. In a 

case study, different scenarios considering excess heat for storage from solar thermal collectors 

and a combined heat and power plant are assessed. Ultimately, the importance of prior detailed 

knowledge of the system specifications is pointed out. The authors emphasize the necessity of 

a priori numerical simulations for the determination of the eventual storage system design 

outlining the subsequent research. 

Kristian Bär is the first author of this paper. He coordinated the project “Simulation and 

evaluation of coupling and storage concepts for renewable forms of energy for heat supply” and 

drafted the paper. He also gathered the data on the heat demand and designed the different 

heat supply scenarios for the case study. As a coauthor, I engaged in discussions with Kristian 

Bär, Bastian Welsch and Wolfram Rühaak on the aspects and requirements of numerical 

simulations of BTES. Furthermore, I developed the concept for the mathematical optimization 

and coupled simulation of these systems. Together with Bastian Welsch, I set up the numerical 

simulations and evaluated the results. Wolfram Rühaak supervised the numerical modeling and 

provided technical assistance. Bastian Welsch carried out field work and laboratory experiments 

for the site characterization of the case study. Sebastian Homuth gathered information on the 

required drilling technology and contributed to the manuscript accordingly. Ingo Sass 

supervised the project and the research. All coauthors engaged in early discussions, developed 

the concept of medium deep BTES and contributed to the revision of the manuscript.  

Appendix B is a comprehensive preliminary parameter study on medium deep BTES. The study 

was carried out prior to the development of BASIMO with the commercial software FEFLOW to 

acquire basic knowledge of the general behavior of BTES systems and the dependency on 

several different system parameters. In more than 250 numerical simulations the effect of 

changing geometrical configurations of BTES systems as well as changing material and 

operational parameters on the long-term performance is investigated. The authors quantify and 

discuss the influence of the different variable parameters. Larger systems in particular show 

high potential for efficient seasonal storage of several GWh of heat with a recovery rate of more 

than 80 %.  

Bastian Welsch is the first author of this paper. He set up all models and ran the numerical 

simulations. Also, he evaluated the results and drafted the manuscript. As a coauthor of this 

paper, I co-developed the experimental design of the numerical experiments together with 

Bastian Welsch and Wolfram Rühaak and helped to identify relevant model responses for the 

evaluation of the simulation results. Most notably, I was closely involved with the writing and 

editing of the manuscript. Wolfram Rühaak supervised the setup of the numerical models and 

provided technical assistance and engaged together with Kristian Bär and myself in early 

discussions on the general concept of seasonal heat storage. Furthermore, Kristian Bär 

coordinated the project “Simulation and evaluation of coupling and storage concepts for 

renewable forms of energy for heat supply”, which provided the framework for this study. Ingo 

Sass supervised the project and the research. All coauthors contributed to the revision of the 

manuscript.  
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Appendix C is a description of the proxy model-based optimization approach, which can be 

adapted to many design aspects of medium deep BTES systems. Besides a basic description of 

the numerical methods applied for the simulation, the paper also includes a short summary on 

the arbitrary polynomial chaos expansion employed for the generation of the proxy model and 

the mathematical optimization algorithm used in the study. In an application example the ideal 

size of a BTES system is determined and the approximation error of the reduced model is 

discussed.  

As the first author of this paper, I developed and programmed the numerical simulator, ran the 

proxy training simulations and the optimization, evaluated the results, calculated the 

approximation errors and drafted the manuscript. Wolfram Rühaak supervised the 

developments and assisted with the programming, especially with the matrix assembly routine, 

which had to be built in C++ for performance reasons. Furthermore, he engaged with me in 

countless discussions on many detailed programming aspects of the simulator. Sergey 

Oladyshkin provided a MATLAB script for the arbitrary polynomial chaos expansion and 

contributed to the manuscript accordingly. Bastian Welsch engaged in early discussions on the 

setup of the experimental design of simulation experiments and provided valuable ideas, as this 

issue was closely related to his own research (see above). He also contributed some of the 

figures. Ingo Sass supervised my research. All coauthors contributed to the revision of the 

manuscript.  

Appendix D deals with the modeling of the partial insulation of BHEs within the borehole. This 

is an important feature of medium deep BTES systems, which has to be considered in numerical 

simulations. A borehole insulation can help to mitigate negative environmental impacts on 

shallow aquifers induced by high temperature heat storage. Furthermore, it can increase the 

performance of medium deep BHEs. Up to the publication of this paper, only fully discretized 

numerical models were able to adequately describe properties changing along the borehole 

length. In Appendix D, an existing analytical approach is improved to allow for the consideration 

of grout thermal conductivities and borehole diameters changing with depth. The improved 

solution is implemented in BASIMO and tested in a benchmark against a fully discretized model. 

An application example is given by determining the ideal length of a borehole insulation in a 

specific setup scenario by means of mathematical optimization. The benchmark and the 

application example are both discussed in terms of accuracy and significance of the results. 

As the first author of this paper, I developed and programmed the improved analytical solution 

for partially insulated BHEs, implemented it into BASIMO, ran the simulations and the 

optimization for the application example, evaluated the results and drafted the paper. Bastian 

Welsch co-developed the improved analytical solution and provided high quality figures for the 

manuscript. Anke Boockmeyer provided the simulation results of a fully discretized 

OpenGeoSys model for the benchmark case. Wolfram Rühaak provided important suggestions 

and technical assistance for the implementation of the improved analytical solution into 

BASIMO. Kristian Bär engaged in early discussions on the necessity and the features of partially 

insulated boreholes. Sebastian Bauer and Ingo Sass supervised the work of Anke Boockmeyer 

and myself, respectively. All coauthors contributed to the revision of the manuscript.  

Appendix E advertises BASIMO as a tool for BHE simulation and optimization applications. The 

structure of the program is explained and all important features of the simulator are briefly 

introduced. References to the aforementioned papers are given for more detailed descriptions. 
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Ultimately, Appendix E represents a brief synapsis of the development of BASIMO, which gives 

a good summary of my research’s aspects.  

In the course of my PhD research, I designed the concept and programmed the code of BASIMO. 

Furthermore, I tested the progressively improving code countless times to ensure numerical 

accuracy. As the responsible developer of BASIMO and as the first author of this paper, I wrote 

the manuscript and created all figures. Wolfram Rühaak supervised the overall development of 

BASIMO and supported my programming work. Bastian Welsch assisted with the testing and 

troubleshooting of the code. Ingo Sass supervised my research.  

Furthermore, the research was presented on conferences and exhibitions in oral presentations 

and poster sessions, some including publication in the corresponding proceedings, listed below 

in chronological order: 

Rühaak W, Schulte DO, Welsch B, Chauhan S, Bär K, Homuth S and Sass I (2014): Optimierung 

eines mitteltiefen Erdwärmesondenspeichers, at Tagung der Fachsektion Hydrogeologie in der 

Deutschen Gesellschaft für Geowissenschaften, Bayreuth, Germany, 29-31 May 2014. 

Schulte DO, Chauhan S, Welsch B, Rühaak W and Sass I (2014): A MATLAB Toolbox for 

Optimization of Deep Borehole Heat Exchanger Storage Systems, at Computational Methods in 

Water Resources XX. International Conference, Stuttgart, Germany, 10-13 June 2014. 

Welsch B, Rühaak W, Schulte DO, Bär K, Homuth S and Sass I (2015): Untersuchung des 

Leistungsvermögens mitteltiefer Erdwärmesondenspeicher mittels numerischer Modellierung, 

at Geotherm, Offenburg, Germany, 5-6 March 2015. 

Schulte DO, Rühaak W, Chauhan S, Welsch B and Sass I (2015): A MATLAB Toolbox for 

Optimization of Deep Borehole Heat Exchanger Arrays, in Proceedings World Geothermal 

Congress, Melbourne, Australia, 19-25 April 2015. 

Bär K, Homuth S, Rühaak W, Schulte DO, Welsch B and Sass I (2015): Coupled Renewable 

Energy systems for seasonal High Temperature Heat storage via Medium Deep Borehole Heat 

Exchangers, in Proceedings World Geothermal Congress, Melbourne, Australia, 19-25 April 

2015. 

Welsch B, Rühaak W, Schulte DO, Bär K, Homuth S and Sass I (2015): A Comparative Study 

of Medium Deep Borehole Thermal Energy Storage Systems Using Numerical Modelling, in 

Proceedings World Geothermal Congress, Melbourne, Australia, 19-25 April 2015. 

Schulte DO, Rühaak W, Chauhan S, Welsch B and Sass I (2015): Simulation and Optimization 

of Deep Borehole Heat Exchanger Arrays, at Energy, Science & Technology International 

Conference and Exhibition – EST 2015, Karlsruhe, Germany, 20-22 May 2015. 
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Welsch B, Rühaak W, Schulte DO, Bär K and Sass I (2015): A Comparative Study of Medium 

Deep Borehole Thermal Energy Storage Systems Using Numerical Modelling, at Energy, Science 

& Technology International Conference and Exhibition – EST 2015, Karlsruhe, Germany, 20-22 

May 2015. 



 

  XV 

Bär K, Welsch B, Schulte DO, Rühaak W and Sass I (2015): Medium Deep High Temperature 

Heat Storage, at GeoEnergy 2015, Bergen, Norway, 2-3 September 2015.  

Welsch B, Schulte DO, Rühaak W, Bär K and Sass I (2015): Technical and Economical 

Evaluation of Medium Deep Borehole Thermal Energy Storages, at FEFLOW 2015 Conference, 

Berlin, Germany, 21-23 September 2015. 

Schulte DO, Rühaak W, Welsch B and Sass I (2015): BASIMO Borehole Heat Exchanger Array 

Simulation and Optimization Tool, at Geothermiekongress 2015, Essen, Germany, 2-4 

November 2015. 

Schulte DO, Rühaak W, Welsch B and Sass I (2015): Simulation unkonventioneller 

Erdwärmesonden-Anlagen, at Geothermiekongress 2015, Essen, Germany, 2-4 November 2015. 

Sass I, Welsch B and Schulte DO (2016): Mitteltiefe Erdwärmesondenspeicher – Lösung für 

den Nutzungskonflikt Grundwasserschutz versus Geothermienutzung?, in Proceedings 7. 

Bochumer Grundwassertag, Bochum, Germany, 17 March 2016. 

Schulte DO, Rühaak W, Welsch B, Bär K and Sass, I (2016): BASIMO - Borehole Heat Exchanger 

Array Simulation and Optimization Tool, at European Geoscience Union General Assembly 

2016, Vienna, Austria, 17-22 April 2016. 

Schulte DO, Rühaak W, Welsch B, Oladyshkin S and Sass I (2016): Optimization of Borehole 

Heat Exchanger Arrays, at European Geoscience Union General Assembly 2016, Vienna, 

Austria, 17-22 April 2016. 

Welsch B, Rühaak W, Schulte DO, Bär K and Sass I (2016): Advanced Coupled Simulation of 

Borehole Thermal Energy Storage Systems and Above Ground Installations, at European 

Geoscience Union General Assembly 2016, Vienna, Austria, 17-22 April 2016. 

Welsch B, Rühaak W, Schulte DO, Bär K and Sass I (2016): Sensitivity Analysis on the 

Performance of Medium Deep Borehole Thermal Energy Storage Systems, at European 

Geoscience Union General Assembly 2016, Vienna, Austria, 17-22 April 2016. 

Welsch B, Rühaak W, Schulte DO, Bär K and Sass I (2016): Coupled Modelling and 

Optimization of Borehole Thermal Energy Storage and Above Ground Installations, in 

Proceedings 67. Berg- und Hüttenmännischer Tag, TU Bergakademie Freiberg, Germany, 8-10 

June 2016. 

Beside the research related to my dissertation, I published and contributed to the following 

papers:  

Schulte DO, Ring U, Thomson SN, Glodny J and Carrad H (2014): Two-stage development of 

the Paparoa Metamorphic Core Complex, West Coast, South Island, New Zealand: Hot 

continental extension precedes sea-floor spreading by ~25 Myr, Lithosphere, v. 6, no. 3, p. 177-

197, doi:10.1130/L348.1. 

Willershausen I, Weyer V, Schulte DO, Lampe F, Buhre S and Willershausen B (2014): In Vitro 

Study on Dental Erosion Caused by Different Vinegar Varieties Using an Electron Microprobe, 

Clinical Laboratory, v. 60, no. 5, p. 783-790, doi:10.7754/Clin.Lab.2013.130528. 

Willershausen I, Schulte DO, Azaripour A, Weyer V, Briseño B and Willershausen B (2015): 

Penetration Potential of a Silver Diamine Fluoride Solution on Dentin Surfaces. An Ex Vivo 

Study, Clinical Laboratory, v. 61, no. 11, p. 1695-1701, doi:10.7754/Clin.Lab.2015.150401. 



 

XVI 

  



 

  XVII 

Table of Contents 

DECLARATION ................................................................................................................................. III 

ABSTRACT ........................................................................................................................................... V 

KURZFASSUNG ................................................................................................................................ VII 

ACKNOWLEDGEMENT ................................................................................................................... IX 

PREFACE ............................................................................................................................................ XI 

TABLE OF CONTENTS ................................................................................................................ XVII 

LIST OF FIGURES ........................................................................................................................... XIX 

LIST OF TABLES .............................................................................................................................. XX 

INDEX OF ABBREVIATIONS AND SYMBOLS ......................................................................... XXI 

CHAPTER 1: INTRODUCTION ........................................................................................................ 1 
1.1. Background ............................................................................................................................................ 1 
1.2. State of the Art ....................................................................................................................................... 2 

1.2.1. Drilling ........................................................................................................................................... 2 
1.2.2. Borehole Thermal Energy Storage ................................................................................................ 4 
1.2.3. Numerical Modeling ...................................................................................................................... 4 

1.3. Characteristics of Medium Deep Borehole Thermal Energy Storage Systems ...................................... 5 

CHAPTER 2: BOREHOLE HEAT EXCHANGER ARRAY SIMULATION TOOL .................. 11 
2.1. The Finite Element Method ................................................................................................................. 11 

2.1.1. Semidiscritization ........................................................................................................................ 12 
2.1.2. Assembly ..................................................................................................................................... 16 
2.1.3. Time Integration .......................................................................................................................... 17 

2.2. Unstructured Tetrahedron Mesh ......................................................................................................... 20 
2.2.1. Interpolation Functions ............................................................................................................... 20 
2.2.2. Coordinate Transformation ......................................................................................................... 21 
2.2.3. Numerical Integration ................................................................................................................. 22 

2.3. Analytical Solution for Borehole Heat Exchangers ............................................................................... 23 
2.3.1. Ordinary BHEs ............................................................................................................................. 23 
2.3.2. Partially Insulated BHEs ............................................................................................................... 24 

2.4. Program Structure ............................................................................................................................... 26 
2.4.1. Input and Output files ................................................................................................................. 27 
2.4.2. Subroutines ................................................................................................................................. 29 

CHAPTER 3: MATHEMATICAL OPTIMIZATION OF MEDIUM DEEP BTES SYSTEMS 33 
3.1. Mathematical Optimization in MATLAB .............................................................................................. 33 
3.2. Proxy-based Optimization .................................................................................................................... 34 

CHAPTER 4: APPLICATION OF BASIMO .................................................................................. 37 
4.1. Verification and Validation .................................................................................................................. 37 

4.1.1. Verification .................................................................................................................................. 37 
4.1.2. Benchmark .................................................................................................................................. 40 

4.2. Application Examples ........................................................................................................................... 43 
4.2.1. Assessing the Effect of Partial Borehole Insulation ..................................................................... 43 
4.2.2. Finding the Ideal Length for an Insulated Section of a Medium Deep BHE ................................ 44 
4.2.3. Minimizing the Required Borefield Size ...................................................................................... 46 



 

XVIII 

CHAPTER 5: DISCUSSION & CONCLUSION .............................................................................. 49 

CHAPTER 6: OUTLOOK ................................................................................................................. 53 

REFERENCES .................................................................................................................................... 57 

APPENDIX ......................................................................................................................................... 65 
Appendix A:  Seasonal high temperature storage with medium deep borehole heat exchangers ................... 65 
Appendix B:  Characteristics of medium deep borehole thermal energy storage ............................................ 77 
Appendix C:  Optimization of Medium-Deep Borehole Thermal Energy Storage Systems ............................... 93 
Appendix D:  Modeling insulated borehole heat exchangers ......................................................................... 105 
Appendix E:  BASIMO – borehole heat exchanger array simulation and optimization tool ............................ 119 
Appendix F:  Digital Supplement ..................................................................................................................... 129 

CURRICULUM VITAE .................................................................................................................. 131 

  



 

  XIX 

List of Figures 

Figure 1: (a) Evolution of heat storage and extraction, QS: stored heat, QE: extracted heat; (b) 

Evolution of BHE inlet and outlet temperatures. (Schulte et al. 2016a; Welsch et al. 

2016a) .............................................................................................................................. 8 
Figure 2: Evolution of storage performance; model: 19 coaxial BHEs, BHE length: 500 m, BHE 

spacing: 5 m, flow rate: 4 l/s, inlet temperature: 90 °C during storage and 30 °C during 

extraction. (Schulte et al. 2016a; Welsch et al. 2016a) ..................................................... 8 
Figure 3: (a) problem domain with two types of boundary conditions; (b) subdivision of 

problem domain into finite elements. ............................................................................. 12 
Figure 4: Assembly of a triangular (ΩI) and a quadrilateral element (ΩII) ............................. 16 
Figure 5: Linear tetrahedron in the global (left) and local (right) coordinate system, after 

Diersch (2014) ................................................................................................................ 20 
Figure 6: Sketch of a coaxial BHE (centered inlet) with the insulated borehole section and the 

corresponding temperature profile for heat storage operation (Schulte et al. 2016b). ... 25 
Figure 7: Tree diagram illustrating the structure of BASIMO and the relation between the 

involved subroutines. ...................................................................................................... 27 
Figure 8: Templates for the arrangements of vertical BHEs in the discretized tetrahedron mesh 

(overhead perspective) generated with tetgen_input.m; model edge length: 100 m. ..... 30 
Figure 9: Flowchart illustrating the optimization procedure employing the aPC method (after 

Schulte et al. 2016a). ...................................................................................................... 35 
Figure 10: Setup and results of the code verification: (a) fine grid and (b) coarse grid 

discretization of the model domain (medium grid not shown), red circles mark the 

observation points where the solution is evaluated, the orange rectangle marks the heat 

source nodes; (c) resulting temperature distribution and (d) the discretization error 

plotted in a double logarithmic graph. ............................................................................ 39 
Figure 11: Comparison of BHE outlet temperatures of the central pipe of a BHE array 

calculated with BASIMO and with FEFLOW (after Schulte et al. 2016a). ....................... 41 
Figure 12: Comparison of the BHE model responses. Top: (a) short-term and (b) long-term 

evolution of the BHE outlet temperature. Bottom: BHE temperature profiles after (c) one 

day and after (d) ten days of heat extraction (after Schulte et al. 2016b). ..................... 42 
Figure 13: Subsurface temperature distribution of a single BHE with partial borehole 

insulation (upper 30 m) after one heat storage and extraction cycle. ............................. 44 
Figure 14: Temperature profiles of (a) a medium deep double U-pipe BHE without insulation 

and (b) an insulated double U-pipe BHE assuming equal heat extraction rates and equal 

boundary conditions (Schulte et al. 2016b). ................................................................... 45 
Figure 15: Optimization results: (a) outlet temperature after 30 days of operation for each 

iteration, (b) inlet and outlet temperature evolution of the base case (i.e. no insulation) 

and the ideally insulated BHE (Schulte et al. 2016b). ..................................................... 46 
Figure 16: Response surface of the aPC model showing the heat recovered in the 7th extraction 

cycle depending on the size of the BHE array and the two optimal solutions on the 

intersection with the 500 MWh plane (Schulte et al. 2016a). ......................................... 48 
Figure 17: Conceptual sketch: cross section of a potential sandbox experiment (dimensions 

not to scale); coaxial BHE with annular inlet in heat storage operation, low thermal 

conductivities in light grey, high thermal conductivities in dark grey. ............................ 54 



 

XX 

List of Tables 

Table 1: Key data on a few representative BTES systems; *first year of operation; 1: (Bauer et 

al. 2013; Mielke et al. 2014), 2: (Bollin et al. 2013), 3: (Lundh & Dalenbäck 2008), 4: 

(Reuß 2008), 5: (Sibbitt et al. 2012), 6: (Sørensen 2013). ............................................... 4 
Table 2: Typical thermo-physical and hydraulic properties for different crystalline rocks rich 

and poor in quartz from the Mid-German Crystalline High (after Bär 2012). ................... 6 
Table 3: Parameters of the verification model used to test the grid convergence, *according to 

Haynes et al. (2016). ...................................................................................................... 38 
Table 4: Model parameters and BHE properties for the first benchmark model. .................... 40 
Table 5: Results of the second benchmark simulation (after Schulte et al. 2016b). ............... 43 
Table 6: Differences of optimization examples computed with BASIMO. ............................... 43 

  



 

  XXI 

Index of Abbreviations and Symbols 

Abbreviations 

aPC  arbitrary polynomial chaos expansion 

PCE  polynomial chaos expansion 

BASIMO borehole heat exchanger array simulation and optimization tool 

BHE  borehole heat exchanger 

BTES  borehole thermal energy storage 

CHP  combined heat and power plant 

DTH  down-the-hole 

FEM  finite element method 

GCI  grid convergence index 

ROP  rate of penetration 

TRCM  thermal resistance and capacity model 

Formula symbols ۯ  thermal conductivity matrix ۰  volumetric heat capacity matrix b/܊  variable boundary / right-hand side ܿ  specific heat capacity 

D  borehole diameter ݀  norm of integration error ܨ  safety factor ݂  solution to a numerical model ݃  equaltiy constraint function ℎ  grid spacing / inequality constraint function ۸  Jacobian matrix ܭ  permability ܮ  length ܯ  total number of polynomials ܰ  total number of elements/subdomains ݊  normal vector / total number of nodes ܳ  heat ݍ  (heat) source / heat flux 

R  residual error / set of real numbers 

r  grid refinement ratio ܵ  storage coefficient ܶ/܂  temperature / temperature vector ෠ܶ  Dirichlet boundary condition ݐ  time ሶܸ   volume rate ܹ  weight coefficient ݔ  first spatial dimension (global coordinate system), model input ݕ  second spatial dimension (global coordinate system) ܼ  set of discrete numbers ݖ  third spatial dimension (global coordinate system) / depth ߁  domain or element boundary 



 

XXII 

 density ߬  auxiliary variable ߰  approximation function Φ  physical model approximation Ψ  polynomial Ω  domain or element ߱  weight function  ߩ auxiliary variable  ߥ auxiliary variable  ߤ thermal conductivity  ߣ thermal diffusivity, auxiliary variable  ߢ time integration coefficient  ߠ first spatial dimension (local coordinate system)  ߦ second spatial dimension (local coordinate system), auxiliary variable  ߟ third spatial dimension (local coordinate system)  ߞ error tolerance  ߝ auxiliary variable for analytical BHE solution  ߜ auxiliary variable for analytical BHE solution  ߛ auxiliary variable for analytical BHE solution  ߚ auxiliary variable for analytical BHE solution  ߙ

Subscripts and superscripts 0  initial ܾ  borehole wall ܿݎ݋  corrector ܧ  extraction ݁  element ݈݁ܽݒ  evaluated ݂  fluid ܥܩ  grout change ݅݊  inlet ݈  lower variable boundary ݊  (ortho)normal / time step / number of real variables ݐݑ݋  outlet ݌  element node / number of discrete variables ݁ݎ݌  predictor ܳ  heat ݍ  normal heat flux / Neumann boundary / replaced weight function ݌݁ݎ  representative ܵ  storage ݏ  solid rock ܶ  Dirichlet boundary ݑ  upper variable boundary ܿ݁݌ݏ  specific ݐ݋ݐ  total ∗  optimal



 

  1 

Chapter 1: Introduction 

1.1. Background 

The public debate on renewable energies is often focused on electricity supply. Yet, countries 

in high latitudes spend vast amounts of energy on heating, especially in winter. For example, 

in Germany heating purposes alone account for more than half of the total end energy 

consumption (AGEB 2013). Consequently, there is a high potential for energy conservation in 

this sector. Renewable energy sources like solar collectors are increasingly used to cover the 

heat demand, to reduce the consumption of fossil fuels and to mitigate the CO2 emissions (Bauer 

et al. 2010). Likewise, the increased use of district heating grids is supposed to play an 

important role in the future of renewable energies (Lund et al. 2010; Sass et al. 2015). The 

grids are often powered by combined heat and power plants (CHP). However, like the demand, 

the renewable heat supply is subject to seasonality. In summer, solar thermal collector panels 

provide excess heat, whereas the heating demand is low. Yet, during winter time, a secondary 

system has to provide heat when the situation is reversed. Moreover, electricity is needed 

throughout the year, but the seasonality of the heat demand forces CHPs to be run at reduced 

capacity and renders them inefficient during summer when the heat demand is low. Thus, a 

seasonal storage can enhance the efficiency of CHPs in district heating grids and solar collector 

systems by shifting excess heat to winter time.  

Early considerations for solar thermal energy systems envisaged water tanks, but other 

technologies have been considered for seasonal heat storage as well (Schmidt et al. 2004; 

Dinçer & Rosen 2010; Pinel et al. 2011; Xu et al. 2014; Hesaraki et al. 2015). Because it is often 

the most expensive component in the system, it is imperative to exploit the decreasing price per 

storage volume with increasing size (Lindenberger et al. 2000). While water tanks require 

considerable space on the surface and cannot exploit this reverse correlation, borehole thermal 

energy storages (BTES) need only a small amount of space to tap into a large volume of 

subsurface rock. Borehole heat exchangers (BHE) penetrate the rock mass, which provides a 

high heat capacity and serves as a thermal storage. A BHE is a closed loop pipe system, which 

is fitted in a borehole. In many countries, the borehole has to be grouted. Depending on the 

temperature difference between the borehole wall and the fluid circulating in the BHEs, heat is 

transferred to or from the storage (Sass et al. 2016a). Additionally, geothermal heat feeds such 

a system. This combination of solar heat usage, seasonal storage and geothermal heat has 

already demonstrated as highly efficient with shallow BTES in practice in the recent past (Bauer 

et al. 2008; Bauer et al. 2010; Sibbitt et al. 2012; Mielke et al. 2014).  

However, shallow aquifers are often used for the extraction of drinking water. In Germany and 

many other countries, legal regulations restrict alterations of groundwater that may have a 

negative impact on drinking water quality (Haehnlein et al. 2010). Thus, excessive heating, 

which can induce microbial growth, has to be prevented in these aqui-

fers (Verein Deutscher Ingenieure 2001a, b, c; Griebler et al. 2015). Since solar collectors can 

provide a temperature output of 100 °C and above (Kalogirou 2004) and district heating grids 

operate at supply temperatures of ≳ 80 °C (Gadd & Werner 2014), storage of the excess heat in 

shallow BTES at such high temperature levels has to be regarded critically. Instead, the heat 

can be stored in greater depth. A thermally insulating grout in the upper section of the boreholes 

protects the topmost aquifer from excessive heating, while the bottom section is used for the 

heat exchange with the deeper subsurface (Appendix A and Appendix D). The use of geothermal 

energy at a depth, which significantly exceeds the typical BHE length of 100 m up to 1000 m, 
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is termed medium deep geothermics (Sass et al. 2016c). Consequently, BHE arrays used for 

heat storage at these depths are called medium deep BTES systems (Appendix A).  

Drilling is one of the critical cost factors in the development of a geothermal reservoir (Blum et 

al. 2011). Deeper boreholes raise the costs for a high temperature underground storage system 

significantly. Consequently, the design of the BHE array has to be optimized for the heating 

purpose to avoid an oversized and therefore overpriced system. Numerical simulations can 

predict the performance of a planned system prior to the investment of building a storage and 

help to optimize its design. However, the corresponding numerical models have to include all 

parameters relevant to the heat transfer processes in the subsurface. Furthermore, they should 

be readily adaptable to be deployed in mathematical optimization. 

Earlier optimization approaches used analytical two dimensional finite line source models (e.g. 

Molina-Giraldo et al. 2011; de Paly et al. 2012; Bayer et al. 2014), which represent 

oversimplifications of the actual BHEs. Simulators using fully discretized models, like 

OpenGeoSys (Kolditz et al. 2012), can consider all relevant thermo-physical properties of the 

BHEs. However, the full discretization of the boreholes results in high computational costs, 

which are only acceptable for models of very few BHEs, but not for entire BTES systems. Other 

models like the commercial simulator FEFLOW (Diersch 2014) capture the physical parameters 

of the borefield in high detail using fast analytical solutions, but the finite element mesh has to 

be created manually, which prohibits automatization necessary for mathematical optimization. 

Therefore, a simulation tool had to be developed that satisfies the following requirements: high 

physical detail of the model at acceptable computational speed and the capability for 

mathematical optimization. 

This work presents the MATLAB-based Borehole Heat Exchanger Array Simulation and 

Optimization (BASIMO) tool, which can numerically simulate and optimize the three 

dimensional design of a medium deep BTES. Instead of using line source or cylindrical source 

models, the BHEs’ thermal interactions are calculated by more detailed thermal resistance and 

capacity models (TRCM). Furthermore, for the first time, depth-dependent BHE properties like 

an insulation in the topmost part of the wellbore can be considered without a fully discretized 

model of the BHE. In this manuscript, the structure of the program and its features are described 

and application examples are given.  

1.2. State of the Art 

Beside the almost ubiquitous availability and the base load capability of geothermal energy, one 

of the key advantages is the low operational cost compared to the fuel cost of conventional 

energy sources. However, geothermal projects are characterized by expensive investments, 

which are mainly required for developing the geothermal reservoir. Especially for deeper 

boreholes, drilling can account for 50 % to 80 % of the total capital costs (Blum et al. 2011; 

Garms 2014; Hornich 2014; Stockhausen 2014). Therefore, affordable drilling technology is an 

important prerequisite for the economic feasibility of medium deep BTES systems.  

1.2.1. Drilling 

Shallow boreholes for geothermal applications are commonly drilled with pneumatic 

down-the-hole (DTH) hammers (Sanner 2012): pressurized air is channeled through the drill 

string and used for the propulsion of the hammer at the bottom of the borehole. In the annulus, 

the returning mixture of air and groundwater transports the cuttings to the surface. Pneumatic 
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DTH hammers are versatile tools, which can be used irrespectively of the rock strength and 

outperform regular polycrystalline diamond compact (PDC) or tricone drill bits in terms of their 

rate of penetration (ROP) (Buja 2009; Riechers 2011). Thus, pneumatic DTH hammers allow 

for much more efficient and economical drilling. However, the air pressure has to exceed the 

hydrostatic pressure at the bottom of the borehole. Therefore, depending on the groundwater 

level, the economical use of pneumatic DTH hammers is limited to depths of 200 m to 400 m. 

Beyond this point, the increasing energy demand, which is amplified by the compressibility and 

the low density of the pressurized air, render pneumatic DTH hammers inefficient (Foralith 

1998; Wittig et al. 2015). Hence, conventional rotary drilling is the prevalent technology for 

deep geothermal applications, but it is also significantly more expensive (Bundesministerium 

für Umwelt Naturschutz und Reaktorsicherheit 2007).  

In many European countries geothermal power plants can benefit from feed-in tariffs for 

renewable electricity (Cansino et al. 2010). Additionally, financial institutions like the German 

KfW bank offer low interest rate loans for deep drilling ventures (i.e. > 400 m depth) related to 

combined heat and power projects (KfW Bankengruppe 2009). This helps to compensate for 

the expensive drilling of the deep boreholes. Medium deep BTES systems only store and provide 

renewable heat. Yet, the promotion of renewable heat is lagging behind. Existing tax 

exemptions and subsidies mainly suit household-sized producers; only a few countries have 

introduced feed-in tariffs for renewable heat (Cansino et al. 2011). Consequently, a more 

competitive drilling technology is required for medium deep BTES applications.  

Advances of the past two decades have led to the development of efficient hydraulic DTH 

hammers, which use a fluid working medium instead of pressurized air (Melamed et al. 1999; 

Tuomas 2004; Sanner 2012; Bruce et al. 2013; Wittig et al. 2015; Wassara 2016). The primary 

energy required for drilling, i.e. fuel, can be reduced by up to 76 % (Hornich 2014). In contrast 

to the pneumatic DTH technology, hydraulic hammers can operate at higher pressure and 

therefore in greater depth, while still maintaining a comparably high ROP (Homuth et al. 2016; 

Wassara 2016). Also, no fluid additives like bentonite are necessary, which makes it possible to 

apply this drilling method in water protection zones.  

BTES applications impose high requirements on the verticality and the spacing of the boreholes. 

The minimum spacing for medium deep boreholes drilled with pneumatic DTH hammers can 

be considered to be as low as 10 m (Sass et al. 2016b). However, BTES systems require the 

boreholes to be parallel and approximately 5 m apart to ensure sufficient thermal interaction 

between the BHEs (Appendix B). This requirement can hardly be met with pneumatic DTH 

hammers. Yet, the up-hole velocity of water is much less than the velocity of compressed air 

expanding after passing through the DTH hammer (Wassara 2016). Thus, the annulus between 

the borehole wall and the drilling tool can be smaller and the bottom hole assembly can be 

equipped with tightly fitting stabilizers, which would otherwise lead to quick abrasion of the 

guide ribs, if they were exposed to the expanding air of a pneumatic hammer (Homuth et al. 

2016; Wassara 2016). As a beneficial side effect, the hydrostatic pressure also stabilizes the 

borehole wall (Bruce et al. 2013). More importantly, however, this improves the straightness 

of the bore path. Therefore, hydraulic DTH hammers allow for significantly lower deviations 

from the vertical axis than pneumatic hammers (less than 10 % compared to ~35 %; Riechers 

2011; Wittig et al. 2015). As a result, the reduced risk of intersecting bore paths permits closer 

borehole spacing. Nonetheless, a radial distance of only 5 m between neighboring boreholes 

still poses a substantial challenge, even with a hydraulic DTH hammer drilling, which can be 

considered as the most suitable drilling technology for medium deep BTES systems. 
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1.2.2. Borehole Thermal Energy Storage 

Similar to BTES operation, the regular dual use of BHEs for heating and cooling corresponds to 

the seasonally alternating extraction and injection of heat from and to the ground. However, to 

qualify as an underground thermal energy storage, the subsurface has to be heated intentionally 

to increase the source temperature of the heat pump for a subsequent heating purpose (Sanner 

2005). Shallow BHE arrays have been in use for the seasonal storage of heat since the 1970s 

and the 1980s (Givoni 1977; Andersson & Eriksson 1981; Beckmann & Gilli 1984). Extensive 

research on BTES was carried out across Europe, particularly in Scandinavian countries, 

culminating in the first large-scale pilot facility at the Luleå University in Sweden: It consisted 

of 120 BHEs of 65 m length (Nordell 1987, 1990). Many other installations followed, for 

example in the wake of the German research and development programs Solarthermie2000 and 

Solarthermie2000plus on urban solar heat supply, which helped to push the technology of 

shallow BTES to economic viability (Mangold 2007). The BTES are typically used for the 

seasonal storage of solar heat and vary in size and design (Table 1). However, they are usually 

much bigger than common BHE installations of single households and supply heat for small 

communities. Mostly, the BHE arrays consist of boreholes, which are not deeper than 100 m. 

Storage systems in Lund, Sweden (Andersson et al. 2013), or Oshawa, Canada (Dinçer & Rosen 

2007), are exceptions where the boreholes reach depths of 230 m and 200 m, respectively. 

Table 1: Key data on a few representative BTES systems; *first year of operation; 1: (Bauer et al. 2013; Mielke et al. 

2014), 2: (Bollin et al. 2013), 3: (Lundh & Dalenbäck 2008), 4: (Reuß 2008), 5: (Sibbitt et al. 2012), 6: (Sørensen 

2013). 

location 
year 
built 

heat 
demand 
[MWh] 

storage 
volume 
[m3] 

solar 
collector 
size [m2] 

demand covered 
by renewables 

buffer 
storage 
[m3] 

heat 
pump 
[kWth] planed real 

Neckarsulm 

(Germany)1,2 
1997 3000 63,400 5,884 50 % 55.8 % 200 512 

Anneberg 

(Sweden)3 
2001 550 60,000 3,000 60 % 70 % 0 none 

Attenkirchen 

(Germany)2,4 
2002 487 9,350 800 50 % 29 % 500 550 

Okotoks 

(Canada)5 
2006 528 35,000 2,290 90 % 97 % 240 none 

Crailsheim 

(Germany)1,2 
2007 4,100 39,000 7,410 50 % 35.8 % 580 485 

Brædstrup 

(Denmark)6 
2012 40,000 19,000 18,600 50 % 16.5 %* 5,500 1,200 

1.2.3. Numerical Modeling 

Along with the field experiments, the first numerical simulation approaches for BTES systems 

were published as well. For example, Lund & Östmann (1985) developed a model of a shallow 

BTES, which also considered convective heat flow in the storage region. Their study already 

included a rudimentary economical optimization of the system consisting of a BTES and a solar 

collector installation. Nordell (1994) built upon that and looked into the optimization of the 

storage layout under economical aspects, investigating the sensitivities of design parameters. 

More recent work applies mathematical optimization to reduce the risk of reservoir depletion 

by altering the geometry of the BHE array or by adapting the storage operation (De Ridder et 

al. 2011; Bayer et al. 2014).  
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All considerations on simulation-based BTES system optimization rely on calculation models 

for the heat transfer between the BHEs and the subsurface. The approaches and the level of 

detail captured by the existing models vary widely. Many analytical (Zeng et al. 2002; Lamarche 

& Beauchamp 2007; e.g. Bandos et al. 2009; Yang et al. 2009; Man et al. 2010; Molina-Giraldo 

et al. 2011) and numerical (Lee & Lam 2008; Al-Khoury et al. 2010; De Carli et al. 2010; Kim 

et al. 2010; Lazzari et al. 2010) methods have been proposed. Most of the former are based on 

the line source theory (Ingersoll & Plass 1948; Ingersoll et al. 1950) or the cylindrical source 

theory (Carlslaw & Jaeger 1986). These analytical solutions often treat BHEs as mere heat 

sources defined by a constant heat rate per borehole length, neglecting material properties or 

axial effects. Usually, these models only consider single BHEs in a homogeneous subsurface and 

a conduction-dominated regime. As they are easy to implement and exhibit much higher 

computational speed than the numerical solutions, they are commonly used for the evaluation 

of short-term interactions like thermal response tests (Lehr & Sass 2014).  

However, BHE arrays consist of multiple boreholes, which are only a few meters apart. In the 

long term operation, the thermal interference between different BHEs and axial effects resulting 

from the convective heat transport within the BHE pipes become significant and have to be 

considered in simulations. Based on the line source theory, Claesson & Eskilson (1988) and 

Eskilson & Claesson (1988) developed a method to calculate a thermal response model by 

so-called dimensionless g-functions. With the resulting model, long-term simulations allowed 

for the consideration of thermal interference between the boreholes for given geometries of the 

BHE array. Hellström (1991) elaborated on his colleagues’ work and provided an analytical 

solution based on simple thermal resistance models for different types of BHEs, which also 

account for convective heat transfer of the fluid in the pipes. Commonly used commercial 

software like EED (Hellström & Sanner 1994) still employ this method. However, for each 

borefield configuration, the g-functions have to be calculated separately. Thus, this approach 

lacks flexibility in the choice of the borefield geometry. Furthermore, the subsurface is still 

considered homogeneous and the model in itself is still steady-state. Transient simulation is 

only achieved by superposition of consecutive step pulses (Hellström 1991).  

Many of these shortcomings can be addressed in a dual-continuum approach: the model of the 

BHEs and the surrounding subsurface is split (Shao et al. 2014). While the calculation of the 

heat transfer at the BHEs remains an analytical local steady-state solution, it is coupled to a 

numerical subsurface model, which allows for transient simulations and the consideration of a 

heterogeneous subsurface. Moreover, the thermal interference between the BHEs is determined 

by the numerical subsurface model rather than using array geometry specific g-functions. 

Numerical BHE models can be coupled as well (Al-Khoury et al. 2010), but only at significantly 

higher computational cost. The concept of coupling analytical or numerical BHE solutions with 

a separate subsurface model has been put into practice, for instance, in the software FEFLOW 

(Diersch et al. 2011b; Diersch 2014). It employs more advanced TRCMs for the BHEs (Bauer et 

al. 2011b; Diersch et al. 2011a) and calculates the subsurface heat and mass transport on a 

triangular prism mesh of finite elements. This approach represents the starting point for the 

development of BASIMO, which is presented in this thesis. 

1.3. Characteristics of Medium Deep Borehole Thermal Energy Storage Systems 

The principles of BTES have been briefly summarized by Reuss (2015) and Bauer (2011): in 

general, a BTES system consists of an array of boreholes, each fitted with a BHE. The number 

of BHEs, their radial distance and their length define the size of the storage. The BHEs have to 
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be located in a favorable distance of each other to grant thermal interference: BHEs that are 

too close to each other deplete the geothermal reservoir too quickly in winter, whereas BHEs 

that are too widely spaced cannot benefit from the heat stored in neighboring boreholes. A 

radial distance of about 5 m has proven to be ideal for typical operation scenarios with half-year 

charging and discharging cycles (Appendix B). BTES systems can only be insulated at the top, 

whereas the bottom and the sides remain without insulation. The heat losses of the storage are 

proportional to its enveloping surface, while the storage capacity correlates with its volume. 

Thus, a low surface-to-volume ratio is beneficial and results in a high storage efficiency 

(Appendix B). Therefore, BTES systems are typically large and consist of dozens of BHEs, which 

are arranged in a compact geometry. The resulting high capacity makes them particularly 

suitable for seasonal heat storage. Water tanks with a comparable heat storage capacity would 

require considerable space on the surface. Furthermore, a BTES system can be enlarged by 

drilling deeper or adding additional boreholes.  

Despite the seemingly universal applicability of BTES, the hydrogeology on site is fundamentally 

important. While groundwater in a porous host rock can enhance the storage due to its high 

volumetric heat capacity, groundwater flow can reduce the BTES performance significantly or 

even render it entirely ineffective by increasing the heat losses due to convective heat transport 

(Appendix B). Although providing only a vague definition, Sanner & Stiles (1997) suggest that 

a BHE array can be considered as an underground thermal energy storage system, if less than 

25 % of the annual thermal energy turnover is lost to the surrounding rock through heat 

dissipation. Hence, to prevent advective heat losses, BTES sites should have a low permeability 

and a negligible groundwater flow rate (Reuß 2015). Typically, permeability decreases with 

increasing depth and the related rock compaction, which prevents heat removal from the 

storage by groundwater flow. Furthermore, the stored heat will not dissipate as fast as in 

shallow depths due to a reduced lateral temperature gradient. Unfaulted crystalline basement 

rock, which can often be found under its sedimentary cover in medium and therefore reasonable 

depth, represents a good storage medium for BTES systems. In addition to an inherent low 

permeability, crystalline rocks rich in quartz like granite or granodiorite exhibit above average 

thermal conductivity (Table 2). This facilitates the conductive heat transport into and from the 

ground. Numerical simulations have shown that the thermal conductivity and the ground water 

flow in the BTES reservoir rock can have a significant influence on the storage efficiency 

(Appendix B). Hence, the influence of the location for a BTES system should not be disregarded. 

Table 2: Typical thermo-physical and hydraulic properties for different crystalline rocks rich and poor in quartz from 

the Mid-German Crystalline High (after Bär 2012). 

rock type ࣅ [W m-1 K] ࣄ [10-6 m2 s-1] ࢉ [J kg-1 K-1] ࡷ [m2] 

amphibolite 1.88 ± 0.21 0.81 ± 0,14 813 ± 92 ~10-16-10-17 

gabbro 2.10 ± 0.19 1.01 ± 0,09 764 ± 53 ~10-16-10-17 

diorite 2.23 ± 0.18 1.03 ± 0,10 760 ± 59 ~10-16-10-17 

granodiorite 2.51 ± 0.33 1.26 ± 0,22 736 ± 68 ~10-16-10-17 

granite 2.58 ± 0.38 1.33 ± 0,25 753 ± 98 ~10-16-10-17 

gneiss 2.59 ± 0.25 1.33 ± 0,24 762 ± 106 ~10-16-10-17 
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While medium deep BTES systems have several advantages over shallow ones, they still 

penetrate the topmost aquifers. In order to minimize the thermal impact on the shallow 

aquifers, a medium deep BTES system should be thermally insulated within the boreholes at 

the topmost part and reach a few hundred meters deep in order to provide enough heat 

exchange surface without insulation (Bär et al. 2015). Shallow BHEs are often polymer U-pipes 

or double U-pipes, whereas deeper BHEs are usually coaxial pipe systems with a high thermal 

conductivity outer steel pipe (Sass et al. 2016a). The inner pipe is insulated to reduce the 

thermal interaction between the up- and down-streaming fluids. In summer, the warm fluid is 

injected into the inner pipe for heat storage, while in winter the cold fluid is injected into the 

annular gap for heat extraction (Sass et al. 2016a). The insulating backfill material in the 

topmost part of the wellbore protects the topmost aquifer from excessive heating, but it can also 

increase the outlet temperature of medium deep BHEs (Appendix D). This enhances the 

performance of the heat pump and possibly allows for utilization with conventional radiator 

heating systems, which require a higher supply temperature (Bär et al. 2015).  

Medium deep BTES are operated in seasonal charging and discharging cycles. Excess thermal 

energy is stored in summer. During winter it is extracted again for heating purposes. The 

performance is quantified by the heat, which is stored and extracted during each cycle (Figure 

1a).  

dtVcTQ

t

ffES  ⋅⋅⋅Δ= ρ/  (1) 

With ܳௌ/ா: stored or extracted heat, ∆ܶ: temperature difference between inlet and outlet, ߩ௙: 

working fluid density, ௙ܿ: specific heat capacity of working fluid, ሶܸ : working fluid flow rate and ݐ: time of operation. This defines the stored and extracted heat as the amount of thermal energy, 

which is rejected and absorbed by the fluid in the BHEs, respectively. The ratio of extracted 

heat to stored heat ܵ defines the storage coefficient (Verein Deutscher Ingenieure 2001c), while 

the specific heat extraction rate ܳ ௦௣௘௖ describes the system’s efficiency of heat exchange between 

BHEs and the subsurface normalized by the total borehole length. 

S

E

Q

Q
S =  (2) 

Etot

E

tL

Q

⋅
= specQ  (3) 

With ܵ: storage coefficient, ܳௌ/ா: extracted and stored heat, ܳ௦௣௘௖: specific heat extraction rate, ܮ௧௢௧: total drilled length and ݐா: time of operation in heat extraction mode. In general, the 

difference between the inlet and outlet temperature of the working fluid in the BHEs decreases 

over the course of a charging or discharging cycle because of the continuous heat exchange 

with the reservoir (Figure 1b).  
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Figure 1: (a) Evolution of heat storage and extraction, QS: stored heat, QE: extracted heat; (b) Evolution of BHE inlet 

and outlet temperatures. (Schulte et al. 2016a; Welsch et al. 2016a) 

Due to diffusion processes, not all of the stored heat can be recovered. Some of the thermal 

energy remains in the reservoir and begins to create a thermal plume in the subsurface. This 

thermal plume decreases the lateral temperature gradient between the BHEs and the 

surrounding rock, which leads to declining heat storage in summer, but enhanced heat 

extraction in winter (Figure 2). This effect builds up over the course of several charge and 

discharge cycles. As a result, the system efficiency improves, gradually approaching a balanced 

state. Yet, the trend persists even after many years of operation (Figure 2). However, typical 

BTES systems take about 3 to 6 years to achieve 80 % of their final storage efficiency 

(Appendix B). 

 

Figure 2: Evolution of storage performance; model: 19 coaxial BHEs, BHE length: 500 m, BHE spacing: 5 m, flow rate: 

4 l/s, inlet temperature: 90 °C during storage and 30 °C during extraction. (Schulte et al. 2016a; Welsch et al. 2016a) 
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As mentioned above, the size and shape of the BTES define the surface-to-volume ratio and 

thereby the heat losses and the efficiency of the system. A comprehensive study (Appendix B) 

of the system parameters including the number, the length and the spacing of the BHEs confirms 

that large BTES systems are more efficient than small ones. Medium deep BTES systems, which 

are large enough to store and extract several GWh of heat per cycle can operate at storage 

efficiencies above 80 %. Furthermore, the study indicates that the storage efficiency is strongly 

dependent on the BHE inlet temperature during heat injection and extraction, respectively. 

This, in turn, relates to the return temperature of the building’s heating system. Hence, the 

simulation of a BTES system can only be as good as the data provided from the building side, 

which controls the storage operation. However, building and storage constitute an interacting 

system. Therefore, as Welsch et al. (2016a) already pointed out, comprehensive considerations 

require coupled simulations of the storage and the building.  
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Chapter 2: Borehole Heat Exchanger Array Simulation Tool 

As stated in Chapter 1, any consideration on the optimization of BTES systems relies on a 

simulation model. Until now, commercially available simulators have not included the means 

for mathematical optimization. Furthermore, they have often not captured the required level of 

physical detail of the BHE array design and operation for BTES applications. The necessity of a 

simulator for BTES systems, which allows for coupling with optimization algorithms or building 

simulation models, has been the motivation for the development of the Borehole Heat Exchanger 

Array Simulation and Optimization (BASIMO) tool. BASIMO was developed to meet the 

following requirements:  

- Transient calculation of conductive heat transport in the subsurface 

- Consideration of geological profiles 

- Inclined boreholes 

- Wide variety of BHE array geometries and arbitrary borehole locations 

- Consideration of the most typical BHE types (U-pipe, double U-pipe and coaxial pipe) 

- Detailed modeling with BHE material properties 

- Consideration of insulated borehole sections 

- BTES operation by predefined inlet temperature or heat load 

- User-defined time series for operation input 

- Detailed simulation output (subsurface and BHE outlet temperature time series) 

- Coupling to mathematical optimization algorithms 

- Coupling to building simulation models 

- Reasonable computation time 

- User-friendliness 

With the focus on the mathematical optimization, MATLAB (The MathWorks 2015a) was 

chosen as a programming environment. In MATLAB, BASIMO is programmed as an accessible 

and modular code, which allows for future adaptations. Most importantly, however, BASIMO 

can be directly linked to the MATLAB Global Optimization Toolbox (The MathWorks 2015b), 

which provides multiple mathematical optimization algorithms and can be easily configured. 

Regardless of the optimization, BASIMO is also a versatile standalone simulator for BHE arrays 

in its own right. 

The simulation of medium deep BTES operation comprises the calculation of the subsurface 

heat transport and the thermal interaction of the BHEs with the surrounding rock. Just like 

FEFLOW (see Chapter 1.2.3), BASIMO uses a dual-continuum approach, which splits the 

calculation of the heat transfer: the BHEs are modeled with the analytical local steady-state 

solution developed by Diersch et al. (2011a) and Bauer et al. (2011b). It is based on Eskilson 

& Claesson’s (1988) concept, but is enhanced to account for thermally insulated sections of the 

borehole (Appendix D). The analytical BHE solution is coupled to a numerical model employing 

the finite element method in order to calculate the transient heat transport in the subsurface 

and the thermal interference between the BHEs. In the following, the structure and the features 

of BASIMO are explained in detail. 

2.1. The Finite Element Method 

The finite element method (FEM) is a numerical technique for the approximation of differential 

equations, which is used in various fields of applied science and engineering. For BASIMO, a 
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generalization of the standard Galerkin method of weighted residuals (Zienkiewicz et al. 2013) 

is applied in an adapted MATLAB (2015a) implementation for finite elements (Alberty et al. 

1999). For brevity, the finite element method is described for two-dimensional problems in this 

chapter, whereas the simulator calculates three-dimensional heat transport.  

2.1.1. Semidiscritization 

The principles of the finite element method in heat transfer problems have been described by 

Reddy and Gartling (2010), which is the source for the summary of the method in Chapters 2.1 

and 2.2: The basic idea is that the solution of a differential equation can be described as a linear 

combination of a priori unknown approximation functions and corresponding coefficients for 

the entire domain Ω of the problem. While the coefficients have to be determined to satisfy the 

differential equation, the approximation functions have to be chosen in a way that the boundary 

conditions of the problem are met. However, finding the appropriate approximation functions 

can be difficult, as most realistic problems describe geometrically complex regions. In order to 

account for different boundary conditions on different parts of the region (Figure 3a), the 

problem domain Ω with the boundary Γ has to be divided into ܰ non-overlapping subdomains 

of simple geometric shapes, the so called finite elements Ω௘ with respective boundaries Γ௘ 

(Figure 3b).  

Ω≅Ω
=

N

e

e

1

;          Γ≅Γ
=

N

e

e

1

 (4) 

For each element the approximation functions are constructed separately. This way, any 

complex shape of the problem domain with arbitrary boundary conditions can be described and 

the solution of the differential equation can be approximated elementwise. For complex domain 

geometries, the sum of elements may not equal the actual domain exactly. The mismatch is 

called discretization error (Figure 3b). In general, a fine discretization, i.e. more, but smaller 

elements, results in a smaller discretization error compared to a mesh with fewer, but bigger 

elements. Alternatively, the discretization error can be reduced by using higher-order elements. 

 

Figure 3: (a) problem domain with two types of boundary conditions; (b) subdivision of problem domain into finite 

elements. 
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The governing equation for the subsurface heat transport is heat diffusion according to Fourier’s 

Law of heat conduction.  

( ) Qsss qT
t

T
c +∇⋅∇=
∂
∂ λρ  in Ω  (5) 

With ߩ௦: rock density, ܿ௦: specific heat capacity of the rock, ܶ: temperature, ݐ: time, ߣ௦: thermal 

conductivity of the rock and ݍொ: heat sources and sinks. Since low-permeable rock bodies with 

negligible groundwater flow are targeted for medium deep BTES, convective heat transfer is 

disregarded. Also, temperature dependency or anisotropy of material parameters is not taken 

into account. Equation (5) has to be solved for the place and time dependent temperature ܶ(ݔ, ,ݕ  in the model domain Ω. The initial conditions and the boundary conditions have to be (ݐ

considered. For conductive heat transport, the boundary conditions can be a temperature on Γ் 

(i.e. Dirichlet boundary condition) or a heat flux normal to the domain boundary on Γ௤ (i.e. 

Neumann boundary condition).  

( ) ( )yxTtyxT ,0,, 0==                               ( ) Ω∈yx,  (6) 

( )  T̂sT =                                                    Ts Γ∈  (7) 
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


∂
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∂
∂= λ                  qs Γ∈  (8) 

଴ܶ describes the initial temperature distribution in the model domain Ω, ෠ܶ is the Dirichlet 

boundary condition, ݍ௡ is the Neumann boundary condition (defined for a Cartesian coordinate 

system) and ݊௫ and ݊௬ are the components of the unit vector perpendicular on the boundary Γ. Γ் and Γ௤ are disjunct parts of the domain boundary Γ, which have to fulfill the following 

conditions:  

∅=Γ∩Γ

Γ=Γ∪Γ

qT

qT
 (9) 

Considering a steady-state problem without any sources for simplicity at first, the time 

derivative term and the source term can be set to zero. The governing equation is then reduced 

to the Laplace equation:  
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Then, the sought solution of the differential equation ܶ(ݔ,  can be approximated for each (ݕ

finite element by a Lagrange interpolation 

( ) ( ) 
=

=≈
n

p

p
e
p

e TyxTyxT
1

,, ψ                      ( ) eyx Ω∈,  (11) 

Where ܶ௘(ݔ, ,ݔ)ܶ is the approximation of (ݕ  for the finite element Ω௘ and ௣ܶ௘ denote the (ݕ

initially undetermined temperature values at the ݊ element nodes. The ߰௣ are the 

corresponding interpolation functions of the element. Each element node has one 
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corresponding function, which takes on ߰௣ = 1 at the respective node ݌ and ߰௣ = 0 at all other 

nodes. Hence, the interpolation functions depend on the number of nodes ݊ and the shape of 

the finite elements. They will be discussed in more detail in section 2.2.  

The replacement of ܶ in (10) by ܶ௘ results in a residual error ܴ௘(ݔ,  because ܶ௘ is only an ,(ݕ

approximation. 
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The method of weighted residuals requires this error to vanish, if the residuals are weighted by 

functions ߱ and integrated over the subdomain of the element Ω௘. The resulting statement is 

called the weak form. The governing differential equation is not fulfilled precisely in every point 

anymore, but only in a weighted-integral sense over the subdomain Ω௘. 

0   =
Ωe

dydxReω  (13) 

Inserting the residual error (12) of the differential equation (10) in the weak form gives the 

weighted-residual statement (14). Considering the approximation of ܶ௘ according to (11), the 

functions ߰௣ have to be differentiable twice with respect to ݔ and ݕ, whereas the weight 

functions ߱ are not subject to differentiation.  
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This requirement limits the choice of interpolation functions to polynomials of second-order or 

higher. However, in the weak form, integration-by-parts following Green’s first identity (Strauss 

2007) can weaken this continuity requirement by shifting the differentiation partially from ܶ௘ 

to ߱. 
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In the differential equation, temperature ܶ௘ is the dependent unknown and therefore termed 

the primary variable. The boundary integrals on the right-hand side in (15) contain the 

expression for the heat flux ݍ௡ normal to the element boundary Γ௘ (8), which is denoted as 

secondary variable. Applying these relations on the weighted-residual statement (14) and 

rearranging the equation gives the following description of the weak form. 
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The left-hand side of this expression can be expanded by inserting the approximation for ܶ௘. It 

is obvious, that now the functions ߰௣ only need to be differentiable once. Hence, interpolation 

functions ߰௣, which are linear in both ݔ and ݕ will be sufficient. 
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Since the temperatures ௣ܶ௘ are located at the ݊ nodes of the element Ω௘ and since they are not 

functions of ݔ and ݕ, they can be excluded from the integral expression.  
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The resulting algebraic equation contains ݊ unknowns: the node temperatures ௣ܶ௘. Thus, a 

system of ݊ independent equations is required to solve for the unknown temperatures ௣ܶ௘. The 

equations must hold for any weight function ߱. Therefore, in the Galerkin method the 

interpolation functions ߰ are chosen as weight functions. Substitution of ߱ by interpolation 

functions denoted as ߰௤ provides the ݍth of ݊ statements for the system of equations: 
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where ܣ௣௤௘  and ܾ௤௘ are here defined by 
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The system of the ݊ equations can be rewritten in matrix notation: 

eee bTA =  (21) 

where Ae is the quadratic thermal conductivity matrix and be is the right-hand side, which 

contains the boundary-normal heat fluxes. 

Returning back to a problem, which captures transient heat conduction with internal heat 

generation, the description of the weak statement for steady-state (16) expands by a capacity 

and a source term following the same derivation as described above: 



 

16 

e
q

n

p

e
p

e
pq

n

p

e
pe

pq

qnqQ

e
q

s

e
q

sq

e

ss

bTA
dt

dT
B

dsqdydxqdydx
y

T

yx

T

xt

T
c

eee

=+

+=







∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂





==

ΓΩΩ

11

or

      ψψ
ψ

λ
ψ

λψρ

 (22) 

where ܤ௣௤௘ ௣௤௘ܣ ,  and ܾ௤௘ are defined by 
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Subsequently, the system of equations can be expressed in a short matrix notation, which is 

called the finite element model of the governing differential equation (5): 

eeeee bTATB =+  (24) 

where Be is the heat capacity matrix, Ae is the thermal conductivity matrix and be is the 

right-hand side now containing heat source terms and boundary conditions on the element 

boundary Γ௘. In BASIMO, an analytical solution for the thermal interaction of the BHEs 

calculates the resulting heat source terms contained in be (Chapters 2.1.3 and 2.3).  

2.1.2. Assembly 

The finite element model can be obtained for every element Ω௘ of the domain. It is generally 

possible to combine differently shaped elements in one finite element mesh (Figure 4). Two 

rules have to be considered in the process:  

1. Neighboring elements have the same temperature at the nodes they share (i.e. 

continuity of the primary variable) 

2. The heat fluxes across the boundary of neighboring elements cancel each other out (i.e. 

balance of the second variable)  

 

Figure 4: Assembly of a triangular (ΩI) and a quadrilateral element (ΩII) 
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After all finite element models are obtained, one global system of equations is assembled. It 

contains one equation for every node in the finite element mesh. As neighboring elements share 

some of their nodes (25), the respective finite element models (24) contribute to the 

corresponding nodal equations in the global system: the temperature nodes are replaced by 

global nodes (26-27) and the rearranged subsystems are summed up in the global matrix 

equation (28). An example for the assembly of a steady-state finite element model (21) 

consisting of a triangular and a quadrilateral element is given with reference to Figure 4: 

534234321211  ;  ;  ;  ; TTTTTTTTTTTT IIIIIIIIIII =======  (25) 
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For the transient case, the assembly is carried out accordingly and results in the following matrix 

equation describing the entire domain Ω:  

bATTB =+  (29) 

BASIMO performs the assembly of the matrices ۯ and ۰ prior to the simulation. As the heat 

source terms of the BHEs are time dependent, ܊ has to be calculated every time step 

(Chapter 2.4). 

2.1.3. Time Integration 

After the semi-discretization (i.e. spatial discretization) of the differential equation, the time 

derivative can be approximated by a time integration scheme, as well. The time interval of 

interest, which is to be integrated, is subdivided into discrete segments termed ∆ݐ = ௡ାଵݐ −  ,௡ݐ

where ݐ marks the time and ݊ denotes the time step number. For transient heat transport, the 

temperature ܂ and the temperature rate ܂ሶ  are expected to vary. Hence, ∆ݐ has to be chosen, so 

that the variation can be adequately captured and described by an approximation like the 
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left-sided first order derivative ܂ሶ ௡ାଵ = ௡ାଵ܂) − (௡܂ ⁄ݐ∆  or other finite difference 

approximations. As the initial conditions ܂૙ have to be defined according to (6), the finite 

element model (29) can be evaluated for all subsequent time steps ݊ + 1 using the 

aforementioned time derivative approximation. Depending on the choice of the approximation, 

different formulas for the calculation of the solution vector ܂ are obtained. In BASIMO, the 

generalized trapezoid method is applied: 

( ) ( ) nnnn

t
ATbATTTB  1  

 
1 11 θθ −−=+−
Δ

++  (30) 

With 0 ≤ ߠ ≤ 1, the generalized trapezoid rule allows for the employment of the explicit 

forward Euler (ߠ = 0) and the implicit backward Euler (ߠ = 1) scheme, which are first-order 

accurate in time. Simply put, the value of ߠ defines the point in the time interval between ݐ௡ (ߠ = 0) and ݐ௡ାଵ (ߠ = 1) where the matrix equation is evaluated and the temperature ܂ is 

determined: 

( ) 1  1 ++−= nneval TTT θθ  (31) 

While the forward Euler scheme does not require solving the system of equations by inverting 

a matrix and is therefore easily implemented, the explicit nature of the method implies stability 

conditions, which restrict the time step size, the thermal diffusivity and the mesh spacing 

(Hughes 1977). Hence, BASIMO applies the Crank-Nicolson time integration scheme (ߠ = 1 2⁄ ) 

by default, as it is unconditionally stable like the backward Euler method, but is also second-

order accurate in time. However, it is possible to impose the forward or backward Euler scheme 

by a user-defined value for ߠ, if desired. For the Crank-Nicolson method, the generalized 

trapezoid rule produces:  
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 (32) 

In BASIMO, heat source terms are calculated and added to the boundary integrals in b (equation 

23), to link the BHEs to the numerical subsurface model: fed with inlet temperature and flow 

rate data, an analytical solution provides the temperature distribution in the inlet and outlet 

pipes in predefined depth levels. It takes into account all thermal and hydraulic parameters of 

the BHE materials and the borehole wall temperature. In the finite element mesh, the BHEs are 

discretized as vertical lines of mesh nodes. The temperature at these nodes defines the borehole 

wall temperature and is passed to the analytical solution. In return, the analytical solution sets 

heat sources in ܊ for the corresponding vector components. The calculation of the nodal heat 

sources is based on the thermal resistances within the BHEs and the difference between the 

borehole wall temperature and the calculated BHE fluid temperature at the respective nodes 

(Chapter 2.3). This results in a contribution to the right-hand side term of the respective 

equations (Diersch 2014). As the heat source terms depend on the temperature, which is the 

solution vector, the system of equations is non-linear: 

( )TbATTB =+  (33) 

In order to take into account the non-linearity, the system is solved by applying a Picard 

iteration procedure. The matrix equation (33) is solved for ܂ using two separate time 

integration methods instead of one. The respective schemes update each other until they 

converge on a solution. An initial value for the solution (i.e. the temperature ܂) is required to 

start the iterative process. Typically, it can be obtained by applying the explicit forward Euler 
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method (Gresho et al. 1980). BASIMO uses the Adams-Bashforth predictor instead, which 

estimates a solution for ܂௡ାଵ as  ܂௣௥௘௡ାଵ based on the temperature rate defined at two previous 

time steps termed acceleration vectors ܂ሶ ௡ and ܂ሶ ௡ିଵ(Gresho et al. 1980; Gresho et al. 2008):  
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where ∆ݐ௡ = ௡ାଵݐ − ௡ିଵݐ∆ ௡ andݐ = ௡ݐ −  ௡ିଵ. As this is also an explicit method, no matrixݐ

inversion is required for the calculation. Hence, estimating ܂௣௥௘௡ାଵ at first is computationally 

inexpensive. Then, BASIMO solves the matrix equation (33) for  ܂௖௢௥௡ାଵ as the true solution of ܂௡ାଵ using the Crank-Nicolson scheme as a corrector. For that, the source terms in (܂)܊ are 

determined assuming the predicted values of ܂ =  .௣௥௘௡ାଵ to factor in the non-linearity܂

Subsequently, the acceleration vectors are updated based on the corrector’s solution for the 

next predictor step according to:  

( ) nnnnn t
TTTT   

2
 11 −
Δ

= ++
 (35) 

This loop is repeated until a user-defined maximum number of iterations or an error tolerance 

between corrector and predictor solution is reached.  

Furthermore, using a predictor-corrector method also allows for the implementation of an 

automated and adaptive time step control (Reddy & Gartling 2010). According to Gresho et al. 

(1980; 2008), the size of the next time step ∆ݐ௡ାଵ can be determined by evaluating the 

integration error of the predictor and the corrector solution considering a user defined error 

tolerance ߝ: 
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Where ∆ݐ௡ is the current time step and ܾ = 3(1 + ௡ିଵݐ∆ ⁄௡ݐ∆ ). The denominator  ݀௡ାଵ is defined 

as a norm of the integration error by 
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Here, ݊ is the total number of nodes in the entire mesh and ௥ܶ௘௣ is a value representative for 

the temperature scale of the problem. As this scale can shift significantly from heat storage to 

heat extraction operation, BASIMO calculates ௥ܶ௘௣ at each time step as the midpoint between 

the maximum and the minimum temperature occurring in the mesh.  

The predictor (34) cannot be computed at the beginning of the simulation, because the 

acceleration vectors are not available at this point. Hence, BASIMO initializes each simulation 

by calculating the first five time steps only using the corrector (30) as prescribed by the user-

defined value for ߠ. The time step size for the initial steps is constant and should be very small. 

This allows for the calculation of the acceleration vectors. Subsequently, BASIMO switches to 

the predictor-corrector method and the automatic time stepping takes control. 



 

20 

2.2. Unstructured Tetrahedron Mesh 

Most of the available simulation tools like EED (Hellström & Sanner 1994) restrict the BHE 

array to a set of predefined geometrical arrangements. Furthermore, the models of BHE arrays 

are usually limited to vertical boreholes. Some available solutions can merely consider a single 

inclined BHE. Others can handle arrays, but use a priori calculated g-functions introduced by 

Eskilson (1987), which again restricts the models to predefined geometries (e.g. Lamarche 

2011). Even the sophisticated FEM-based commercial simulator FEFLOW (Diersch 2014) only 

just introduced unstructured grids in the latest release 7.0, which potentially allows for arbitrary 

bore paths. However, the workflow of the model setup is not suitable for mathematical 

optimization problems that affect the finite element mesh. Furthermore, the validity of the 

implemented BHE solution has yet to be tested for deviated boreholes. This leaves only 

simulators like OpenGeoSys (Kolditz et al. 2012) with a full discretization of the BHEs for 

modeling inclined boreholes and arbitrary BHE array geometries. Nevertheless, the setup of 

fully discretized models is cumbersome and the simulation of entire BHE arrays is 

computationally expensive. Therefore, one of the simulator’s development requirements is the 

ability to model BHEs with as few geometric restrictions as possible. Hence, BASIMO uses 

tetrahedral elements generated by TetGen (Si 2010) to create an unstructured finite element 

mesh. The one-dimensional discretization of the bore path is defined as a polyline of 

neighboring grid nodes. The analytical BHE solution coupled to these polylines is not affected 

by the bore path, as the temperature at the nodes and the distance between the nodes are the 

only relevant parameters. Consequently, even modeling bore paths with a curvature is 

potentially feasible. This allows BASIMO to simulate arrays of inclined boreholes, which is an 

increasingly popular application for BHEs in densely populated urban areas with limited space 

(Cui et al. 2006; Bussmann et al. 2015).  

2.2.1. Interpolation Functions 

Modeling inclined boreholes and the steep temperature gradients, which occur in the direct 

vicinity of the BHEs, imply that structured grids with a rigid mesh spacing are unsuitable. 

Unstructured grids with mesh refinements in regions of high temperature gradients require the 

finite elements to vary in size and shape. Assuming a reference geometry for a standard 

tetrahedron, any distorted shape, which preserves the topology, can be obtained by coordinate 

transformation. The four nodes defining the reference tetrahedron are described using a local 

coordinate system denoting the three dimensions in space as ߦ, ,ߟ  ranging from 0 to 1 (Figure ߞ

5). 

 

Figure 5: Linear tetrahedron in the global (left) and local (right) coordinate system, after Diersch (2014) 
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BASIMO uses linear tetrahedral elements, which are defined by their four corner points. The 

temperature is interpolated at these nodes. Hence, Lagrange polynomials suffice to describe the 

approximation functions ߰௣ of the temperature ܶ௘ at the elements’ nodes (11). These functions 

satisfy two criteria: their value is 1 at the corresponding node and 0 at all the others. 

Furthermore, for each finite element, the sum of all approximation functions’ values is 1. Also, 

they are linear in all three dimensions, as required, to ensure continuity of the first order 

derivatives of the weak form (22) and all variable terms are linearly independent. The four 

approximation functions for the reference tetrahedron are according to Diersch (2014):  
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 (38) 

2.2.2. Coordinate Transformation 

The temperature approximation functions refer to the local coordinate system. Hence, a 

transformation rule between the global and the local coordinate system (39) is required to use 

the approximation functions in the coefficient matrices (23). Doing so, the interpolation of the 

temperature  ܶ௘ is extended to the coordinates:  
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Where ݊ is the number of nodes of the element Ω௘ and ݔ௣, ݕ௣ and ݖ௣ are the respective global 

coordinates. As the number of nodes describing the geometry of the finite element equals the 

number of nodes to interpolate the variable (i.e. the temperature), the elements are termed 

isoparametric.  

In order to evaluate the coefficient matrices (23) of the finite element model, the spatial 

derivatives of the interpolation functions have to be determined. Based on the chain rule of 

differentiation, the following relations can be derived for three-dimensional isoparametric 

elements (Reddy & Gartling 2010): 
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Where ۸ is the Jacobian matrix of the transformation from global (ݔ, ,ݕ -to local coor (ݖ

dinates (ߦ, ,ߟ  The components of ۸ can be calculated based on the transformation relationship .(ߞ

defined in (39): 
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Ultimately, explicit expressions for the derivatives of the approximation functions in the global 

coordinate system can be obtained by inverting the Jacobian matrix ۸. For ۸ି૚ to exist, the 

determinant of the Jacobian must not be zero at any point of the finite element volume Ω௘. 
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For brevity, these expressions are not listed here, but can be found for example in Diersch 

(2014). After the integrands of (22) have been transformed, the limits of the integration have 

to be adapted, as well. The differential elemental volume transforms from global to local 

coordinates 0 ≤ ,ߦ ,ߟ ߞ ≤ 1 according to:  

( ) ζηξ ddddzdydx     det    J=  (43) 

2.2.3. Numerical Integration 

The transformation of the integrals for each element Ω௘ to the associated reference tetrahedron 

geometry in the local coordinate system results in algebraic expressions, which are too complex 

to be evaluated analytically. However, they can be integrated applying numerical techniques. 

Essentially, a polynomial function ݂, which is to be integrated, is evaluated at specific sampling 

points ݅. Each sampling point has a weight coefficient ௜ܹ that is multiplied with the 

corresponding function value. The sum of the products represents an approximation of the 

integral. Considering ݂ as an abbreviation for a transformed integral argument, this results in 

the following formula: 
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The available numerical methods differ from each other with respect to the coordinates of the 

sampling points and the associated weight coefficients. The Gauss-Legendre quadrature 

(Zienkiewicz et al. 2013) is applied, as it provides the highest possible accuracy with the least 

number of sampling points. Quadrature points with corresponding coordinates and weights for 

linear tetrahedral elements, as well as a more detailed description of the entire finite element 

method can be found; for example, in Reddy & Gartling (2010), Zienkiewicz et al. (2013) or 

Diersch (Diersch 2014). 
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2.3. Analytical Solution for Borehole Heat Exchangers 

In the past, BHEs rarely exceeded 100 m depth. Therefore, no partial thermal insulation was 

necessary. On the contrary, due to the small temperature differences between the heat carrier 

fluid and the borehole wall, a high thermal conductivity of a single grout was favorable along 

the entire borehole. Consequently, simulation models did not need to account for grout thermal 

conductivities or borehole diameters changing with depth. Based on Eskilson and Claessons’s 

solution (1988), Bauer et al (2011b) and Diersch et al. (2011a) developed a thermal resistance 

and capacity model (TRCM) which reduces a BHE to a one-dimensional discretization of nodes 

in a finite element mesh. This model accounts for a detailed description of the geometry of 

different BHE types and their material parameters. While it is more accurate than many line 

source models as it calculates depth-dependent grout and fluid temperatures within the BHE, 

it cannot accommodate changing borehole diameters or backfill material properties along the 

borehole length. Thus, up to now only fully discretized 3D numerical models have been able to 

simulate BHEs with vertically varying thermal conductivities. However, these models are 

laborious to set up, require expensive computations and lack the efficiency of fast analytical 

solutions, especially for larger models with multiple BHEs as needed for BTES systems. 

For BASIMO, Eskilson and Claessons’s solution was improved to a model, which considers 

boreholes with an upper and a bottom section, both with different borehole diameters and 

different thermal conductivities of the backfill material represented in a TRCM. This approach 

is independent from the specific BHE type and can handle coaxial, U-pipe and double U-pipe 

BHEs.  

2.3.1. Ordinary BHEs 

Eskilson and Claesson’s analytical BHE solution (1988) describes the fluid temperature in the 

downstream and upstream pipes Tin and Tout in °C as two codependent functions of depth z (in 

the range of ζ = 0 to the total borehole length L) and the current borehole wall temperature Tb 

at time t.  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ζζζ dzftTzftTzftTtzT
z

boutinin  ,,0,0,
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421  −++=  (45) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ζζζ dzftTzftTzftTtzT

z
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The functions f1, f2, f3, f4 and f5 are given by the following expressions:  



 

24 

( ) ( ) ( )[ ]
( ) ( )

( ) ( ) ( )[ ]

( ) ( ) ( )

( ) ( ) ( )















++=

















+−=

+=

=

−=

zzezf

zzezf

zzezf

zezf

zzγezf

z

z

z

z

z

 sinh cosh

 sinh cosh

 sinh cosh

 sinh

 sinh cosh

121
22

 
5

122
11

 
4

 
3

12 
2

 
1

γ
γ
ββδβγβ

γ
γ
ββδβγβ

γδγ

γ
γ
β

γδ

β

β

β

β

β

  (47) 

The functions’ auxiliary variables α, β, β1, β2, β12, γ and δ, which are based on the TRMCs of the 

involved BHE components, are calculated according to the BHE type after Bauer (2011) and 

Bauer et al. (2011b), whereas the derivation of the functions f1 – f5 can be found in Eskilson 

and Claesson (1988). The auxiliary variables summarize the interaction of the different thermal 

resistances in the TRCM. That way, U-pipe double U-pipe and coaxial BHEs can be considered 

by the analytical solution. Since the solution describes only local steady-state conditions, time 

t is omitted from the following equations for better readability. The analytical solution has to 

be linked to a numerical subsurface model by deriving a heat source term from the difference 

between the borehole wall temperature and the fluid temperature (Diersch et al. 2011a) to 

account for transient heat transport in the subsurface. Then, the numerical model calls the 

analytical solution every time step, providing the time-dependent borehole wall temperature.  

As the upstream and downstream pipes form a closed loop, the fluid temperature must be the 

same at the bottom. Hence, equations (45) and (46) can be equalized at z = L and resolved for 

Tout = Tout (z = 0) for a given inlet temperature of the BHE Tin = Tin (z = 0): 
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2.3.2. Partially Insulated BHEs 

Determining the outlet temperature Tout is the imperative first step, as equations (45) and (46) 

require both the inlet and the outlet temperature of the BHE to calculate the depth-dependent 

temperature profile in the downstream and upstream pipes. However, equation (48) shows that 

the solution for the outlet temperature integrates functions f4 and f5 over the entire borehole 

length L. Likewise, functions f1, f2 and f3 depend on the total borehole length L as well. Hence, 

borehole properties changing with depth cannot be accounted for in this equation, as they are 

constants in the auxiliary variables of the functions f1 – f5. Instead, a BHE with a borehole 

insulation in the upper part requires a split calculation.  
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Figure 6: Sketch of a coaxial BHE (centered inlet) with the insulated borehole section and the corresponding 

temperature profile for heat storage operation (Schulte et al. 2016b). 

As the design splits the BHE into two sections with different grout properties and drilling 

diameters (Figure 6), equations (45) and (46) apply for the upper and lower section separately. 

This allows for an independent consideration of different TRCMs with different auxiliary 

variable values for the functions f1 – f5 in each section. The downstream and upstream pipes are 

connected in the bottom section. Therefore, equations (45) and (46) cannot be equalized for 

the bottom of the upper part at the interface between the two different grout types at depth zgc 

to derive equation (48). However, at the interface the fluid temperatures Tin,top(zgc) and 

Tout,top(zgc) of the upper section of the wellbore are equal to the inlet and outlet temperatures 

Tin,bottom and Tout,bottom of the bottom section.  
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Equation (48) is still valid for the bottom section, but the inlet and outlet temperatures are 

unknown. Thus, substitution according to (49) gives 
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Inserting (45) and (46) for Tin,top(zGC) and Tout,top(zGC) the resulting equation can be solved for 

Tout,top: 
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with 

( ) ( )
( ) ( )
( ) ( ) ( )( )

( ) ( )
( ) ( )
( ) ( )bottombottombottombottom

bottombottombottombottom

z

z
bottombottombottombottom

bottombottombottombottomb

toptoptoptop

toptoptoptop

LfLf

LfLf

d
LfLf

LfLfT

LfLf

LfLf

L

GC

,2,3

,2,1

,2,3

,5,4

,2,3

,2,1

 
 

 

 
 

−
+

=

−
+

=

−=

+=


ν

ζ
ζ

μ

ντ
νκ

 (52) 

Subsequently, the depth-dependent temperature profiles in the downstream and upstream 

pipes can be calculated with (45) and (46) using Tin,top and Tout,top for the upper insulated section 

of the wellbore and Tin,bottom = Tin,top(zGC) and Tout,bottom = Tout,top(zGC) for the lower section. The 

new solution now takes into account borehole properties changing with depth and can be 

coupled to the numerical subsurface model as described in Diersch et al. (2011a). 

2.4. Program Structure 

BASIMO has an intricate structure of subroutines and input files. Their relationships are shown 

in Figure 7. The main code initializes the model and computes the numerical solution, while 

the subroutines organize the model input and output, as well as the analytical solution for the 

BHEs. Numerical and model parameters are defined in self-explaining Excel sheets to ensure 

user-friendliness. The finite element mesh is generated by a small separate MATLAB program, 

which calls for user input to define the geometry of the BHE array. At this point, BASIMO does 

not check for faulty user inputs. Hence, it is important to make sure the model input is sensible. 

A short description of each subroutine and input/output file is given below. A copy of BASIMO 

is provided with the digital supplement of this thesis. 
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Figure 7: Tree diagram illustrating the structure of BASIMO and the relation between the involved subroutines. 

2.4.1. Input and Output files 

mesh.ele and mesh.node 

These text files are generated with TetGen (Si 2010) and comprise the spatial discretization of 

the model as lists of elements and nodes. The list of elements assigns four global node numbers 

to each tetrahedral finite element, while the list of nodes provides Cartesian coordinates for 

each node. The latter are required for the coordinate transformation described in Chapter 2.2.2. 

BHEcoord.txt 

BHEcoord.txt lists the x and y coordinates of the topmost node for each BHE. Consequently, the 

file provides the number of BHEs, which defines how many BHE*.txt files have to be loaded. 
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BHE*.txt 

The nodes representing a bore path have to be identified in BASIMO to couple the numerical 

model and the analytical solution correctly. For each BHE, a BHE*.txt file provides a list of 

nodal coordinates, where * denotes the serial number of the BHE.  

stratigraphy.xlsx 

BASIMO can consider a basic stratigraphic profile with individual values of density, specific 

heat capacity and thermal conductivity for each layer. The layers are numbered from top to 

bottom and defined by their respective bottom depth. The values are taken into account in the 

assembly process for calculating the conductivity and capacity matrices (Chapter 2.1.2). At least 

one entry is required. 

operation_input.xlsx 

A table in the operation_input.xlsx file provides a time series for the operation of the BHE array. 

The time series is defined by time intervals, which are described by the table’s lines. The 

intervals’ length is set by the time stamp marking the end of the respective increment. For every 

interval, the user can specify the BHE type (i.e. U-pipe, double U-pipe, coaxial pipe with 

centered inlet or with annular inlet) and choose between a given heat load or an inlet 

temperature. Obviously, changing the BHE type during the operation is only intended for the 

change of flow direction in coaxial pipes. At this point, BASIMO only supports parallel operation 

of the BTES array. Hence, the settings are applied to all BHEs alike. At least one entry is 

required. The specified values are included in the calculation of the auxiliary variables of the 

analytical solution for BHEs (Chapter 2.3) 

U1.xlsx, U2.xslx and coax.xlsx 

With these Excel files, the user can specify the material and geometric parameters within the 

U-pipe, double U-pipe and coaxial BHEs. Depending on the first entry in operation_input.xlsx, 

BASIMO loads the corresponding Excel sheet. Each borehole is necessarily represented in it’s 

own column in this table. Thus, borehole diameters, pipe diameters, pipe thicknesses, shank 

spaces and thermo-physical properties of the pipe material, the grout and the working fluid can 

be assigned separately to each BHE. Additional columns are ignored by BASIMO. The coax.xlsx 

file serves for both central and annular inlet operation. Based on the values in the table, 

BASIMO calculates the auxiliary variables for the analytical solution (Chapter 2.3) according to 

the specified BHE type. 

numerics.xlsx 

In numerics.xlsx, a few adjustments can be made to the simulator itself, which affect the time 

integration (Chapter 2.1.3). The user can define the time integration coefficient ߠ, the error 

tolerance ߝ for the time step control and for the Picard iteration, the maximum number of Picard 

iterations, the initial time step size, the maximum time step growth factor and the maximum 

time step size. Furthermore, numerics.xlsx contains two switches for a graphical output during 

the simulation, and the output of a solution vector – i.e. subsurface the temperature field – time 

series for post-processing purposes. 

a.dat, ai.dat, aj.dat, b.dat, bi.dat and bj.dat 

These text files contain the assembled thermal conductivity matrix ۯ and the heat capacity 

matrix ۰ (see Chapter 2.1.2). The matrices are stored in the compressed row storage format 
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(Barrett et al. 1994). Hence, a.dat and b.dat contain the values of ۯ and ۰, whereas ai.dat, 

aj.dat, bi.dat and bj.dat include the row pointers and column indices. 

BHEoutput.xlsx 

At the end of the simulation, BASIMO saves a BHEoutput.xlsx file. The table contains the outlet 

temperature of each BHE determined by the analytical solution (Chapter 2.3) at every 

computed time step. 

femplot.dat 

Depending on the settings in numerics.xlsx, femplot.dat is a text file containing the solution 

vector of the final time step or a time series with time steps of one day length. Furthermore, it 

includes all information on the finite element mesh, which are required for the visualization of 

the temperature field. The file is formatted for use with the post-processing software 

Tecplot 360 2013R1(Tecplot 2013).  

matlab.mat 

For debugging purposes, BASIMO saves the entire workspace after the simulation in a file 

labeled matlab.mat.  

2.4.2. Subroutines 

tetgen_input.m and tetgen_input2.m 

The tetgen_input.m and tetgen_input2.m files contain separate MATLAB programs, which 

create the finite element mesh for arrays of vertical and inclined BHEs, respectively. In general, 

BASIMO allows for arbitrary borehole paths. Even a curved borehole can be approximated by a 

polyline. BASIMO only requires a list of the BHE node coordinates, ordered from top to bottom. 

However, creating an input routine for arbitrary geometries is a task of its own. Hence, BASIMO 

comes with these two programs, which offer a range of BHE array geometries. Experienced 

MATLAB users can create their own input routines for the mesh generation to suit their specific 

requirements.  

Both routines define a box model at first. Subsequently, polylines consisting of nodes are added, 

which represent the one-dimensional discretization of the BHEs. Along with the polylines, the 

neighboring nodes are defined as well. Diersch et al. (Diersch et al. 2011b) showed that the 

BHE nodes and their neighbors should be kept at a specific distance to ensure numerical 

accuracy. The tetgen_input.m routine creates an array of vertical boreholes. The array layout is 

based on predefined templates, which determine the respective locations of the BHEs by 

constant angular relationships (Figure 8). A user input is required to set the number of BHEs 

(maximum of 20), their length and their radial distance towards each other. The 

tetgen_input2.m routine generates a BHE array of inclined boreholes with one central vertical 

BHE. In addition to the number of BHEs, their length and their radial distance at the surface, 

the user also has to define the inclination angle: The deviated boreholes dip away radially from 

the center of the array (cf. Appendix E). 

In the end, both subroutines generate a list of coordinates containing the corners of the box 

model and the BHE polylines with the respective neighbor nodes. This list is saved as a text file 

labeled mesh.node and passed to tetgen.m. Furthermore, separate coordinate lists of the BHE 

nodes (without their neighbors) are saved as text files labeled BHE*.txt, where * is replaced by 

the serial number of the respective BHE. Next, the x and y coordinates of the topmost BHE 
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nodes are saved in BHEcoord.txt. The latter files are loaded in basimo.m to determine the 

number of BHEs and to identify the BHE polylines. 

tetgen.m and tetgen64.exe 

After the box model and the BHEs are defined, tetgen.m is executed. This function simply 

executes the tetgen64.exe (the 64-bit built of TetGen, Si 2010) twice. In the first run, the nodes 

stored in mesh.node are connected to form a preliminary mesh of finite elements, which is 

saved as mesh.ele. This grid contains only the nodes previously defined in tetgen_input.m or 

tetgen_input2.m. As a consequence, many of the resulting elements have ill-shaped geometries, 

which would results in erroneous calculations. Hence, tetgen64.exe is run a second time, now 

provided with the additional information on the preliminary elements and parameters for mesh 

optimization. TetGen improves the element geometries by adding Steiner points and re-meshing 

the grid (for more detail, see Si 2010). During this procedure, the original nodes remain at their 

position. The resulting mesh consists of well-shaped Delaunay-triangulated tetrahedral 

elements and is saved to mesh.node and mesh.ele overwriting the previously generated files. 

 

Figure 8: Templates for the arrangements of vertical BHEs in the discretized tetrahedron mesh (overhead perspective) 

generated with tetgen_input.m; model edge length: 100 m. 

basimo.m 

This file is the main routine of BASIMO. The program loads the finite element mesh and the 

model parameters from the respective files and initializes the simulation before running it 

(Figure 7). The code of basimo.m contains the time integration of the finite element model and 

controls the Picard iterations, as well as the automatic time stepping described in Chapter 2.1.3. 

Many subroutines are called for the model initialization, the calculation of the heat sources and 

for the simulation output, which are described in brief below. 

dbc_n.m 

By evaluating the z-coordinate, this subroutine identifies all nodes at the top and the bottom of 

the model domain and marks them as Dirichlet boundary nodes. 
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bhe_n.m 

The bhe_n.m subroutine compares the coordinates of the mesh nodes to those provided by the 

coordinate lists for the BHE nodes in the BHE*.txt files previously loaded in basimo.m. Matching 

coordinate tuples are identified as BHE nodes in the finite element mesh. Possible rounding 

errors that may prevent the coordinates from matching exactly are compensated by searching 

for the nearest neighboring mesh point. 

bhe_t.m 

Based on the previously identified BHE nodes, this subroutine determines the length of the 

edges between the nodes. 

readstratigraphy.m 

This subroutine reads the stratigraphy.xlsx file and assigns the bulk values for density, specific 

heat capacity and thermal conductivity to vectors, which are later used in the assembly of the 

conductivity and heat capacity matrices. 

readoperation.m 

This subroutine reads the operation_input.xlsx file and stores the table as a matrix. Later, the 

predictor-corrector method progresses through the operation time series table line by line. 

readU1.m, readU2.m and readcoax.m 

Depending on the first entry in the operation time series, these subroutines load the U1.xlsx, 

the U2.xlsx or the coax.xlsx file and store the contained BHE parameters in a matrix. Since the 

values in the operation table apply for every BHE all the same, BASIMO can only call one of 

these functions during the model initialization. The individual BHEs, however, can have varying 

parameters defined in the columns of the respective Excel file. 

readnum.m 

BASIMO calls readnum.m to load the numerical parameters stored in the numerics.xlsx file. The 

values are stored in a structured variable, which BASIMO refers back to during the numerical 

computation. 

u_ic.m 

The u_ic.m subroutine imposes the initial temperature field on the subsurface model, 

considering a geothermal gradient of 0.03 K/m and a surface temperature of 10 °C to satisfy 

Equation (6) (Chapter 2.1.1). Experienced MATLAB users can change these values in the code 

of the subroutine.  

assembly.m 

The assembly.m file is a subroutine, which handles the assembly of the heat capacity and the 

thermal conductivity matrices (see Chapter 2.1.2). The two following nested functions are 

called in assembly.m.  

ccm.dll, ccm.h and helper.h 

The original assembly routine provided by Alberty et al. (1999) is computationally too 

expensive for large three-dimensional models. Hence, the assembly is carried out outside of 

MATLAB using ccm.dll, ccm.h and helper.h. They constitute a C/C++ library published in 

Rühaak et al. (2014). It is called in assembly.m to compute the numerical integration (see 

chapter 2.2.3) of the finite elements. The library call returns the heat capacity and the thermal 
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conductivity matrices in the compressed row storage format (Barrett et al. 1994) and saves 

them in separate text files labeled a.dat, ai.dat, aj.dat, b.dat, bi.dat and bj.dat. 

ccm_assemble.m 

The output of ccm.dll has to be converted to MATLAB’s native matrix format. Therefore, 

assembly.m calls the ccm_assemble.m subroutine, which loads the text files generated by the 

C/C++ library and compiles them into matrices in MATLAB. 

BHE1U.m, BHE2U.m, BHECXC.m and BHECXA.m 

These functions are the analytical solutions for U-pipe, double U-pipe and coaxial BHEs with 

centered or annular inlet described in Chapter 2.3. Depending on the operation time series 

table, the according function is called each time step to calculate the heat source terms for the 

numerical model. If the switch for graphical output in numerics.xlsx is set to 1, a temperature 

profile of the central BHE is plotted each time step. For BHE arrays, the profile for the fourth 

BHE is also plotted. Experienced MATLAB users can choose another borehole by changing the 

referring serial number of the BHE. 

u_d_t.m 

BASIMO calls u_d_t.m at each time step to calculate the right-hand side of the numerical 

equation (30) when solving for ܂௡ାଵ. The subroutine imposes the Dirichlet boundary condition 

on equations corresponding to the top and on the bottom mesh nodes of the subsurface model, 

which were earlier identified by dbc_n.m, to satisfy Equation (7) (Chapter 2.1.1).  

tecplot.m 

If the switch for the solution vector time series in numerics.xlsx is set to 1, tecplot.m saves the 

temperature field of the subsurface to femplot.dat every time BASIMO has elapsed one day of 

simulation time. Experienced MATLAB users can change the interval in basimo.m.  

plotroutine.m 

If the switch for graphical output in numerics.xlsx is set to 1, basimo.m calls this function every 

time step after the solution of the numerical equation. It plots the time step size against the 

time step number, as well as the central BHE’s inlet and outlet temperature against time. For 

BHE arrays, the inlet and outlet temperature is also plotted for the fourth BHE. Experienced 

MATLAB users can choose another borehole by changing the referring serial number of the 

BHE. 
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Chapter 3: Mathematical Optimization of Medium Deep BTES systems 

A comprehensive introduction to mathematical optimization is given by Burkhard & 
Zimmermann (2012): on a basic level, the mathematical optimization of a restricted problem 

requires an objective function ݂ that provides a numerical response based on an input ݔ under 

consideration of certain constraints and boundaries. Such a function can be anything from a 

simple polynomial to a complex simulation program. Optimization methods minimize the 

function value by choosing an optimal ݔ∗. Therefore, the response of the objective function has 

to be a scalar value for the algorithm to be able to compare it. The function input ݔ can be a set 

of multiple variables ݔ = ,ଵݔ) ,ଶݔ … , (௡ݔ ∈ ܴ௡ି௣ × ܼ௣ including ݌ discrete values, which 

influence the response of ݂. The formal notation of an optimization problem reads as 
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Where ݃(ݔ) and ℎ(ݔ) represent equality and inequality constraint functions, whereas ܾ௟ and ܾ௨ 

are the lower and the upper boundary of ݔ. It is worth noting, that mathematical optimization 

is subdivided into the fields of discrete (Dück 1977) and non-linear optimization (Ulbrich & 

Ulbrich 2012), which exclusively deal with discrete or real values for  ݔ = ,ଵݔ) ,ଶݔ … , (௡ݔ  ∈ܴ௡ି௣ × ܼ௣, respectively. The consideration of mixed-integer problems is attained through 

combinations of discrete and non-linear methods (Kallrath 2013). 

3.1. Mathematical Optimization in MATLAB 

The MATLAB Global Optimization Toolbox (The MathWorks 2015b) used in BASIMO offers 

several algorithms that pursue different strategies to find the optimal ݔ∗, which provides the 

lowest objective function value. Algorithms, which are able to handle functions with more than 

one variable ݔ are called multivariate, whereas those that optimize multiple objective functions 

sharing the same input are termed multi-objective optimization algorithms (Burkard & 

Zimmermann 2012).  

In MATLAB, many algorithms include user-defined bounds and constraints to restrict the 

feasible set for possible values for ݔ (Kelley 1999; Fletcher 2000). Bounds are defined by mere 

lower and upper values of ݔ, whereas functions determine additional, more complex 

constraints. For optimization applications dealing with an engineering problem, such bounds 

and constraints are important to limit the parameters to a physically meaningful space or to 

include additional considerations that may decrease the possible choice of parameter values. 

Depending on the optimization problem, the BASIMO response can be used in an objective 

function or in a constraint function. 

Many optimization algorithms apply an iteration scheme to converge on the sought solution 

(Kelley 1999). This implies that depending on that scheme and the complexity of ݂ and the 

constraints ݃ and ℎ, the algorithm requires multiple evaluations of the objective function and 

the related constraint functions. In some cases the number of iterations can be very large, 

involving hundreds of function calls. If a single evaluation of the objective function or the 
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constraint function takes a long time, this can result in an unacceptably exaggerated total 

computation time.  

Typically, numerical simulations assessing the performance of BTES systems have to consider 

several years of operation. Even commercial simulators, which exploit more sophisticated 

mathematical methods than BASIMO, require considerable computation time for this task. This 

limits the direct use of BASIMO in an objective or in a constraint function mostly to very simple 

optimization problems, where only a few iterations are required to converge on an optimal 

solution.  

This problem can be bypassed by using a proxy model instead. Proxy models are analytical 

functions derived from a previously defined set of numerical experiments. The resulting 

analytical function returns an approximated objective function value as a response to a set of 

input variables ݔ = ,ଵݔ) ,ଶݔ … , (௡ݔ  ∈ ܴ௡ି௣ × ܼ௣, but in contrast to the numerical model it can be 

evaluated in a split second. 

A MATLAB program provided along with BASIMO generates a proxy model from a set of 

training simulations. The program only requires a table containing the input variables and 

corresponding model responses of the training simulations (Appendix C). The applied method 

is briefly explained below. Afterwards, two short examples for an optimization directly calling 

BASIMO and a proxy-based optimization using two different optimization algorithms are given. 

3.2. Proxy-based Optimization 

The physical model described in Chapter 2 is used to construct a proxy model based on the 

theory of polynomial chaos expansion (PCE). The basic idea of PCE was introduced by 

Wiener (1938) and comprises the construction of the proxy model (response surface) of the 

original model with the help of an orthonormal polynomial basis of the parameter space. In 

simple words, the dependency of the model output on all input variables is approximated by 

projection onto a high-dimensional polynomial. The key attractive features of all PCE 

techniques are the high-order approximation of the model combined with its computational 

speed. 

Formally, the vector of ݊ input variables ݔ = ,ଵݔ) … ,  .on the model output Φ ݔ The proxy model has to capture the influence of all inputs .(ݔ)௡) is considered for the physical model Φݔ

According to PCE theory, the model output Φ can be approximated by polynomials ߖ௜(ݔ) with ݅ = 1, … ,   .ܯ
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The number ܯ of polynomials ߖ௜(ݔ) and corresponding vector of real coefficients ܿ௜ depends 

on the total number of analyzed input parameters ݊ and on the order ݀ of the polynomial 

representation and is determined as (Oladyshkin & Nowak 2012): 
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The coefficients ܿ௜ quantify the dependency between the physical model output and the input ݔ for each desired point in the parameter space, resulting in a surrogate for model Φ(ݔ).  
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For BASIMO, a recent generalization of the PCE technique known as the arbitrary polynomial 

chaos (aPC) is applied (Oladyshkin & Nowak 2012). In aPC, the multi-dimensional orthonormal 

polynomial basis ߖ is constructed for arbitrary probability distribution shapes of input variables 

and, in addition, even works with unknown distribution shapes when only a few statistical 

moments can be inferred from limited data or from expert elicitation. To project the medium 

deep BTES model response onto an orthogonal polynomial basis, a uniform distribution is 

assumed for the modeling variables, which is simply dictated by equal interest to all possible 

outcomes of the physical model. The orthogonal polynomial basis of order ݀ can be constructed 

according to equation (4) in Oladyshkin & Nowak (2012). 

In order to determine the unknown coefficients ܿ௜ of the proxy model the original model is run 

at least once, but preferably more often, for every input variable using so-called training 

simulations with various sets of the input variables (cf. Chapter 4.2.3 and Appendix C). Such 

training simulations are used to create an initial proxy model for the following optimization 

procedure. However, to assure robustness of the overall modeling procedure, the quality of the 

proxy model is improved by incorporating additional simulations: specifically, the performance 

of the ideal design found by the optimization algorithm is validated by an additional numerical 

simulation. The corresponding approximation error of the proxy model must not be bigger than 

1 %. If the verification simulation results in a violation of this criterion, it is used as an additional 

training simulation for refinement of the proxy model. Thus, a new projection of the model 

onto the orthonormal basis is performed using all cumulatively available training simulations 

within the least-squares collocation method (Moritz 1978; Chen et al. 2009). The process is 

then repeated starting with the optimization, which uses the refined proxy model for the 

constraint function until the error criterion is not violated anymore (Figure 9). From the 

practical point of view, the computational costs of the framework are dominated by the model 

calls required for constructing the surrogate model. 

 

Figure 9: Flowchart illustrating the optimization procedure employing the aPC method (after Schulte et al. 2016a). 
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Chapter 4: Application of BASIMO 

Before deploying BASIMO, the code is tested to attain confidence in the simulation results. Due 

to the large uncertainties of subsurface parameters, field data of existing BTES sites or even 

single BHEs are unsuitable for a basic model validation. Instead, numerical verifications and 

benchmarks are performed to evaluate the accuracy of the simulator. The successful tests allow 

for the application of BASIMO.  

4.1. Verification and Validation 

For most of the second half of the past century, the scientific computing community has been 

debating an exact definition of verification and validation (Oberkampf & Roy 2012). Here, the 

terms refer to the definition given in the guide for verification and validation in computational 

solid mechanics of the American Society of Mechanical Engineers (ASME). According to this 

guide, verification denotes “the process of determining that a computational model accurately 

represents the underlying mathematical model and its solution” (ASME 2006), whereas 

validation is “the process of determining the degree to which a model is an accurate 

representation of the real world from the perspective of the intended uses of the model” (US 

Department of Defense 1994; ASME 2006). In other words, verification assess the mathematical 

correctness, whereas validation evaluates the physical correctness (Roache 1998; Oberkampf & 

Roy 2012). 

As Oberkampf & Roy (2012) pointed out, the hydrology community addressed the difficulty of 

model validation related to the typically limited knowledge of subsurface parameters. Despite 

the fact that BASIMO cannot be applied to hydrological problems, the same difficulties apply. 

Due to the predominant geological uncertainty of subsurface conditions, the parameters and 

boundary conditions required for model validation cannot be obtained with sufficient accuracy. 

Even the reference data set of the laboratory sandbox experiment of Beier et al. (2013) does 

not provide all the necessary parameters such as heat capacities, as their work focused on 

applications for thermal response tests rather than full-scale subsurface simulators. Therefore, 

BASIMO’s capability to accurately represent the operation of BHEs are evaluated by comparison 

of benchmark simulations with the well-established software tools FEFLOW (Diersch 2014) and 

OpenGeoSys (Kolditz et al. 2012) instead. Nevertheless, the numerical part of BASIMO, i.e. the 

model for the conductive heat transport in the subsurface, is also verified. 

4.1.1. Verification 

If a mathematical model has been implemented correctly into a numerical code, the 

discretization error should decrease with an increasingly finer grid. As a result, the numerical 

solution converges on the true solution, if the spatial and temporal discretization is sufficiently 

fine. This test of grid convergence is a common way of verifying scientific computing code 

(Oberkampf & Roy 2012). Therefore, a grid convergence study was carried out to verify the 

FEM implementation in BASIMO following the recommendations for uniform reporting of grid 

refinement studies by Roache (1994). Evaluating the convergence of the numerical 

implementation requires the comparison of two solutions ଵ݂ and ଶ݂ on two different grids with 

discrete spacings ℎଵ (fine grid) and ℎଶ (coarse grid), which determine the grid refinement ratio ݎ =  ℎଶ  ℎଵ⁄ . The most common approach is the grid doubling of the spatial and temporal 

domain with uniform spacings for ℎଵ and ℎଶ so that ݎ = 2.  
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For this purpose, a model is created, to simulate the conductive heat transport induced by an 

infinite line source. In the model, the source is defined as a vertical line of evenly spaced nodes 

with a constant source term equating to 100 W m-1 of heat input (Figure 10a and Figure 10b). 

Exploiting the symmetry of the problem, only a quarter of the domain has to be modeled. The 

thermo-physical parameters of the model domain are chosen to match the properties of stainless 

steel at a temperature of 300 K (Haynes et al. 2016). In order to model an infinite line source, 

vertical heat fluxes have to be inhibited. Therefore, boundary conditions are set at the top and 

bottom face of the grid. There, the temperature is set to be equal to the neighboring node. As a 

result, vertical temperature gradients emerging at the edge of the model are removed, 

mimicking an infinite domain in the vertical direction (Figure 10c) by imposing Neumann 

boundary conditions. All relevant model parameters are summarized in Table 3.  

Table 3: Parameters of the verification model used to test the grid convergence, *according to Haynes et al. (2016). 

Parameter Value(s) Unit 

Model size 1 x 1 x 1 m 

Grid spacing 1 8ൗ , 1 16ൗ , 1 32ൗ m 

Simulation time 86400 s 

Time step size 8, 4, 2 s 

Line source 100 W m-1 

Initial temperature 300 K 

Specific heat capacity* 533 J kg-1 K-1 

Density* 7722 kg m-3 

Thermal conductivity* 17.31 W m-1 K-1 

The model is discretized on different grids (Table 3, Figure 10a and Figure 10b) with a 

refinement ratio of ݎ = 2 between each mesh. As the time domain has to be considered as well, 

constant time steps are used according to the refinement ratio instead of automatic time 

stepping. Subsequently, the heat conduction induced by the line source is simulated for one day 

on each grid (Figure 10c). At the end of the simulation, the temperature field is evaluated on 

the median plane of the model at distinct observations points in 25 cm, 50 cm and 75 cm 

distance of the line source (Figure 10a and Figure 10b). The root mean squared value of the 

temperatures acquired at these locations is used as the respective solution ݂ of each model to 

calculate the grid convergence index (GCI). With a safety factor of ܨ = 3 and under 

consideration of both the grid refinement ratio ݎ and the order ݌ of the numerical method, 

Roache (1994) defines the GCI for the fine grid as: 

1
1  GCI

1

12
grid fine −

−=
prf

ff
F  (56) 

The errors of the Crank-Nicolson time integration scheme and of the linear tetrahedral finite 

elements employed in BASIMO (Chapters 2.1 & 2.2) have a second order rate of convergence 

(Zienkiewicz et al. 2013). If the grid spacing is halved, theoretically, the error of the result will 

be decreased by a factor of four. Therefore, the GCI can be calculated with ݌ = 2. In the 

verification simulations of BASIMO, this results in a GCI value of 0.007 % for the fine grid solution.  
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The GCI is based on a generalized form of the Richardson Extrapolation (Richardson & Gaunt 

1927), which is an estimate of the exact solution of the mathematical model. However, it is not 

possible to predict whether the estimated solution is above or below the exact solution. Thus, 

the error derived from the Richardson Extrapolation will match the true error only with 50 % 

certainty (Oberkampf & Roy 2012). By including the safety factor ܨ, the GCI can be regarded 

as an error band with 95 % confidence (Roache 1994). This safety factor can be reduced to a 

less conservative value of ܨ = 1.25, if the observed order of accuracy matches the theoretical 

one (Roache 1998).  

 

Figure 10: Setup and results of the code verification: (a) fine grid and (b) coarse grid discretization of the model 

domain (medium grid not shown), red circles mark the observation points where the solution is evaluated, the orange 

rectangle marks the heat source nodes; (c) resulting temperature distribution and (d) the discretization error plotted 

in a double logarithmic graph. 

The discretization errors of the systematically refined models should fall on a straight line, if 

plotted against the grid spacing in a double logarithmic graph. The slope of this line describes 

the observed order of accuracy (Oberkampf & Roy 2012). As mentioned before, the theoretical 

order of accuracy of the FEM scheme is ݌ = 2 due to the rate of error convergence of the time 

integration method and the finite element type implemented in BASIMO. However, the actual 

value of the discretization error remains unknown without having an exact solution to compare 

the numerical results with. For simplicity, an approximated solution is used instead (Oberkampf 

& Roy 2012). Since the GCI value is already very low, the Richardson Extrapolation can provide 
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an estimate on the true solution with sufficient accuracy. The resulting line traced by the 

discretization errors almost perfectly parallels the second order slope (Figure 10d). 

Consequently, the observed order of accuracy matches the theoretical one. Hence, the factor of 

safety can be reduced to ܨ = 1.25 (Roache 1998), which lowers the GCI for fine grid solution 

below 0.003 %. Considering the accuracy of subsurface temperature measurements, this 

represents a very good value for the accuracy of the FEM solution.  

4.1.2. Benchmark 

A sound validation of a scientific code has to show that it can correctly simulate the physics of 

the problem it was designed to describe. Therefore, the complete code of BASIMO including 

the analytical BHE solution has to be tested after the successful verification of the FEM 

implementation. As available field data are unsuitable for validation, the results of benchmark 

simulations computed with BASIMO and other well-established scientific code are compared 

against each other.  

The first benchmark model is set up to simulate one year of BTES operation (Appendix C). It 

comprises a BHE array with six coaxial BHEs in a circular arrangement with a seventh BHE in 

the center. A thermal insulation of the boreholes is not considered at first. Heat is stored for 

182 days with a constant inlet temperature of 80 °C with injection rate of 0.0025 m3 s-1 and is 

subsequently extracted for 183 days with an inlet temperature of 30 °C. All relevant model 

parameters are summarized in Table 4.  
Table 4: Model parameters and BHE properties for the first benchmark model. 

Parameter Value(s) Unit 

Model size 100 x 100 x 150 m 

Constant surface temperature boundary condition 10 °C 

Geothermal gradient 0.03 °C m-1 

Rock thermal conductivity 2.6 W m-1 K-1 

Rock volumetric heat capacity 2.08 MJ m-3 K-1 

Number of BHEs 7  

BHE length 100 m 

BHE radial distance 5 m 

Borehole diameter 0.1522 m 

Grout thermal conductivity 1.73 W m-1 K-1 

Outer pipe, outer diameter 0.127 m 

Outer pipe, wall thickness 0.0056 m 

Outer pipe, thermal conductivity (steel) 54 W m-1 K-1 

Inner pipe, diameter 0.087 m 

Inner pipe, wall thickness 0.0055 m 

Inner pipe, thermal conductivity (polyethylene) 0.05 W m-1 K-1 

Heat carrier fluid dynamic viscosity 0.000504 kg m-1 s-1 

Heat carrier fluid volumetric heat capacity 4.05 MJ m-3 K-1 

Heat carrier fluid thermal conductivity 0.65 W m-1 K-1 
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Inlet temperature during storage operation 90 °C 

Inlet temperature during extraction operation 30 °C 

Injection rate 0.0025 m3 s-1 
The benchmark model is simulated with BASIMO and with the commercial software FEFLOW 

(Diersch 2014). Both simulators provide a time series of the BHEs’ outlet temperatures. A mere 

visual assessment (Figure 11) shows that BASIMO’s results are in good agreement with 

FEFLOW. However, as other scientists point out, the analytical solution lacks accuracy in highly 

transient situations (Diersch et al. 2011b). These situations occur when the BTES system 

undergoes abrupt temperature changes, i.e. when the operation switches from heat storage to 

heat extraction. Since this only affects very short time spans compared to the overall operation 

time, the error is hardly discernable in the visualization (Figure 11). Hence, the error between 

the two results is subsequently quantified in a second benchmark with the final code of BASIMO, 

which also considers thermally insulated boreholes (Appendix D). The benchmark model is 

provided in the digital supplement together with the FEFLOW simulation results. 

 

Figure 11: Comparison of BHE outlet temperatures of the central pipe of a BHE array calculated with BASIMO and 

with FEFLOW (after Schulte et al. 2016a). 

After extending the analytical BHE solution to include partially insulated boreholes, BASIMO is 

tested in a second benchmark case (Appendix D). It is compared against a simulation of a fully 

discretized detailed numerical 3D model using OpenGeoSys (OGS, Kolditz et al. 2012). Instead 

of considering a small BHE array, the second benchmark case only includes one partially 

insulated coaxial BHE of 100 m length. The thermal insulation is realized by an enlarged 

borehole diameter filled with a low thermal conductivity grout in the upper 30 m of the 

borehole. In the simulation, heat is stored for 182 days with an inlet temperature of 90 °C and 

a flow rate of 2.5 l/s. Subsequently, the heat extraction period lasts 183 days with the same 

flow rate and an inlet temperature of 5 °C. The change of the flow direction from the centered 

inlet for heat storage to the inlet through the annular gap for heat extraction is considered. A 

detailed description of the model setup can be found in Appendix D.  
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In the benchmark, the temporal evolutions of the outlet temperatures is compared against each 

other. As the simulators use independent time-stepping schemes, results are saved after one day 

and after 10 days of storage and extraction operation, respectively, to ensure at least two 

comparison points per period. The results show that the improved analytical solution lacks the 

accuracy to match the fully discretized model for the early time steps during transient input 

situations (Figure 12a and Figure 12c), but achieves a very good fit after a few hours of 

simulation time (Figure 12b and Figure 12d). After ten days of operation, the temperature 

difference is less than 0.14 °C. At the end of the storage and extraction periods, the BHE outlet 

temperature differs less than 0.02 °C between the BASIMO and the OGS model.  

 

Figure 12: Comparison of the BHE model responses. Top: (a) short-term and (b) long-term evolution of the BHE outlet 

temperature. Bottom: BHE temperature profiles after (c) one day and after (d) ten days of heat extraction (after 

Schulte et al. 2016b). 

It is not possible to quantify the difference in the outlet temperature for the entire time domain 

without interpolation of the results due to the different time-stepping schemes. Hence, the heat 

balance ܳ, which represents the heat exchanged with the subsurface and requires the 

integration for the storage and the extraction period, is evaluated: 

( ) dttcfTTQ ffoutin      ⋅⋅⋅⋅−=  ρ  (57) 

with ௜ܶ௡: inlet temperature, ௢ܶ௨௧: outlet temperature, ݂: flow rate of the heat carrier fluid, �ߩ௙: 

density of the heat carrier fluid, ௙ܿ: specific heat capacity of the carrier fluid and ݐ: time. The 

results of the benchmark and the relative difference of the models are summarized in Table 5. 
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The amount of transferred heat differs by 1.6 % and 5 % during storage and extraction, 

respectively. Considering only the first ten days of the storage and extraction periods, increased 

errors of 6.8 % and 13.54 % indicate the strong influence of the analytical solution’s inaccuracy 

during the first time steps, whereas the remaining storage and extraction periods yield smaller 

deviations (Table 5). The benchmark model is provided in the digital supplement of the thesis 

together with the OGS simulation results.  

Table 5: Results of the second benchmark simulation (after Schulte et al. 2016b). 

Period QBASIMO [MWh] QOGS [MWh] Deviation: (QOGS-QBASIMO)/QOGS 

Storagetotal 106.57 108.29 1.6 %

Storage0-10 days 8.34 8.95 6.8 %

Storage10-182 days  98.24 99.34 1.1 %

Extractiontotal -23.55 -24.77 5.0 %

Extraction182-192 days -3.84 -4.45 13.54 %

Extraction192-365 days -19.70 -20.33 3.1 %

4.2. Application Examples 

Three application examples are given to illustrate the capabilities of BASIMO. The first example 

illustrates the simulation of an insulated BHE, while the other two cases demonstrate univariate 

optimization directly calling BASIMO and multivariate proxy-based optimization. In the two 

optimization examples, different algorithms are applied using BASIMO as the objective function 

or as a constraint function (Table 6).  

Table 6: Differences of optimization examples computed with BASIMO. 

 Optimization (direct call of BASIMO) Proxy-based Optimization

use of BASIMO objective function constraint function

algorithm single-variable minimization with bounds genetic algorithm

variables 1 (univariate) 2 (multivariate)

bounds yes yes

constraints no yes

4.2.1. Assessing the Effect of Partial Borehole Insulation 

As mentioned in Chapter 1, the thermal insulation of the upper part of the borehole is a 

characteristic feature of medium deep BTES systems: An enlarged borehole diameter filled with 

a low thermal conductivity backfill material increases the thermal resistance between the pipes 

and the borehole wall. This prevents advective heat losses caused by groundwater flow and 

protects the groundwater in the upper aquifer from excessive heating. However, the thermal 

insulation of a borehole section has not been put into practice so far. Therefore, there is no data 

on the effect that a partial insulation would take.  

The effect can be assessed by revisiting the second benchmark simulation, which considered a 

100 m BHE with a thermal insulation in the upper 30 m of the borehole. A cross section of the 

model (Figure 13) illustrates the subsurface temperature distribution after 182 days of heat 

storage and subsequent 183 days of heat extraction (model details can be found in Appendix D): 
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A heat plume measuring approximately 20 m in diameter has developed around the bottom 

section of the BHE, due to the fact that only a part of the stored heat could be retrieved. 

However, in close proximity to the BHE, the subsurface has been cooled even below the 

undisturbed temperature conditions during heat extraction. In contrast to that, the insulation 

of the BHE has effectively inhibited any major thermal influence on the upper part of the model. 

As a result, the subsurface temperature distribution remains undisturbed in this zone, 

preventing a potentially negative impact on the upper aquifer.  

 

Figure 13: Subsurface temperature distribution of a single BHE with partial borehole insulation (upper 30 m) after 

one heat storage and extraction cycle. 

4.2.2. Finding the Ideal Length for an Insulated Section of a Medium Deep BHE 

In a synthetic example, a single medium deep double U-pipe BHE is to be fitted with a borehole 

insulation in the upper section (Appendix D). For double U-pipe BHEs, the full length of the 

downstream and upstream pipes acts as a heat exchange surface with the surrounding rock and 

the grout material. Thus, double U-pipe BHEs suffer growing heat losses in the upstream pipes 

with increasing borehole length: the heat extracted at the bottom of the BHE is lost to the cooler 

shallow subsurface and the cooler downstream pipes (Figure 14a). An insulation of the upper 

section of the borehole can decrease these losses (Figure 14b). As a result, the outlet 

temperature of the BHE is higher, which can increase the efficiency of a heat pump coupled to 

the system. Evidently, an entirely insulated borehole will perform worse than a BHE without 

any insulation. Hence, an ideal length of borehole insulation must exist.  

BASIMO is used to simulate 30 days of constant heat extraction and serves directly as the 

objective function of a basic algorithm contained in the MATLAB Optimization Toolbox 

(The MathWorks 2015b) for finding the minimum of a single-variable function on a fixed 

interval by combining a gold-section search with parabolic interpolation (Brent 1973; Forsythe 

et al. 1977). The input variable ݔ for the objective function is the length of the insulated section, 
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which is bounded by the depth of the borehole ܮ. At each function call, BASIMO simulates the 

30-day operation of the BHE with the respective insulation length and returns the final outlet 

temperature to the optimization algorithm. Therefore, the optimization problem reads as  

( )

Lx

xBASIMO
Rx

≤≤

∈

0
subject to

       max

 (58) 

For the specific scenario of a 400 m deep BHE and a constant heat extraction rate of 20 kW, the 

algorithm converges on an insulation length of ~142 m as an optimal solution after 

15 iterations (Figure 15a). The insulation increases the outlet temperature by approximately 

1.7 °C compared to a BHE without insulation (Figure 15b). Considering an ideal Carnot heat 

pump, which raises the temperature to a target level of 35 °C, this equates to an increase of the 

theoretical maximum coefficient of performance of about 5 %. A more detailed description of 

the application example including all relevant model and BHE parameters, as well as boundary 

conditions, can be found in Appendix D. A copy of the optimization setup is provided in the 

digital supplement of the thesis. 

 

Figure 14: Temperature profiles of (a) a medium deep double U-pipe BHE without insulation and (b) an insulated 

double U-pipe BHE assuming equal heat extraction rates and equal boundary conditions (Schulte et al. 2016b). 
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Figure 15: Optimization results: (a) outlet temperature after 30 days of operation for each iteration, (b) inlet and 

outlet temperature evolution of the base case (i.e. no insulation) and the ideally insulated BHE (Schulte et al. 2016b). 

4.2.3. Minimizing the Required Borefield Size 

The thermal interaction of the BHEs is sensitive to many design parameters, and the non-linear 

increase of BTES system performance over the first couple of years prohibits the estimation of 

the required array size by a rule of thumb. Therefore, simulations, which take into account the 

strong dependency on the specific heat load profile, are imperative. In the second application 

example (Appendix C), BASIMO is used to determine the minimum required size of a BHE array, 

which has to cover a specific heat demand based on a basic biannual operation scenario with 

constant inlet temperatures and flow rates during the heat storage and extraction periods.  

As the radial distance is fixed, the size of the array is defined by the number and depth of the 

boreholes. Hence, the objective function is simply the product of the number of BHEs and the 

BHE length. This equates to the total drilled length, which is to be minimized to reduce the 

costs. As the drilling costs can increase disproportionately with depth (Tester et al. 2005), in 

this example, the BHE length is additionally penalized against the number of BHEs. Therefore, 

the objective function reads as 

( ) 2
21

xaexxxf ⋅⋅⋅=  (59) 

where ݔଵ is the number of BHEs, ݔଶ is the borehole length and ܽ is a scaling factor for the 

penalty on ݔଶ. The objective function ݂(ݔ) does not contain BASIMO, but is a mere algebraic 

function, which can be evaluated very quickly.  

The performance of BTES systems improves markedly over the first few cycles. Later, this trend 

levels off. Preliminary simulations indicate that medium deep BTES systems attain 80 % of their 

final efficiency after 3 to 6 years (Appendix B). A system, which already meets the heat demand 

after the first year, would turn out to be distinctly oversized after prolonged operation. 

Therefore, the BTES system has to cover the heat demand only after seven years. The heat to 

be supplied represents a constraint to the optimization algorithm: the BTES system cannot be 

indefinitely small, as this would lead to a vanishingly low performance. Used as a constraint 

function ݃, BASIMO has to determine the heat supply after seven years for each BTES system 
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that the optimization algorithm evaluates by choosing a combination of the variable ݔ ,ଵݔ)= ,ଵݔ) ଶ). Only combinations ofݔ  ଶ), which represent a BTES system large enough to meetݔ

the predefined heat demand ܳ, are allowed as a solution. Therefore, the optimization problem 

reads as 

( )

( ) ( )  , :
subject to

      min

21

21 ,
2

21

QxxBASIMOxg

exxxf xa

RxZx

≥=

⋅⋅= ⋅

∈∈

 (60) 

Determining the BTES system performance for seven years results in large numerical efforts. 

Assuming that the optimization will need a large number of iterations to converge on a solution, 

and taking into account that the constraint function has to be evaluated for each iteration, the 

total computation time is expected to be unacceptably long. Therefore, BASIMO has to be 

replaced as a constraint function by a proxy model generated with the aPC method. As described 

in Chapter 3.2, the proxy model is based on a set of training simulations. The design of the 

numerical experiments has to ensure that each input variable’s domain of definition is 

adequately covered by the training simulations (Siebertz et al. 2010) to allow for higher-order 

approximations.  

In the application example, the parameter space encompasses four to ten BHEs of 100 to 500 m 

length, which also represents the bounds of the optimization problem. The parameter 

combinations are determined using a full factorial design (Siebertz et al. 2010), which samples 

the first variable (i.e. number of BHEs) at seven levels and the second variable (i.e. BHE length) 

at nine levels. Consequently, the training simulations provide 63 combinations of (ݔଵ,  ଶ) andݔ

the corresponding amount of heat delivered in the seventh extraction cycle as a model response. 

The inputs and outputs of BASIMO are used to create the aPC proxy model. A fourth-order 

polynomial grants high accuracy without overfitting the training simulations. The resulting 

proxy model is used as a constraint function ݃  in the optimization algorithm instead of BASIMO.  

Two scenarios are considered in the application example. In both cases, the value of the 

constraint function ݃ has to exceed ܳ = 500 MWh as the minimum heat extraction. This 

resembles roughly the annual heat demand of a midsized energetically modernized office 

building. The second scenario includes, in addition, a constraint of 200 m on the minimum BHE 

depth to take into account a fictional legal requirement. In both cases, the objective of the 

algorithm is to determine the smallest possible BTES system that still provides enough heat to 

cover the annual demand. Denoting the proxy model generated from the training simulations 

as ܽܲܥ, the optimization problems read as: 

( )

( )
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 .ଵ is the number of BHEs and therefore always an integer valueݔ ଶ is the BHE length, whereasݔ

The aPC proxy model implies a relaxation of the integer condition of ݔଵ. Hence, the resulting 
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response surface includes real values for ݔଵ, which are not physical representations of the actual 

model. Nevertheless, the optimization has to treat ݔଵ as a discrete variable, which limits the 

choice of algorithms. Genetic algorithms (Goldberg 1989) can solve mixed-integer optimization 

problems, that is, the variables are real and integer values. Hence, the optimal design for the 

BTES system is determined with a genetic algorithm, which is included in the MATLAB Global 

Optimization Toolbox (The MathWorks 2015b).  

For both scenarios in the application example, the potential solutions have to be on the 

intersection of the response surface of the aPC model and the 500 MWh plane (Figure 16). The 

algorithm tends to choose more, but shorter BHEs due to the objective function’s penalty on the 

borehole length. Therefore, the genetic algorithm converges on the edge of the parameter space 

for ݔଵ at 10 BHEs, each 134.5 m deep. However, this configuration violates the constraints of 

the second scenario. Hence, the smallest possible BHE array, which considers the fictional legal 

requirement, consists of 7 BHEs, each 220 m deep. In both cases, the genetic algorithm 

performs several thousand evaluations of the objective and constraint functions, which 

underlines the importance of using a fast proxy model instead of a comparably slow numerical 

simulator.  

In the second scenario, the verification of the found solution marginally violates the 

approximation quality criterion. Hence, the proxy model is refined with the additional 

numerical simulation according to the procedure described in Chapter 3.2. Thereafter, the 

adjusted solution is successfully verified. A more detailed description of the application example 

including all relevant BHE parameters and boundary conditions can be found in Appendix C. A 

copy of the optimization setup is provided in the digital supplement of the thesis. 

 

Figure 16: Response surface of the aPC model showing the heat recovered in the 7th extraction cycle depending on 

the size of the BHE array and the two optimal solutions on the intersection with the 500 MWh plane (Schulte et al. 

2016a). 
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Chapter 5: Discussion & Conclusion 

Rigorous testing indicates that BASIMO is suitable for the simulation of medium deep BTES 

systems. In particular, the FEM implementation proves to calculate the conductive heat 

transport in the subsurface well. The achieved overall accuracies are comparable to other well-

established scientific codes. It is only on short time scales that BASIMO fails to match the results 

of simulators using fully discretized models like OpenGeoSys. This leaves room for further 

improvement of the analytical solution for the BHEs. Bauer (2011) and Bauer et al. (2011a) 

already described how it can be improved to better capture transient behavior of BHEs. Yet, the 

current code is sufficiently accurate on longer time scales. The seasonal storage and extraction 

cycles require the simulation of the BTES operation for many years. Therefore, the shortcomings 

of BASIMO in transient situations on short time scales have only a small effect and the resulting 

errors can be considered as negligible.  

Nevertheless, the first simulations of medium deep BTES systems yield promising and 

interesting results. Exploiting the heat capacity of the large volume of the rock mass, heat 

storage can be accomplished in the subsurface at efficiencies above 80 % after a few years of 

operation (Appendix B). Due to the comparably slow conduction-dominated transport in the 

subsurface, the heat cannot dissipate before it is retrieved in the subsequent cycle, which 

compensates for the lack of lateral insulation and reduces the heat losses. In contrast to water 

tanks, BTES systems can also be employed in confined urban areas without wasting valuable 

space. Water tanks are equally efficient, but require substantial dimensions to achieve 

comparable storage capacities. This makes medium deep BTES particularly suitable for on-site 

storage of large quantities of heat on a seasonal time scale. 

Yet, seasonally fluctuating sources like CHP-powered district heating grids and solar thermal 

installations deliver heat at a high temperature level. The simulation of a one-year storage 

operation with a single BHE already indicates that high temperature heat storage generates a 

local, yet considerable heat plume in the subsurface, which represents a significant disturbance 

of the natural temperature regime. This effect can be expected to be even stronger for BTES 

systems consisting of large BHE arrays. The developing heat plume is the main reason for the 

notable increase of storage efficiency in the first few years of operation. However, legal 

authorities restrict the use of BHEs, which can cause alterations of the groundwater that may 

have a negative impact on drinking water quality (Verein Deutscher Ingenieure 2001a; 

Haehnlein et al. 2010; Griebler et al. 2015). Thus, excessive heating of the subsurface has to be 

regarded critically, if the aquifer used for drinking water extraction is affected. Typically, this 

problem concerns the shallow aquifers.  

Therefore, medium deep BTES systems evade the problem by storing the heat at greater depth. 

Since the BHEs still penetrate the upper aquifer used for drinking water extraction, the borehole 

section in question has to be fitted with thermal insulation. The simulation results show that 

such an insulation can effectively inhibit both heating and cooling of the surrounding rock and 

prevent a potentially negative impact on the drinking water quality. Instead, the heat exchange 

is limited to the deeper part of the BHEs. As a beneficial side effect, the reduction of the heat 

losses in the upper section results in an increased return temperature of the heat carrier fluid. 

If the length of the insulated section is optimized, this temperature gain can improve the heating 

system’s efficiency significantly (Appendix D). 
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Consequently, tapping into medium depth allows for operation of the storage system at a higher 

temperature level without the ecological risk that existing shallow BTES face. As a result of the 

higher temperature level, the heat pumps require less power or become dispensable altogether. 

Hence, the benefits of medium deep BTES are twofold: on the one hand, the higher temperature 

level of medium deep BTES systems increases the efficiency of the downstream heating system. 

On the other hand, the large capacities and the slow thermal response facilitate the storage of 

heat from renewable sources or district heating grids in summer on a seasonal scale. Since this 

is typically excess heat, the consumption efficiency of the primarily produced thermal energy is 

increased as well. CHPs can produce electricity in summer, raising the total annual operation 

hours without wasting the heat; whereas solar thermal installations can cover the heat demand 

not only in summer, but ideally throughout the year. Moreover, BTES profits from the 

geothermal heat, which also feeds the storage system. Even if the heat extraction exceeds the 

previous storage due to climatic variations, BTES systems can still provide the required heat, 

merely by increasing the power consumption. 

However, the simulations confirm that the size of medium deep BTES systems is crucial. Only 

large BHE arrays with a compact layout of the borefield can achieve high storage efficiencies 

(Appendix B and Appendix C). Hence, medium deep BTES is not suitable for small-scale 

applications. The technology’s full potential is only exploited if the heat supply and demand 

amount to several GWh of thermal energy. Consequently, the heat demand of only 500 MWh, 

which was assumed in the second application scenario, resulted in relatively low storage 

efficiencies. The same goes for the different scenarios which were envisaged in Appendix A, 

where a single medium-sized office building is to be fit with a medium deep BTES system. Such 

a case can only serve as a pilot plant to prove the concept in the field. In real-life applications, 

medium deep BTES systems should be connected to a heating grid with multiple heat consumers 

rather than supplying only a single building with heat. 

Considering the higher investment costs for sufficiently large medium deep BHE arrays and the 

associated financial risk, this emphasizes the importance of reliable tools for performance 

prediction and determination of the best system design. As outlined before, mathematical 

optimization has to evaluate the system model multiple times, changing the relevant model 

variables at each iteration. This implies that simulation-based optimization requires models that 

can be altered automatically and quickly, while still allowing for high detail like including BHE 

material properties and operational parameters.  

The in-house development of a simulator was motivated by the lack of such a tool suitable for 

the assessment of medium deep BHE arrays in BTES applications. To this end, BASIMO fulfills 

the main requirements: key features like partially insulated or inclined boreholes as well as all 

relevant thermo-physical parameters can be considered in detail. In contrast to fully discretized 

models, BASIMO is capable of simulating entire BHE arrays by adopting a dual-continuum 

approach and thereby reducing the computational cost. At the same time, BASIMO still 

maintains sufficient accuracy and exhibits a high level of agreement with other simulators like 

FEFLOW or OpenGeoSys (Appendix C and Appendix D), which can potentially perform the 

same simulations. Yet, the model setup is cumbersome and can only be automated to a limited 

degree, which renders these tools useless for applications in mathematical optimization. 

BASIMO, however, is specifically tailored to serve as a constraint or objective function. 

As the development of BASIMO accompanied a research project on the “simulation and 

evaluation of coupling and storage concepts for renewable forms of energy for heat supply” 
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(Preface), it became evident that the BHE array and the facilities on the surface represent an 

interacting entity. Simulations of BTES systems, which only take into account the storage itself 

and neglect the dynamic interdependency with the variable heat demand and supply, can only 

provide an estimate on the overall system performance. Feedback mechanisms between the 

storage and other components can have significant impact on the state variable (i.e. 

temperature) at various points in the system. Consequently, comprehensive models of BTES 

systems have to consider the heat demand of the building and include its heating facilities. 

Since BASIMO is already designed to be used as a function with optimization algorithms, it is 

particularly suitable to be linked to other software tools. Therefore, the development of BASIMO 

is a good starting point for coupled simulations of BTES systems including the facilities on the 

surface.  

The focus of the simulator’s development on capturing high model detail prevented the 

consideration of uncertainty. A single simulation can only reflect the behavior of one possible 

realization of a geological model. Nevertheless, the subsurface conditions are usually subject to 

geological uncertainty, which requires a multitude of different model realizations to be 

accounted for. One of the important geological parameters is groundwater flow, as it can 

influence the system performance considerably, but it can be neglected in typical BTES 

applications (Appendix B). Hence, BASIMO disregards convective heat transport in the 

subsurface to simplify the numerical calculations. If groundwater flow cannot be ruled out in a 

specific scenario, heat convection has to be implemented in the FEM calculation.  

In other words: provided with a set of boundary and initial conditions, simulations with 

BASIMO return a deterministic solution. Randomness is not involved. However, in reality some 

model parameters are subject to uncertainty, which can take significant effect on the simulation 

results and should not be underestimated. For instance, the fractional deviations determined in 

the second benchmark simulation for the heat storage period (1.6 %) and the heat extraction 

period (5 %) are smaller than the uncertainties of all thermo-physical parameters of crystalline 

rocks (≳ 7 %) given in Chapter 1.3 (Table 1). Another important uncertainty for BTES systems 

is the drill path of the boreholes. While hydraulic DTH hammers significantly improve the 

control on the borehole verticality, it is still very difficult to ensure the designated drill path 

accurately: under favorable conditions, bore paths deviate from the vertical axis by up to ~10 % 

(Riechers 2011; Wittig et al. 2015). This means that parameter uncertainty often outweighs the 

numerical inaccuracy of BASIMO. With many – possibly interacting – parameters affected by 

uncertainties combined, it becomes very difficult to assess their impact on the BTES system 

performance. This indicates the importance of considering geological uncertainty in numerical 

simulations, which is a research topic in its own right. Even so, uncertainty can be factored in 

in the aPC proxy model. In petroleum engineering, proxy model-based approaches are applied 

to consider geological uncertainties in reservoir modeling and operations optimization (Yang et 

al. 2011). This approach can potentially be applied to the simulation and optimization of 

medium deep BTES systems under geological uncertainty in the future. 
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Chapter 6: Outlook 

BASIMO allows for unprecedented detail in numerical simulations of BTES systems, which has 

been matched only by fully discretized models up to now. The presented application scenarios 

provide only a brief insight to the full potential of the simulator. Many characteristics of the 

physical domain can be considered, except for groundwater flow. The latter is disadvantageous 

for BTES and is therefore currently neglected in BASIMO, but future improvements of the code 

should include the implementation of advective heat transport in the FEM solution. Also, the 

analytical solution should be extended to consider the transient behavior of BHEs on short time 

scales. Furthermore, the simulator should allow for serial interconnection of single BHEs, which 

would be more realistic (Mielke et al. 2014), instead of operating all BHEs in parallel. This 

would facilitate an increased accuracy and complete BASIMO as a BHE array simulation tool 

for general purposes, which are not limited to BTES applications.  

Calculations with BASIMO are in good agreement with other simulators, but they still lack 

validation with field data. In addition, the simulations still rely on many assumptions and 

simplifications. Future research has to focus on the realization of field experiments. Before 

building a pilot plant, where many parameters are fraught with uncertainty, a sandbox test rig 

of a single BHE can provide the data basis required for proper validation of the code. To that 

end, it has to be fitted with multiple temperature sensors in various distances of the BHE pipes. 

Furthermore, it is important to keep the uncertainty of all material parameters at a minimum. 

Only if the experiments are performed under controlled conditions can the data be used for the 

validation of BASIMO and other potential simulation tools.  

In most countries, the legal approvability of medium deep BTES systems will depend on the 

environmental sustainability. This is determined by its ability to protect the shallow aquifers 

from critical thermal influences. However, so far the concept of partial thermal borehole 

insulation has only been demonstrated in the presented simulations. As a next step, its 

effectivity has to be quantified and proven in practice. Furthermore, the technical 

implementation of partial borehole insulation has yet to be devised. Thus, partial thermal 

borehole insulation could be included in the test rig to prove its ability in inhibiting heat 

exchange with the ground.  

The potential test rig should be designed similarly to the sandbox experiment of Beier et al. 

(2011) with a few adaptions to include an insulated section: A coaxial BHE is used instead of a 

U-pipe BHE. In order to allow for a thermally insulated section, a total length of ~25 m is 

suggested. The coaxial BHE and the grout are installed in a steel pipe, which represents the 

borehole. For the insulated section, this pipe has to have an enlarged diameter. In either section, 

the pipe’s contribution to the thermal resistance of the grout should be negligible due to the 

high thermal conductivity of steel. The assembly is embedded in loose sand to permit easy 

access and relatively effortless changes to the experiment. This allows for the use of fiber-optic 

cables as temperature sensors providing continuous measurements along the entire borehole 

length (Lehr & Sass 2014) not only within the BHE, but also in various distances to the outer 

steel pipe. The entire setup is encased in a double-walled container. An air conditioning system 

is connected to the spacing to control the temperature boundary condition of the experiment at 

all times. Consequently, the inner wall should have a low thermal resistance, whereas the outer 

wall should be insulated to reduce the influence of room temperature variations. A conceptual 

sketch of the potential test rig is shown in Figure 17. 
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Including the borehole insulation into the sandbox experiment allows for tentative testing of 

different thermally insulating materials. In shallow applications, the development of grout 

materials focused on increasing the thermal conductivity rather than decreasing it. Expanding 

foams like polyurethane are already in use for the sealing of wellbores in other applications 

(Zawislanski & Faybishenko 1999). Because they are watertight and have a thermal 

conductivity as low as 0.04 W m-1 K-1, expanding foams are potential candidates for an effective 

thermal borehole insulation. All the same, their low density and their comparably low 

compressive strength imply challenges for application below the groundwater level (Black 

1977). Hence, the technical application of thermally insulating grouts for BHEs has yet to be 

developed. 

 

Figure 17: Conceptual sketch: cross section of a potential sandbox experiment (dimensions not to scale); coaxial BHE 

with centered inlet in heat storage operation, low thermal conductivities in light grey, high thermal conductivities in 

dark grey. 

Technical details aside, medium deep BTES has not been put into practice so far. The concept 

remains to be demonstrated in a pilot plant. To that end, it is crucial to fit such a pilot plant 

with an ample number of sensors within the BHE array, but also in all components of the 

downstream heating system like buffer storages or heat pumps. In the wake of the joint project 

“Simulation and evaluation of coupling and storage concepts for renewable forms of energy for 
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heat supply” first numerical investigations were carried out (Formhals 2015). BASIMO was 

coupled with the commercial software SimulationX (ITI 2015) to model a BTES system for a 

mid-sized office building including a heat pump, buffer storage and a CHP-powered and solar-

assisted local heating grid. Taking into account these components significantly increased the 

model’s complexity. The results indicate that the system is sensitive to the control of the heat 

and mass flows and to the interconnection scheme of the components. This reflects the 

interdependency of the involved heat transfer processes and underlines the importance of 

coupled simulations. Ongoing and future research (Welsch et al. 2016b) will focus on the 

importance of the comprehensive considerations of medium deep BTES systems, which includes 

the surface facilities. 

Consequently, close monitoring of a pilot plant’s entire system is imperative for the calibration 

of coupled simulations. With experiments on the operation of a pilot BTES plant and with 

reliable coupled models, future research can focus on the optimization of the whole system. 

This will ultimately help to push the promising technology of medium deep borehole thermal 

energy storage to economic viability. 
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Abstract 
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1. Introduction 

More than 50 % of the overall energy demand in Germany is due to heating and cooling purposes [1]. Therefore, 
groundbreaking techniques are needed to save energy and reduce greenhouse gas emissions especially in this low 
exergy sector. The combination of different renewable energy sources – solar thermal and geothermal – with already 
existing district heating systems fed by combined heat and power stations (CHP) is a promising new approach. 

In summer, excess solar thermal energy is available, while in winter when thermal energy is needed for heating 
systems its quantity is usually not sufficient. There are different options to cope with the seasonal offset of thermal 
energy supply and demand. Besides traditional storage tanks at the surface, thermal storage in shallow aquifers and 
shallow borehole thermal energy storage (BTES, [2, 3]), geothermal heat storage in moderate depths is an innovative 
and yet barely tested concept. In difference to shallow heat storage systems, the proposed approach upgrades the 
naturally available geothermal energy in the subsurface by means of external heat input. This is done in summer when 
no space heating is required or at times when surplus energy from nearby sources is available. In winter when other 
sources of energy are not sufficiently and cheaply available, the thermal energy from the geothermal storage is used 
for heating purposes. 

The focus of the presented study is the environmentally friendly and energy efficient redesigning of a more than 50 
years old office and laboratory building. A BTES system [4] as well as an energy efficient building design will help 
to use sustainable energy sources for the next period of the building's lifetime. 

2. High Temperature Borehole Thermal Energy Storage 

The proposed system of a MD-BTES [5] consists of multiple boreholes with depths of 100 m – 1,000 m. Coaxial 
borehole heat exchangers (BHE) are implemented in the boreholes. The surrounding rock is utilized as a heat storage, 
the cementation and borehole wall function as heat exchanger. Typically, water (in some cases with refrigerant or 
other additives to prevent corrosion) is used as heat carrier fluid.  

For the design of a MD-BTES two separate phases have to be considered. These phases are the charging phase and 
the extraction phase. During the charging phase hot water is injected into the BHE to heat up the reservoir. For heat 
extraction, cold water is pumped into the BHE in order to retrieve the stored thermal energy from the relatively hot 
formation. It is important to consider the two possible flow directions in a coaxial BHE. The inlet can be either the 
central pipe (CXC, Figure 1a) or the annulus (CXA, Figure 1b). Flow direction and inlet temperature influence the 
heat transfer between working fluid and subsurface. In the charging phase, the working fluid should reach the bottom 
of the wellbore in the insulated inner pipe before discharging the bulk of its heat into the surrounding rock at maximum 
depth. In the extraction phase, the cold fluid should be injected into the outer pipe to utilize the borehole wall as heat 
exchanger surface at full length. Furthermore, this reduces heat losses of the working fluid by circulating it back to 
the surface through the insulated central pipe after it reached its peak temperature at the bottom of the borehole. 
Consequently, seasonally alternating flow directions in the BHE are beneficial (Figure 1).  

The advantage of BTES systems over open systems is the closed circulation system, which is not allowing a direct 
contact or mass transfer of heat carrier fluids with the groundwater or subsurface. Geochemical alteration processes 
and a direct hydrochemical or biological influence on the groundwater will be prevented. Furthermore, this protects 
auxiliaries like pumps, etc. on the surface against scaling and corrosion. This results in a higher lifetime expectancy 
of such systems and a more constant and therefore more economical operation. 

Deep BHEs can be constructed almost everywhere, due to the fact that neither naturally occurring thermal aquifer 
systems nor special geological structures are needed. The only requirement for heat storage is a location with 
negligible groundwater flow at reservoir depth so that the induced thermal plume is not dissipated. 

In contrast to conventional shallow BTES systems the mandatory heat pump is not necessarily needed due to the 
higher operation temperature levels [6]. Consequently, the electric power needed to run the system is reduced and thus 
the profitability of the system is increased. Additionally, deep BTES have a much smaller surface footprint than 
shallow BTES with the same capacity and are therefore a viable option in densely urbanized areas. 
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Fig. 1. Schematic horizontal and vertical cross sections of a deep coaxial borehole heat exchanger used as heat storage in summer (charge of the 
storage as CXC flow, left side and upper middle) and winter (discharge of the storage as CXA flow, right side and lower middle), respectively. 

Note that only the crystalline bedrock is used as heat storage while the caprock including possible aquifers are thermally insulated. 

The completion depth of about 100 m – 1,000 m with higher underground temperatures compared to shallow 
systems results in a lower lateral temperature gradient between the heat carrier fluid and the surrounding rock. This 
means a notable decrease of heat losses, which additionally enhances system efficiency. 

Charging the BTES with temperatures of up to 110 °C supplied by various heat sources in combination with greater 
depths can allow for return temperatures of the BTES of 45 °C – 75 °C after an initial charging phase of 3 to 5 years. 
This is highly depending on the setup of the storage and utilization scenarios [7]. The constant supply of such high 
heating temperatures allows for applications with conventional radiator-based high-temperature heating systems 
commonly installed in older buildings. This makes MD-BTES systems even an option for old buildings without low 
temperature heating systems not meeting the actual energy efficiency levels. Another option is to directly feed in to 
district heating systems and supply heat for multiple uses possibly even at cascading temperature levels. 

For the dimensioning and operation of a BTES, good knowledge of the petrophysical (conductive heat transfer) 
and the hydraulic (convective heat transfer) properties as well as of the initial subsurface temperature regime is 
mandatory [8]. Additionally, important design parameters are the heat demand and the required temperature levels of 
the installed heating systems. 

Different kinds of energy flows as well as different storage and utilization scenarios have to be assessed in the 
simulation and feasibility studies of such systems. Specific user profiles and economic frameworks have to be 
considered along with local heat sources and sinks.  

3. Site Description 

The planned drill site (Darmstadt, Germany) for the MD-BTES system is located next to the eastern master fault 
zone of the Upper Rhine Graben, which divides the urban area of Darmstadt in geological and hydrogeological terms 
(Figure 2a). A crystalline and Permian-Carboniferous fracture controlled aquifer of the Odenwald and Sprendlinger 
Horst is located in the eastern part of the city whereas the western part is dominated by a Quaternary porous aquifer 
of the sedimentary graben fill of the Upper Rhine Graben (Figure 2b). 

The northern part of the Upper Rhine Graben fault system is characterized by steep faults in N-S to NNE-SSW 
direction, which show up to 2,000 m of cumulative vertical displacement. Especially in the inner city area a turn in 
strike direction to NE – SW results in a complex block mosaic structure [9, 10]. 
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The lithology of the proposed MD-BTES site consists from top to bottom of a 4 - 5 m thick Quaternary soil layer, 
underlain by some 30 – 60 m thick intercalation of Permo-Carboniferous coarse to fine grained siliciclastic sediments, 
volcanoclastics and partly altered basaltic to andesitic volcanics [11]. Those unconformably overly the crystalline 
basement with an up to 30 m thick weathered zone at its top (Figure 2, [12]).  

 

 
Fig. 2. (a) Simplified geological map of the project site at the eastern Upper Rhine Graben fault, after [13]. (b) Schematic W-E-cross section of 

the northern Upper Rhine Graben and accompanying graben shoulders including major isotherms [14]. (c) Schematic SW-NE-cross section of the 
project site, modified from [11], symbol w indicates weathered zone at the top of the crystalline bedrock. 

The basement is mainly composed of granodiorite. Additionally, at this northern end of the Odenwald complex 
amphibolites, diabase, gneiss, granite, diorite, gabbro and hornfels occur [15, 16]. These varying, mostly NE-SW 
trending, formations are intruded by basic to acidic dyke rocks [17]. The basement is the target of the MD-BTES. 

The upper 30 – 40 m of granodiorite are intensely weathered. This is due to its surface exposure during the Permian-
Carboniferous, the Upper Cenozoic and the Lower Pleistocene. Near the fracture zone of the Upper Rhine Graben 
fault systems, weathering is most intensive and results in gravelly layers partially acting as porous aquifers. The 
hydraulic conductivity of these weathered and fresh rocks are in the range of 10-4 – 10-5 m/s and 10-6 – 10-7 m/s, 
respectively [12, 17, 18]. Dykes can be either permeable or impermeable [17]. Nonetheless, at depths of more than 
100 m the permeability is supposed to be very low making it suitable for a MD-BTES system. 

Information about the subsurface temperature result from the 3D geothermal model of Hesse, Germany [19]. 
Nearby deep drilling sites show that the geothermal gradient ranges between 2.6 and 3.9 °C/100 m. 

4. Assessment of Different Heating Scenarios 

For this case study two different heat supply scenarios (Figure 3 and 4) were assessed for the office building 
currently being redesigned in an environmentally friendly and energy efficient way compared to its current system:  

1. The use of excess heat from a CHP to charge the MD-BTES system during summer and retrieving all required 
heat directly from the storage in winter,  

2. The combination of scenario 1 with solar thermal collectors on the roof of the building charging the MD-BTES 
during summer and providing partial direct heat supply during winter. Additional heat demand for charging 
the MD-BTES is covered by the CHP. 

The typical design of a project such as this would not include deep BHEs. Normally a multiple BHE array would 
be drilled and completed to a depth of not more than 100 – 200 m. At the project site, the boreholes will be placed in 
a parking lot next to the building. Because of space availability, an array of shallow BHEs large enough to cover the 
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heat demand is not possible due to the spatial restrictions. Therefore, a layout with a few deeper boreholes and a small 
surface footprint instead of a multiple borehole array is chosen. 

 

 

Fig. 3. (top): summer operation mode of scenario 1 with the combined heat and power (CHP) plant covering both the heat demand of the building 
and the MD-BTES. (bottom): summer operation mode of scenario 2 with the coupling of the CHP and solar thermal collectors to cover the heat 

demand of the building and the MD-BTES. Numbers are annual heat flows in MWh assuming a storage efficiency of 60%. 

  

Fig. 4. Winter operation modes for scenarios (1) and (2) respectively with coupling of combined heat and power (CHP) plant, solar thermal 
collectors and MH-BTES. Numbers are annual heat flows in MWh assuming a storage efficiency of 60%. 

In a first step, the building’s heat demand and the heat gains of different solar installations were assessed according 
to national or international standards and requirements. Based on the results, the energy flow demand between the 
different heat sources and sinks of the three proposed scenarios were evaluated. 
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4.1. Heat Demand 

The building’s energy consumption was modelled using a standard software package for precise calculation of 
energy consumption of every single room inside a building considering the meteorological data of the Test Reference 
Years (TRY) provided by Germany's National Meteorological Service [20, 21]. All parameters influencing the energy 
use are defined in the software. The calculations of the required heating load are done according to the standards [22] 
and [23]. 

 

 

Fig. 5. (left): comparison of the modelled monthly heat demand of the project building before and after the modernization in 2012. (right): 
amount of solar heat available from the evacuated tube collectors which can be stored in summer and amount of heat needed from the CHP to 

cover the heat demand of the storage assuming a storage efficiency of 60%. 

Both the heat demand of the building as build in the 1960's and after modernization in 2012 were calculated. 
Therefore, design construction parameters, the geometry, building service engineering and different space usage were 
considered. The model of the building was positively validated against measured energy usage in the building with its 
conditions before modernization. Unfortunately, the modernization is split into two phases. Therefore, a comparison 
of the actual to the modeled heat demand of the completely modernized building is not yet possible. 

The results of the heat demand calculations show a significant reduction after modernization. The modeled value 
is 232 MWh/a, which represents a reduction of 75 % compared to the measured demand for 2009 of 935 MWh/a 
(modeled: 916 MWh/a) before the modernization (Figure 5). The calculated characteristic heating energy 
consumption of the modernized building is 37 kWh/(m²·a) compared to 148 kWh/(m²·a) before modernization, 
making it one of the most energy efficient buildings for teaching and research purposes of the University. 

4.2. Solar Thermal Collectors 

For scenario 2 the available roof top area for solar thermal collectors had to be assessed. The building has a flat 
roof (1,796 m²) easily adaptable for solar installations. The amount of energy produced varies depending on the 
location, manner of installation and type of the solar collectors. The solar heat gains of the solar thermal system were 
calculated after [24] for three different types of solar installations: flat plate collectors with an optimized inclination 
angle of 39º, flat plate collectors with seasonally changing optimized inclination angles of 21º and 57º and evacuated 
tube collectors situated flat on the roof with tubes tilted 25º. The design arrangement of the solar collectors was based 
on the limits set by [25] as well as the shading areas of existing construction elements (elevator shafts, ventilation 
systems) and the solar collectors itself [26].  

The biggest amount of solar heat (422 MWh/a) of all considered installations was obtained in the installation with 
evacuated tube collectors. This is 72 % more than from flat plate collectors with inclination angles of 21º and 57º 
(114 MWh/a) and 75 % more than from those with an inclination angle of 39º (106 MWh/a). This large contrast 
between the systems is mainly caused by differences in efficiency of the collectors and in total collector surface area 
considering the required minimum spacing between collectors. The efficiency used for further calculations of the flat 
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plate collectors was 25 %, where the efficiency of the evacuated tube collectors was 62 %. The total surface area of 
evacuated tube collectors was 292 m², 181 m² for the flat plate collectors with 21º/57º inclination angle and 195 m² 
for those with an inclination angle of 39º (195 m²). 

During the winter months, the only time when it’s possible to obtain heat from the solar installation is from 12 to 
3 pm. This means that the solar installation will be able to provide only a small fraction of a building's heat demand. 
The solar heat gains for minimum solar insulation (conservative approach) obtained for evacuated tube collectors were 
used for the calculations. 

For the further calculations of the energy flow between the sources and sinks the year was divided into two parts. 
Charging of the MD-BTES in summer included the months April till September. Extracting heat in winter took place 
from October till March. The storage efficiency was assumed to be 60 % according to comparable projects [8]. 

4.3. Results 

For scenario 1, the heat demand of the system resulting from the buildings summer heat demand (25 MWh/a) and 
the energy needed to charge the MD-BTES (345 MWh/a) to meet the buildings winter heating energy demand 
(207 MWh/a) amounts to 370 MWh/a. This is higher than the annual heat demand supplied by the CHP directly, but 
still 2.5 times less than what was delivered directly to the building before modernization. 

For scenario 2, it was assumed that solar heat is able to meet only about 8 % (17 MWh/a) of the buildings winter 
heat demand directly because of its short availability and time lag in relation to the buildings heating energy demand. 
During summer the considered solar thermal installation was able to deliver all of the buildings summer heat demand 
(25 MWh/a) and supply the MD-BTES with 182 MWh/a of thermal energy. The additional amount of heat from the 
CHP, which is needed to charge the MD-BTES, was calculated to be 84 MWh/a. 

These preliminary results, which do not consider any analytical or numerical analysis of the systems behavior, 
show that the solar thermal installation is able to deliver 68 % of the required heat of scenario 2. The rest of the heat 
(84 MWh/a) can be delivered by the CHP and amounts to only 58 % of the heat which was delivered to the building 
during summer months by the CHP (144 MWh) before its modernization and only 36 % of the total heat demand of 
the building. The proper design of the solar thermal installation combined with the MD-BTES should therefore be 
able to significantly reduce or exclude heat provided by the CHP to the project building and will therefore be 
responsible for a reduction in the CO2 emissions compared to the current system. 

4.4. Drilling Technology 

Another important factor for the economic feasibility of MD-BTES systems are the drilling costs. Competitive and 
cheap drilling technologies are a prerequisite. Because of depth considerations and the geological setting the boreholes 
for the proposed MD-BTES (100 - 1,000 m b.g.s) shall be drilled with down the hole (DTH) hydraulic hammer drilling 
technology. Improved cutting transport, increased hole stability and enhanced deviation control (less than 5 to 10 % 
vertical deviation angle compared to 10 to 40 % with pneumatic hammer [27]) are reasons for the hydraulic hammer. 
Especially a minimized deviation from the vertical is a crucial prerequisite in BHE fields, where usually less than 
10 m spacing between single BHEs is applied. Additionally, CO2 emission reduction can be achieved since [28] 
showed that for an equivalent hole of 220 m a pneumatic drilling requires 2.9 l/m of diesel fuel in comparison to 
0.7 l/m for the hydraulic hammer drilling process. 

5. Design and Numerical Simulation of the System 

The BHE completion design has an important influence on the thermal performance of the system. Stainless steel 
as outer casing material with a thermal conductivity of 54 W/m·K is used to ensure a higher efficiency of heat 
exchange between the subsurface and the heat carrier fluid in the outer pipe. For the inner pipe pre-insulated steel is 
recommended to reduce the effective thermal conductivity and thermal bypassing. A 10 mm thick PE foam insulator 
has a thermal conductivity of 0.026 W/m·K.  
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The deeper section of the granodiorite is suitable for heat storage whilst the caprock and the weathered zone locally 
and temporarily may act as an aquifer. Therefore, a thermally and hydraulically insulating backfill material for the 
shallow wellbore section is required as indicated in Figure 1. 

In designing vertical BHEs, the determination of the necessary depth as well as array configuration and amount of 
boreholes is crucial. Typically, the depth is estimated based on the desired power extraction per unit depth by 
considering steady state heat transfer. Due to long term and peak power extraction during the operation time, the heat 
flow will change into transient behavior. In multi BHE systems the degree of geothermal heat enhancement by external 
heat input depends on various factors such as spacing of boreholes, depth of BHE and amount of heat and frequency 
of storage phases, etc. These factors affect the level of average output heat during heat extraction depending on the 
actual heat demand scenario. To find a best fit BHE scenario the consideration of those parameters is necessary but 
also results in more computation time. Here, best fit scenario means the BHE system with the highest efficiency and 
highest production capacity possible at minimum total BHE length and economical heat storage conditions.  

5.1. Numerical Model 

Numerical modeling of the MD-BTES was carried out using FEFLOW [29, 30] to describe the transient behavior 
of the subsurface and the production characteristics of the system with the set up given in Figure 6. It delivers 
information about the capacity and sustainability of the BHE system for a given size, depth, flow rate, heat extraction 
intervals and other factors. 

 

Fig. 6. (left): General set up, parameters, boundary conditions and flow rates and temperature during storage and extraction of the numerical 
FEFLOW models. (right): Layout of the BHEs in top view of the modelled office building including the position of the evacuated tube collectors 

installed on the building’s roof for the four different preliminary set ups: 4, 7, 13 and 19 BHE‘s with the same total BHE length for the BTES. 

Depending upon the depth of the proposed MD-BTES a vertical extent of the model is defined. The vertical extent 
is set such that the boundary parameters are kept considerably far from the MD-BTES. For a 1.0 km deep BHE a 
vertical model extent of 2.0 km has been set so that the 1st kind (temperature) boundary condition or other heat flux 
boundary conditions may not directly influence the BHEs. Boundary conditions have been set as shown in Figure 6. 
A subsurface temperature distribution with a geothermal gradient of 3 °C/km is set as initial condition. This model is 
now used incorporating 4th kind (BHE) boundary conditions at the BHE nodes with the BHE parameter setting and 
loading cycles for an operation period of 30 years.  
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5.2. Results 

The simulation results (Figure 7) illustrate that the storage efficiency and the outlet temperature are higher if more 
BHEs can thermally interact with each other. Minimum outlet temperatures range from 40 °C to 60 °C after 30 years 
of operation. Thus, heat pumps are only needed during the coldest days of the heating period. Storage efficiencies are 
rather low, illustrating that either the heat demand of the building is too low for the chosen sizes of the different storage 
set ups and that more heat could be discharged from the storage in winter or that the heat input during summer was 
too high. 

 

 

Fig. 6. (From left to right): Stored heat, extracted heat and storage efficiencies of the set up with 19 BHEs; comparison of the outlet temperatures 
in the 30th year of operation and of the storage efficiencies and minimum outlet temperatures (right) for the four different preliminary set ups.  

To optimize the design and completion of the MD-BTES to maximize storage efficiency and to reach the desired 
temperature and power outputs as well as to evaluate the best economic scenario for such a coupled system two 
approaches are used in ongoing studies. The first approach [7] uses the software FEFLOW to model a variety of 
different geometrical scenarios as accurately as possible. For the second approach a MATLAB Toolbox [31] is 
designed to simulate a BHE heat storage system with similar numerical codes as used by FEFLOW but with other 
gridding and coupling algorithms, supposed to enable much shorter processing times. Furthermore, this toolbox 
incorporates mathematical optimization algorithms, which allow for an automatic optimization within predefined 
boundary conditions of each scenario. These parallel approaches are expected to define the best MD-BTES scenario 
for the project building. 

6. Conclusions and Outlook 

The largest energy consumer in industrial countries is building infrastructure with its heating and cooling demand. 
Innovative energy saving concepts in this field will have the biggest impact in terms of reducing CO2 emissions. 
Especially the coupling of different renewable energy sources – solar thermal and geothermal – with already existing 
district heating systems – e.g. combined (biofuel-driven) heat and power stations (CHP) – as presented here, seems to 
be a very promising approach to cover the heating demand of renovated or old buildings at higher temperature levels 
with renewable energies. Since conventional heating systems are still installed in approximately more than 90 % of 
Germany’s building stock, the presented concept is a viable option to reduce the heating energy demand and the related 
greenhouse gas emissions. Consequently, a high temperature storage and heating supply system without the 
application of a heat pump or specialized heat-pumps with increased coefficients of performance are needed. However, 
storage configurations like the MD-BTES systems can also be utilized for low temperature heating systems. 

The design and completion of MD-BTES systems as described here are strongly depending on the knowledge about 
the subsurface and the energy flows between the heat source, the storage system and the building. The estimation of 
the BHE depth and completion design needs some iterative procedures. Coupled numerical-analytical modeling of the 
whole system combined with mathematical optimization algorithms will be used in future studies to estimate the 
optimal geometrical setup and depth of the MD-BTES. 
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SUMMARY

Seasonal energy storage is an important component to cope with the challenges resulting from fluctuating renewable energy
sources and the corresponding mismatch of energy demand and supply. The storage of heat via medium deep borehole heat
exchangers is a new approach in the field of Borehole Thermal Energy Storage. In contrast to conventional borehole stor-
ages, fewer, but deeper borehole heat exchangers tap into the subsurface, which serves as the storage medium. As a result,
the thermal impact on shallow aquifers is strongly reduced mitigating negative effects on the drinking water quality. Fur-
thermore, less surface area is required. However, there are no operational experiences, as the concept has not been put into
practice so far. In this study, more than 250 different numerical storage models are compared. The influence of the charac-
teristic design parameters on the storage system’s behaviour and performance is analysed by variation of parameters like
borefield layout, fluid inlet temperatures and properties of the reservoir rocks. The results indicate that especially larger sys-
tems have a high potential for efficient seasonal heat storage. Several GWh of thermal energy can be stored during summer-
time and extracted during the heating period with a high recovery rate of up to 83%. Medium deep borehole heat exchanger
arrays are suitable thermal storages for fluctuating renewable energy sources and waste heat from industrial processes.
Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In 2011, about 25% of the global final energy consumption
resulted from space heating and domestic hot water pro-
duction [1]. Most of this heat is required in the winter sea-
son while there is a surplus of heat from various sources
during summer. For example, solar thermal energy produc-
tion is characterized by a high seasonality. Exploiting the
full potential of solar thermal energy depends on econom-
ically competitive and reliable storage systems [2], which
are able to bridge the seasonal offset between heat supply
and heat demand. Thus, collector stagnation in summer is
minimized and solar collector areas could be considerably
reduced [3], especially in northern latitudes, where sea-
sonal variations are high [4]. Furthermore, combined heat
and power plants (CHP) often have to reduce their energy
production because of the low heat demand in summer.
Seasonal thermal storages can increase the operating time

and therefore the on-site heat and electricity production
of CHPs. This leads to economic benefits and results in fur-
ther savings of carbon dioxide emissions, compared with a
CHP, which is operated without a seasonal storage [5–7].
Thermal energy storage systems can reduce energy costs
and energy consumption, reduce equipment size, decrease
the initial and maintenance costs and reduce pollutant
emissions [8,9].

There are numerous methods for seasonal storage of
thermal energy. Good overviews on the available technol-
ogies are given, for example, by Pinel et al. [2], Dincer and
Rosen [8], Schmidt et al. [10], Xu et al. [11] and Hesaraki
et al. [12]. Shallow borehole thermal energy storages
(BTESs) are a promising technology and have been
installed in several locations (e.g. [13–18]). They consist
of several boreholes that are usually not deeper than
100m. Some exceptions are known, for example, from
Lund, Sweden [19] or Oshawa, Canada [20], where the
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storage systems reach depths of 230m and 200m. The
boreholes are equipped with borehole heat exchangers
(BHEs). A BHE is a closed pipe system, which is embed-
ded in a cement backfilling. A heat transfer fluid is circu-
lated through the pipes. Heat is exchanged with the
subsurface by conductive heat transport through the pipe
wall and the backfill material. In this way, BTES can ac-
cess a large storage volume at relatively low expenses
[21]. A detailed technology description is given by Reuss
[22].

The idea of using the ground as heat storage by shallow
BHEs goes back to the 1970s/1980s [23–25]. In the 1980s
and early 1990s, intensive research activities on shallow
BTES were accomplished, particularly in Sweden and Fin-
land: a first large-scale experimental and demonstration ex-
ample was built in 1982/1983 at Luleå University of
Technology, Sweden, consisting of 120 BHEs with a
length of 65m each [14,15]. Furthermore, the first numer-
ical simulation models for BTES systems were developed
(e.g. [26,27]). Lund and Östman [27] created a three-
dimensional numerical model for BTES, which already
accounted for convective heat flow in the storage region.
They studied the behaviour of different BTES models in
conjunction with variable dimensioning factors of a solar
district heating system. Four different storage volumes
were analysed, which all had a cubic geometry and a uni-
form BHE spacing. The deepest system they considered
had a BHE length of 75m. They also examined the influ-
ence of groundwater flow on the storage behaviour by sim-
ulating four different hydrogeological conditions. Nordell
[28] developed a model for the design optimisation of shal-
low BTES, which also took account of economic aspects.
He analysed sensitivities of different design and opera-
tional parameters as well as cost data on the optimum de-
sign of a storage system.

Although the viability of shallow BTES systems has
been shown in several projects and simulation studies,
there are some major difficulties linked to the concept.
The major part of drinking water is produced from shallow
aquifers. An increase of temperature can change the chem-
ical (e.g. [29,30]) and biological (e.g. [31,32]) properties of
the groundwater and thus have a negative impact on its
quality [33–35]. Although most countries do not have
any legal temperature limits for the heating and cooling
of the groundwater [36,37], heat storage in the shallow
subsurface is usually very restricted or not approved at all
by the responsible water authorities. Furthermore, the re-
turn temperatures of shallow BTES are relatively low,
and heat pumps are indispensable to provide the required
supply temperatures for heating systems.

In contrast, storing heat at temperature levels of 90 °C
or even more has a number of advantages compared with
low temperature energy storage: higher loading tempera-
tures in the summer season result in higher extraction tem-
peratures during the heating period in winter.
Consequently, the coefficient of performance of the heat
pump increases, and a higher exergy efficiency of the
heating system can be achieved [38]. Low temperature

heating systems, which are characterized by supply tem-
peratures of 25 to 35 °C, could even be supplied directly
without the use of a heat pump [39]. To mitigate the poten-
tially hazardous impact on the shallow aquifers, the storage
of high temperature heat in greater depths presents a viable
alternative: fewer, but deeper BHEs with an insulation in
the topmost section can protect the shallow aquifers and
store the heat at depths up to several hundred metres
[40]. As ground temperature increases with depth, a de-
creased lateral temperature gradient also reduces thermal
losses. Additionally, these medium deep borehole thermal
energy storages (MD-BTESs) require less space at the sur-
face, which is especially advantageous in densely popu-
lated urban areas.

The dimensions of an MD-BTES differ significantly
from those of a shallow BTES. Systems consisting of less
than 50 BHEs and drilling depths of 100m to 1000m are
taken into consideration. Compared with the relatively
compact shape of shallow BTES, medium deep systems
have an elongated geometry. Furthermore, medium deep
systems can be operated at higher temperature levels,
which in turn also leads to a different behaviour compared
with shallow systems. Hence, the results of former studies
are not generally transferable to MD-BTES. The concept
has not been put into practice so far. There is no experience
in operating an MD-BTES. As drilling costs increase with
depth, the construction of an MD-BTES represents a large
investment. Consequently, numerical simulations are nec-
essary to predict the system performance and to estimate
the influence of key parameters such as the dimension of
the storage, the mode of operation and the underground
properties.

This study presents comprehensive simulations of dif-
ferent MD-BTES configurations and examines the influ-
ence of the BHE length, the number of BHEs, the
spacing between the boreholes, the fluid inlet temperatures
and the rock properties on the system performance. The
sensitivity of the parameters is assessed, and the setup of
the simulation experiment is discussed. The study is part
of a project, which assesses a potential MD-BTES system
to be constructed at the Institute of Applied Geosciences,
Technische Universität Darmstadt, Germany as described
by Bär et al. [41].

2. METHODS

In order to quantify the influence of different design pa-
rameters on the performance of MD-BTES, numerical
models of different storage setups were simulated, varying
the parameters BHE length, number of BHEs and BHE
spacing as listed in Table I(a). The simulation of all possi-
ble combinations of these parameter variations resulted in
200 different storage geometries. Figure 1 illustrates the
five different BHE configurations resulting from the varia-
tion of the number of BHEs. In addition to the variation of
the storage design, the influence of the heat transfer fluid
temperature entering the storage system (inlet temperature)
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was studied in one characteristic storage setup by varying
the inlet temperature values for the charging and
discharging periods (Table I(b)). All possible temperature
combinations were simulated. Furthermore, the effect of
different geological and hydrogeological conditions was
investigated by variation of the thermal conductivity, the
volumetric heat capacity and the hydraulic conductivity
of the entire model in one characteristic case (Table I(c)).
In this partial study, only one parameter was varied,
whereas the other parameters were kept at standard values.

In order to investigate the significance of heat losses at the
surface and the effect of a hypothetical insulation, an addi-
tional set of storage models with an insulating top layer
was simulated too.

The numerical simulations of the heat transport pro-
cesses in the BHEs and in the subsurface were carried
out using the finite element programme FEFLOW 6.2
[42,43]. The BHEs were modelled by 1D finite element
representations as described by Diersch et al. [44]. The an-
alytical BHE solution after Eskilson and Claesson [45] was

Table I. Variation of influence parameters applied on the different storage models. Bold print denotes the base case design.

Variable Value

(a) Storage configuration
BHE length [m] 100 200 300 400 500 600 700 800 900 1000
Number of BHEs1 7 13 19 28 37
BHE spacing [m] 2.5 5 7.5 10

(b) Fluid inlet temperatures
During charging [°C] 70 80 90 100 110
During discharging [°C] 10 20 30 40 50

(c) Rock properties
Thermal conductivity
[Wm�1 K�1] 1.4 2 2.6 3.2 3.8
Volumetric heat capacity
[MJm�3 K�1] 2 2.15 2.3 2.45 2.6
Hydraulic conductivity
[m s�1] 1·10�9 1·10�8 1·10�7 5·10�7 1·10�6 5·10�6 1·10�5 1·10�4

1The number of borehole heat exchangers (BHEs) is the only non-continuous variable considered.

Figure 1. Different storage setups in top view with the corresponding number of borehole heat exchangers.
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applied, as it has shown a high efficiency, robustness and a
reasonable accuracy in long-term analyses [44,46]. In a
previous study, FEFLOW simulations of the BTES in
Crailsheim, Germany were in good agreement with mea-
sured data [47].

2.1. General model setup

In this study, all BHEs were implemented as coaxial pipes
with annular inlet of the heat transfer fluid and centred out-
let (CXA). The borehole diameter was set to 152mm. For
stability reasons, a steel pipe (carbon steel) was chosen as
an outer casing with an outer diameter of 127mm and a
wall thickness of 5.6mm. Furthermore, the relatively high
thermal conductivity of the outer pipe (54Wm�1 K�1) is
advantageous for the heat transfer rate between the fluid
and the subsurface. Depending on the groundwater proper-
ties, low-grade carbon steel might be subject to corrosion.
In such a case, more expensive stainless steel pipes should
be preferred. Nakevska et al. [48] showed that it is advis-
able to use polyethylene (PE) pipes for the ascending por-
tion of the loop (i.e. the inner pipe) because its relatively
low thermal conductivity reduces the heat exchange be-
tween the up-streaming and down-streaming fluids. There-
fore, the inner pipe was modelled as a PE-X pipe with an
outer diameter of 75mm, a wall thickness of 6.8mm and
a thermal conductivity of 0.4Wm�1 K�1. The aforesaid
BHE parameters were used in all considered storage
models.

All simulations were run in a simple single-layered
block-shaped underground model with the dimensions of
400m× 400m× 2000m. According to Sanner [49], some
low permeable sedimentary and crystalline rocks are suit-
able for the application of high temperature BTES. In this
study, the subsurface was assumed to consist of a granodi-
orite with a thermal conductivity of 2.6Wm�1 K�1, a vol-
umetric heat capacity of 2.3MJm�3 K�1 and a porosity of
1%. These are measured values, which were obtained from
a field campaign at the proposed location for the study
mentioned earlier [40].

In crystalline rock, groundwater flow is primarily re-
stricted to interconnected fracture zones and fissures.
MD-BTES tap into large rock volumes for which fracture
heterogeneities are smoothed out as a result of spatial aver-
aging. Thus, the subsurface can be treated in the models as
a single continuum of porous material [43]. The estimated
value for the hydraulic conductivity of the subsurface was
10�8m s�1, which represents a reasonable value for the
crystalline basement (cf. [50]). This barely allows for
groundwater flow and makes conduction the dominant heat
transport process. Hence, the groundwater flow was
neglected and eliminated by setting the hydraulic gradient
in the model to zero. A temperature boundary condition
of 10 °C was set on the uppermost slice as the mean annual
surface temperature, whereas a temperature of 70 °C was
set on the lowest slice to factor in a geothermal gradient
of 3K (100m)�1. Before running the actual storage simu-
lations, a steady-state simulation of the underground model

was carried out to guarantee that the temperature boundary
conditions are in equilibrium with the geothermal gradient.
After the steady-state simulations, the temperature bound-
ary conditions at the top of the model domain were deleted
at the BHE positions and their neighbouring nodes to pre-
vent a direct influence of the boundary condition on the
BHE fluid temperatures. All parameters for the geological
model and the BHEs are summarized in Table II.

To capture high temperature gradients between the
BHEs and the surrounding rock during the simulation,
the three-dimensional finite element mesh was locally
refined: in the horizontal direction around the BHE
nodes and in vertical direction close to the surface and
close to the endpoints of the BHEs. An optimal mesh
refinement around the BHE nodes was realized by using
the approach of direct estimation of the nodal distances
according to Diersch et al. [46]. The grids consist of tri-
angular prisms, which are unstructured in horizontal di-
rection and structured in vertical direction. The
horizontal triangles were generated with the Triangle
mesh generator [51], which is able to create high qual-
ity meshes that fulfil the Delauney criterion. This allows
for a sound behaviour of the obtained solution
(Galerkin method and upwinding method: shock captur-
ing, iterative solver with a termination criterion of
1 · 10�12, non-linear coupling with one iteration per
time step and an allowed maximum L∞ error of
1 · 10�4): a fast convergence was achieved with negligi-
ble relative heat balance errors of less than 1 · 10�8. For
the majority of the models, the grid Peclet numbers (cf.
[42]) were zero, as no convective heat transport was
considered. The models for the groundwater flow
variation study constitute an exception: maximum
Peclet numbers were in the order of 2–3 for the three
systems with the highest groundwater velocities. All re-
maining systems exhibited Peclet numbers well below
2. Such Peclet numbers are within an unproblematic
range. An automatic time step control was applied,
using the second-order Adams–Bashforth/trapezoid rule
predictor-corrector method [43], which entails a fully
implicit time integration scheme.

2.2. Borehole heat exchanger operation
scenario

A very simplified loading and unloading scheme was
applied in each simulation to simplify the comparison
of the MD-BTES performance. Alternating operation
between charging and discharging cycles was realized
by a change of the inlet temperature every 6months
as shown in Figure 2a. During the charging periods,
the inlet temperature was set to 90 °C, as this tempera-
ture can easily be supplied by solar thermal collectors
but also describes the upper limit of the temperature re-
sistance of the PE-X pipes. During heat extraction, the
inlet temperature was set to 30 °C. This ensures that
low temperature heating systems can be supplied with-
out the use of a heat pump. The BHEs were connected
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to each other in a parallel arrangement, so that all BHEs
were supplied with the same inlet temperature. Those
temperatures were kept constant during the charging
and discharging cycles, respectively. The flow rate for
each BHE was set to 4 l s�1 for the whole simulation
time. This value displays a reasonable compromise be-
tween a high heat exchange rate and a comparably
low pressure drop in the BHEs. The latter depends on
the fluid properties, which in turn depend on the fluid
temperatures. For the considered inlet temperatures
and the assumed pipe configuration, the calculated spe-
cific pressure loss (according to, e.g. Yamaguchi [52])
ranges from 295 Pam�1 to 385 Pam�1. The operation
of the storage array is controlled by assigning a variable
inlet temperature for a time span of 30 years with one
exception: for the simulations of the variation of the un-
derground properties, a time span of just 10 years was
regarded.

2.3. Processing and analysis

In order to assess the different storage model setups, sev-
eral key performance indicators are compared. First of
all, the outlet temperatures of the single BHEs calculated
during the numerical simulation were averaged to a mean
storage outlet temperature. As an example, Figure 2a
shows the mean outlet temperature of a high performance
storage system. Because of the temperature difference be-
tween the heat transfer fluid in the BHEs and the surround-
ing rock, the subsurface is heated or cooled continuously.
Consequently, this temperature difference decreases over
time and reduces the BHE’s heat transfer rate. The heat rate
ΔQ, which is exchanged between the heat carrier fluid and
the storage, is calculated as follows:

ΔQ ¼ ΔT � ρcð Þf �
:
V (1)

Table II. General model parameters for a base case design.

Underground parameters Borhole heat exchanger parameters

Parameter Value Parameter Value

Thermal conductivity of solid 2.6Wm�1 K�1 Borehole diameter 0.1522m
Volumetric heat capacity of solid 2.3MJm�3 K�1 Outer pipe diameter 0.127m
Thermal conductivity of fluid 0.65Wm�1 K�1 Outer pipe wall thickness 0.0056m
Volumetric heat capacity of fluid 4.2MJm�3 K�1 Inner pipe diameter 0.075m
Porosity 0.01 Inner pipe wall thickness 0.0068m
Surface temperature 10 °C Outer pipe thermal conductivity (steel) 54Wm�1 K�1

Geothermal gradient 0.03 Km�1 Inner pipe thermal conductivity (PE-X) 0.4Wm�1 K�1

Hydraulic conductivity 10�8 m s�1 Grout thermal conductivity 2Wm�1 K�1

Hydraulic gradient 0 Heat transfer fluid volumetric heat capacity (water) 4.145MJm�3 K�1

Model length 400m Heat transfer fluid thermal conductivity (water) 0.65Wm�1 K�1

Model width 400m Heat transfer fluid dynamic viscosity (water) 504 · 10�6 kgm�1 s�1

Model depth 2000m Heat transfer fluid density (water) 977 kgm�3

Figure 2. (a) Default inlet temperature and computed outlet temperature and (b) the corresponding calculated heat rate during the first
year of operation of a characteristic medium deep borehole thermal energy storage (37 borehole heat exchangers with a length of
500m and a spacing of 5m). The hatched areas represent the total heat stored (QS) and the total heat extracted (QE) during the

regarded time span.
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Where ΔT is the temperature difference between the inlet
and the outlet temperature of the fluid,

:
V is the flow rate

through the BHE array and (ρc)f is the volumetric heat ca-
pacity of the fluid.

By integrating the heat rate over a charging or
discharging cycle, the total heat stored or extracted during
this period is calculated (Figure 2b). The ratio of the abso-
lute values of extracted and stored heat, the storage effi-
ciency η is defined by

η ¼ QE

QS

�
�
�
�

�
�
�
�

(2)

Where QS is the stored heat and QE is the extracted heat
during 1 year.

The total BHE length has to be taken into account to
compare the total amount of extracted heat of the different
systems. Thus, the specific heat extraction rate

:
q, which is

the heat extraction rate referring to one extraction cycle
normalized by the BHE length, is calculated as:

:
q ¼ QE�

1
Δt�Ltot (3)

Where QE is the heat extracted from the storage during the
considered year, Ltot is the total BHE length of the consid-
ered storage system and Δt is the length of the heat extrac-
tion period.

3. RESULTS

In the simulations of the different storage model setups, the
amount of stored heat ranges from about 420MWh a�1 to
more than 20GWh a�1 in the 30th year of operation
(Figure 3a). The corresponding amount of extracted heat
lies between 150MWh a�1 and 17GWh a�1 (Figure 3b).
Accordingly, the storage efficiency and the specific heat
extraction rate range from 32% to almost 84% (Figure 3
c) and from 49Wm�1 to 113Wm�1, respectively
(Figure 3d).

All simulations display typical BTES long-term behav-
iour: because of heat diffusion, not all of the stored heat
can be recovered during the heat extraction period. A frac-
tion of the stored thermal energy remains in the subsurface
generating a heat plume and increasing the storage’s aver-
age rock temperature. As a consequence, the elevated sub-
surface temperature leads to a decrease of heat storage and
an increase of heat extraction (Figure 4). Thereby, the stor-
age losses shrink and the storage efficiency η grows over
time. This effect is especially strong during the first couple
of charging and discharging cycles and diminishes later on,
but still persists even after 30 years of operation (Figure 4).
A complete list of all simulation results is included in the
Supporting Information of this paper.

3.1. Influence of storage design

The storage size is determined by the number of BHEs and
their length. Both variables correlate almost linearly with

Figure 3. (a) Amount of stored heat, (b) amount of extracted heat, (c) storage efficiency and (d) specific heat extraction rate in the 30th
year of operation depending on a change in the number of borehole heat exchangers (BHEs) and the BHE length for storage systems

with a BHE spacing of 5m. The results are illustrated as interpolated surfaces.
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the amounts of stored and extracted heat (cf. Figure 3a and
b). Thus, larger storage systems have a higher capacity.

The storage efficiency rises continuously with the stor-
age size, that is, the number of BHEs and their length (cf.
Figures 3c, 5a and 6a): heat losses decrease with the in-
creasing ratio of storage volume to storage surface. Fur-
thermore, a higher number of BHEs in an MD-BTES
means more thermal interaction between them: thermal en-
ergy that is lost due to heat diffusion can be recovered by
neighbouring BHEs. Hence, heat losses concentrate on
the storage fringe. For this reason, a lateral temperature
gradient from the storage centre to the storage fringe de-
velops with time, which leads to higher efficiencies of the
inner BHEs compared with the peripheral ones. Moreover,
the overall storage efficiency for the layouts of 13 and 28
BHEs is barely increased compared with the respectively
next smaller system in the first year of operation (cf. kinks
in Figure 5a). These are the borefield layouts, in which the
outer BHE ring is occupied only on every second BHE po-
sition (Figure 1). As a result, the storage does not match
the shape of an ideal circular cylinder, but has an overly

increased envelope area. Only after several years of opera-
tion this effect is compensated when a substantial heat
plume has developed in the subsurface. This phenomenon
has a short-term effect on the specific heat extraction rate
as well (Figure 5b).

However, the variables’ effect on the specific heat ex-
traction rate and the storage efficiency is more complex.
While the specific heat extraction rate generally grows with
the number of BHEs, counter-intuitively, it reaches a max-
imum at a specific BHE length (cf. Figures 3d and 6b). The
decrease in the specific heat extraction rate with larger
depths can be explained by a prolonged dwell time of the
fluid in the BHE pipes. As a result, heat losses increase
in the upper parts of the borehole, where thermal energy
is transferred back from the heated fluid to the colder sub-
surface. Beyond a specific depth, this effect outweighs the
increased heat extraction in the bottom part of the BHE,
which marks the BHE length for the maximum specific
heat extraction rate.

Additionally, the non-linear decline in storage effi-
ciency and specific heat extraction rate grows steeper with

Figure 4. Temporal evolution of storage performance over 30 years of operation for a setup with 37 borehole heat exchangers with a
length of 500m and a spacing of 5m.

Figure 5. (a) Influence of the number of borehole heat exchangers (BHEs) on the storage efficiency and (b) the specific heat extraction
rate in different years of operation, exemplarily illustrated for storage setups with a BHE length of 500m and a spacing of 5m.
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decreasing BHE length. The effect of heat losses at the top
surface is more significant for shallow systems. Deeper
BTES can compensate the heat losses by their higher ca-
pacity as the top surface does not increase with BHE
length. Consequently, an insulating layer at the top of the
storage is most effective for shallow BTES (Figure 6a
and b). Furthermore, the specific lateral heat losses dimin-
ish with depth because of the geothermal gradient and the
thereby reduced temperature difference between BHE fluid
and surrounding rock. Insulating the upper portion of the
BHEs by a low thermal conductivity grout would further
reduce lateral heat losses [41,48]. However, multiple grout
sections are not provided in FEFLOWs’ analytical BHE
solution.

Also, the BHE spacing has an effect on the storage per-
formance. On the one hand, a narrow spacing results in a
quick depletion of the storage reservoir during heat extrac-
tion. On the other hand, thermal interaction between BHEs
is weak for a wide spacing, which equals to an inefficient
heat recovery of the neighbouring BHEs. Consequently,

there must be an ideal radial distance between BHEs. The
simulation results confirm this hypothesis and show peak
specific heat extraction rates for a radial distance of 5m
(Figure 7b). The storage efficiency shows the same effect
after a couple of years when the storage is charged and
has developed a thermal plume (Figure 7a). A dependency
of the optimal spacing on the BHE length cannot be
observed.

3.2. Influence of the inlet temperature

The total amounts of stored and extracted heat are strongly
dependent on and almost linearly correlated (Figure 8a)
with the difference between the charging temperature (i.e.
the inlet temperature during the heat storage period) and
the discharging temperature (i.e. the inlet temperature dur-
ing the heat extraction period). This implies that higher
temperature differences result in higher specific heat ex-
traction rates and higher storage capacities (Figure 8b). In
general, the storage efficiency increases with higher

Figure 6. (a) Influence of the borehole heat exchanger (BHE) length on the storage efficiency and (b) specific heat extraction rate in
different years of operation for storage setups with 37 BHEs and a spacing of 5m; insulation layer thickness: 1 m; thermal conductivity

of the insulation layer: 0.05Wm�1 K�1.

Figure 7. (a) Influence of the borehole heat exchanger (BHE) spacing on the storage efficiency and (b) the specific heat extraction rate
in different years of operation, exemplarily illustrated for storage setups with 37 BHEs and a BHE length of 500m.
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charging temperatures and lower discharging temperatures.
Yet, the variables’ influence on the storage efficiency is in-
terdependent (Figure 8c): While an increase of the charg-
ing temperature results in more stored heat, it also causes
higher lateral heat losses. For high discharging tempera-
tures and a consequently poor heat recovery, the increase
of the charging temperature has a positive effect on the
storage efficiency (Figure 8c, 50 °C discharging tempera-
ture line). However, if the discharging temperature is
low, the positive effect is neutralized by effective heat re-
covery and the higher heat losses manifest in declining
storage efficiencies (Figure 8c, 10 °C discharging tempera-
ture line).

3.3. Influence of general model variables

The heat transport processes in the subsurface are con-
trolled by the thermo-physical and hydrogeological frame-
work conditions. Figure 9 illustrates the influence of the
variable rock properties on the storage performance in a
characteristic storage setup. The thermal conductivity of
the reservoir rock not only has a positive and nearly linear
influence on the storage capacity but also enhances the lat-
eral heat losses. Consequently, the rising storage capacity
is accompanied by a slight decrease of storage efficiency
(Figure 9a). In contrast to the thermal conductivity, an in-
crease of the volumetric heat capacity has only a weak pos-
itive effect on the amounts of stored and extracted heat
(Figure 9b). Thus, the influence of the volumetric heat ca-
pacity is considered to be negligible.

As advective dissipation of the stored heat by flowing
groundwater has to be prevented, formations with a low
hydraulic permeability are suitable reservoirs for BTES ap-
plications [48]. Parameter variations show that groundwa-
ter flow velocities larger than 2m a�1 lead to
considerable advective losses of stored heat. This culmi-
nates in the worst case, where the subsurface temperature
is set back to undisturbed conditions within the storage,
whereas the entire plume of stored heat is displaced by

the groundwater flow. As a consequence, the discharge
temperature is too high. Even in the winter period, heat is
injected and not extracted resulting in a negative storage
coefficient (Figure 9c).

These findings suggest that for locations, where ground-
water flow is low, the thermal conductivity, and by exten-
sion, the thermal diffusivity of the reservoir rock determine
the storage capacity of a given MD-BTES design. Where
groundwater flow exceeds a certain level, it can have a
strong negative influence on the storage capacity as well
as on the storage efficiency.

4. DISCUSSION

Like any other model, the simulations cannot capture every
physical detail and are affected by assumptive boundary
conditions. Especially the homogeneous geological model
and the operational scenario of 6months of constant inlet
temperatures and constant fluid flow rates represent over-
simplifications, which certainly do not resemble realistic
conditions. However, realistic values for these model pa-
rameters would add a lot of noise to the simulation results.
Realistic stratigraphic models would have to consider geo-
logical uncertainty, while realistic charging and
discharging temperature curves have a high temporal reso-
lution and depend on simulation models or measured
values, which are specific to a certain building. Conse-
quently, the consideration of realistic values for these pa-
rameters would add a lot of complexity and detail to the
model response and prevent a conclusive analysis of the
other variables’ effect. While simulations for the planning
of a specific storage should factor in as much detail as pos-
sible, these model simplifications are necessary for our
study to allow for the investigation of the parameters’
sensitivity.

The simulations provide information on the
characteristical MD-BTES system responses to the variation
of a selection of geological, operational and design

Figure 8. (a) Stored and extracted heat as a function of the difference between the charging temperature and the discharging temper-
ature; correlation of the specific heat extraction rate (b) as well as the storage efficiency (c) and the charging temperature for different
discharging temperatures. The results are shown for the storage system with 37 borehole heat exchangers (BHEs), a BHE length of

500m and a spacing of 5m in the 30th year of operation.
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parameters and show that MD-BTES performance is sensi-
tive to many of these variables. Evidently, many more pa-
rameters like thermo-physical properties of BHE materials
and flow rates, for example, can have a significant influence.
Yet, their number had to be restricted because of the design
of the simulation experiments to limit the computational ef-
fort. Furthermore, the interdependent influence of variables
has only been investigated for the borefield design (i.e. si-
multaneous change of the number of BHEs, their length
and their spacing) and for the inlet temperatures during the
charging and discharging cycles. However, the effect of
changing charging and discharging temperatures indicates a
correlation between several variables. Similarly, the value
of the ideal BHE spacing depends on a balance between
the thermal BHE interaction and the storage depletion, which
is ultimately governed by the duration of the extraction and
storage periods in correlation with the thermal diffusivity
of the rock [22]. An interdependent effect of these variables
on the system performance is obvious, but cannot be quanti-
fied because of the setup of variable variation across the sim-
ulation experiments. Therefore, future simulations may be
based on experimental designs, which allow for the observa-
tion of such interdependency effects.

Our results confirm earlier findings (e.g. [10,17,18])
that BTES systems require several years of operation to
reach a relatively balanced state. Although the system per-
formance still rises even after 30 years of operation, the an-
nual increase slows down significantly after the first couple
of charging and discharging cycles. MD-BTES with a
BHE spacing of 5m achieve 80% of their final storage ef-
ficiency (i.e. storage efficiency in the 30th year) after
3–6 years (Figure 10). Furthermore, the strong dependency
of the storage performance on its size indicates that under
the considered scenario conditions, only large-scale appli-
cations are viable. With a heat demand of more than
6GWh a�1, respective MD-BTES can exceed 70% storage
efficiency, which is within the range of other underground
thermal energy storages: Reuss et al. [39] carried out a nu-
merical modelling study on a high temperature BTES,
which resulted in a storage efficiency of 64% for the opti-
mal storage design. Analyses of heat budget data of an
Aquifer Thermal Energy Storage in Rostock and a BTES
in Neckarsulm (both Germany) for the years 2008 to
2012 yielded an average storage efficiency of 69% and
79%, respectively [53]. Efficiencies of 46% are reported
for the BTES in Anneberg, Sweden (quasi steady-state

Figure 9. Storage performance in a characteristic storage setup (19 borehole heat exchangers, spacing 5m and length 500m) for the
variations of (a) the thermal conductivity, (b) the volumetric heat capacity and (c) the hydraulic conductivity of the reservoir rocks. The
results for the hydraulic conductivity variations are based on a hydraulic gradient of 5% in the underground model. The corresponding

Darcy flow velocities are shown on the upper abscissa.
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conditions, eighth year of operation) [54] and 54% for the
BTES of the Drake Landing Solar Community, Okotoks,
Canada (fourth year of operation) [17].

The present study emphasizes that higher discharging
temperatures result in a significant decrease of the storage
capacity and efficiency. Accordingly, the installation of a
heat pump can be favourable for heating systems with high
return temperatures of more than 50 °C (e.g. conventional
radiators) as it reduces discharging temperatures. In con-
trast, panel heating systems like floor heating with low re-
turn temperatures (<30 °C) can reach high storage
efficiencies without the utilization of a heat pump. Coupled
simulations of all system components are necessary for an
optimal fine-tuning of the heating and storage system and a
potential heat pump.

5. CONCLUSIONS AND OUTLOOK

In the presented study, numerical simulations of various
MD-BTES settings have been carried out. The effects of
different storage configurations, fluid temperatures and
subsurface properties were compared. The results reveal
that with a proper dimensioning of the system and in con-
venient geological and hydrogeological framework condi-
tions, MD-BTES are eminently suitable for seasonal heat
storage. Furthermore, the collected data give reference
points for an optimal design, favourable fluid temperatures
to operate the storage and appropriate rock properties.

It is clarified that there is an optimal BHE spacing,
where the highest storage efficiencies and the highest heat
extraction rates are achieved. Increasing the number of
BHEs or the BHE length enhances both the storage capac-
ity as well as the storage efficiency. Under the very simpli-
fied operating procedure and subsurface conditions,
storage efficiencies of up to 83% are reached. By adjusting
supply temperatures for the heating system or increasing
the loading temperature of the storage, the efficiencies
can even be further improved. Groundwater flow has to
be limited, as it can significantly affect the performance
of MD-BTES by dissipating the stored heat out of the
system.

Future work will focus on realistic charging and
discharging scenarios to prove that MD-BTES will
work not only under simplified assumptions but under
realistic conditions as well. Therefore, coupled simula-
tions of the storage system, the heat supply system
and the heating system will be implemented. Further
studies will be conducted to determine the actual impact
on shallow groundwater aquifers to give evidence of the
advantages of MD-BTES compared with shallow BTES
systems. Moreover, the dependency of the storage per-
formance on the BHE spacing puts high requirements
on the verticality of the boreholes. Accordingly, suit-
able drilling technologies have to be identified and
compared from a technical and economical perspective.
In addition to that, a detailed economic analysis of the
whole storage systems is planned to find an optimal
system design from a financial point of view.

NOMENCLATURE

BTES = borehole thermal energy storage
MD-BTES = medium deep borehole thermal

energy storage
BHE = borehole heat exchanger
CHP = combined heat and power plant
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Introduction

Approximately 65 % of the total end energy consumption in
private households accounts for heating in Germany.[1] Con-
sequently, there is a high potential for energy conservation in
this sector. Renewable energy sources such as solar collectors
are increasingly used to cover this heat demand, to reduce
the consumption of fossil fuels, and to mitigate CO2 emis-
sions. In summer, solar thermal collector panels provide
excess heat when the heating demand is low. Yet, during the
winter time, a secondary system has to provide the heat, as
the situation is reversed. Likewise, the increased use of dis-
trict heating grids is supposed to play an important role in
the future of renewable energies.[2,3] They are often powered
by combined heat and power plants (CHPs). Whereas elec-
tricity is needed throughout the year, the seasonality of the
heat demand renders CHPs inefficient during summer when
the heat demand is low. Thus, seasonal storage can enhance
the efficiency of CHPs in district heating grids and solar col-
lector systems by shifting excess heat to the winter time.

Early considerations for solar thermal energy systems en-
visaged water tanks for seasonal heat storage. As the water
tank is the most expensive component in the system, it is im-
perative to exploit the decreasing price per storage volume
with increasing size.[4] Whereas such water tanks require con-
siderable space on the surface, borehole thermal energy stor-
age (BTES) systems need only a small amount of space to
tap into a large volume of subsurface rock, which can serve
as the heat storage. Additionally, geothermal heat feeds such
a system. This combination of solar heat usage, seasonal stor-
age, and geothermal heat has already been demonstrated in
practice to be highly efficient with shallow BTES systems.[5–8]

Furthermore, because of this combination, a secondary heat-
ing system to back up the solar collectors is rendered dispen-
sable.

However, shallow aquifers are often used for the extrac-
tion of drinking water. In Germany and many other coun-
tries, legal regulations often restrict alterations of groundwa-
ter that may have a negative impact on drinking water quali-
ty.[9] Thus, excessive heating, which can induce microbial
growth, has to be prevented in these aquifers.[10,11] Given that
solar collectors can provide a temperature output of 100 8C
and above[12] and that district heating grids operate at supply
temperatures of approximately �80 8C,[13] storage of the
excess amount of heat in greater depth is favorable. Ideally,
a medium-deep borehole thermal energy storage (MD-
BTES) system should reach a couple of hundred meters
deep and should be thermally insulated at the topmost part.
Shallow borehole heat exchangers (BHEs) are often polymer
U pipes or double U pipes, whereas deeper BHEs are usually
coaxial pipe systems with a high thermal conductivity outer

Arrays of medium-deep borehole heat exchangers are char-
acterized by their slow thermal response and large storage
capacity. They represent suitable thermal energy storage sys-
tems for seasonally fluctuating heat sources such as solar
energy or district heating grids. However, the economic feasi-
bility of these systems is compromised by high investment
costs, especially by the expensive drilling of the boreholes.
This study presents an approach for the simulation and opti-
mization of borehole thermal energy storage systems. To ex-

emplify the concept, a software tool is used to optimize the
number and length of borehole heat exchangers with regard
to a specific annual heat demand. The tool successfully deter-
mines the ideal size of the thermal energy storage. Further-
more, the prediction of the systemÏs performance also indi-
cates that borehole thermal energy storage systems only op-
erate efficiently in large-scale applications. With the present-
ed tool, many aspects of borehole thermal energy storage
systems can be simulated and optimized.
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steel pipe. The inner pipe is insulated to reduce the thermal
interaction between the up- and down-streaming fluids. In
summer, the warm fluid is injected into the inner pipe for
heat storage, whereas in winter the cold fluid is injected into
the annular gap for heat extraction.[14]

Typically, permeability decreases with depth, which pre-
vents removal of heat from the storage by ground water
flow. Furthermore, the stored heat will not dissipate as fast
as in shallow storage systems owing to a reduced lateral tem-
perature gradient. Consequently, the extraction temperatures
will be higher than those for shallow BTES systems, which
only permit moderate injection temperatures. This increases
the performance of the heat pump and possibly allows for
use with conventional radiator heating systems, which re-
quire a higher supply temperature.[14]

MD-BTES systems are operated in seasonal charging and
discharging cycles. Excess thermal energy is stored in
summer. During winter, it is extracted again for heating pur-
poses. The performance is quantified by the heat, which is
stored and extracted during each cycle [Eq. (1)] (Figure 1).

QS=E ¼
R
t

DT ¡ 1f ¡ cf ¡ _V dt ð1Þ

in which QS/E is the stored/extracted heat, DT is the tempera-
ture difference between the inlet and outlet, 1f is the working
fluid density, cf is the specific heat capacity of the working
fluid, _V is the working fluid flow rate, and t is the time of op-
eration.

The ratio of extracted heat to stored heat defines the stor-
age coefficient S [Eq. (2)], whereas the specific heat extrac-
tion rate Qspec describes the systemÏs efficiency of heat ex-
change between BHEs and the subsurface [Eq. (3)]:

S ¼ QE

QS

���� ���� ð2Þ

Qspec ¼
QE

ltot ¡ tE
ð3Þ

in which Qspec is the specific heat extraction rate, ltot is the
total drilled length, and tE is the time of operation in the
heat extraction mode.

In general, the difference between the inlet and outlet
temperatures of the working fluid in the BHEs decreases
over the charging or discharging cycle because of continuous
heat exchange with the reservoir (Figure 2). Owing to diffu-

sion processes, not all of the stored heat can be recovered.
Some of the thermal energy remains in the reservoir and
begins to create a thermal plume in the subsurface. This ther-
mal plume decreases the lateral temperature gradient be-
tween the BHEs and the surrounding rock, which results in
declining heat storage over summer, but enhanced heat ex-
traction in winter and increased storage efficiency (Figure 3).

Drilling is the critical cost factor in the development of
a geothermal reservoir. Deeper boreholes significantly raise
the costs for a high-temperature underground storage
system. It is necessary to simulate the performance of a plan-
ned system prior to the investment of building a storage plat-
form. The design of the borehole heat exchanger array has

Figure 1. Evolution of heat storage and extraction; QS : stored heat, QE : ex-
tracted heat.

Figure 2. Evolution of the BHE inlet and outlet temperatures.

Figure 3. Evolution of storage performance; model: 19 BHEs, BHE length:
500 m, BHE spacing: 5 m, flow rate: 4 L s¢1, inlet temperature during stor-
age: 90 8C, inlet temperature during extraction: 30 8C.
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to be optimized for the heating purpose to avoid an over-
sized and, therefore, overpriced system. Earlier optimization
approaches used analytical 2 D finite line source models.[15, 16]

We present a MATLAB-based toolbox, which can numeri-
cally simulate and optimize the 3 D design of an MD-BTES
system. Instead of using finite line source models, the ther-
mal interactions of the BHEs are considered by a more de-
tailed solution.

In the proxy model-based optimization section, the basic
methods that are used in the optimization process are ex-
plained. Afterwards, the optimization of the performance of
the MD-BTES system is demonstrated by an arbitrary exam-
ple. Finally, we discuss the results with respect to real-case
applications.

Proxy Model Based Optimization

To optimize the design of an MD-BTES system, many con-
figurations representative for the range of variability of the
design parameters have to be evaluated. The seasonal opera-
tion is numerically simulated for each configuration to pre-
dict the thermal behavior of the MD-BTES system. Given
that the performance of an MD-BTES system changes signif-
icantly over the first couple of cycles, several years of opera-
tion have to be simulated. As a result, the computational
time for a simulation is too long to allow the direct use of
the numerical model in an optimization algorithm. To bypass
this problem, a surrogate proxy model is trained by numeri-
cal simulations. The proxy model can be evaluated in
a matter of seconds by the optimization algorithm. However,
as the proxy model is not exact, the following iterative proce-
dure is performed to assure robustness of the optimization:
The best solution for the proxy model is verified by an addi-
tional numerical simulation with the parameters found by
the optimization algorithm. In case the verification differs
too much from the proxy model prediction, the numerical
simulation can serve as an additional training simulation to
refine the proxy model for a new optimization. This process
is repeated until the mismatch of the optimal solution be-
tween proxy model and numerical model is sufficiently small
(Scheme 1).

Physical model formulation

Simulation of the operation of an MD-BTES system com-
prises simulation of subsurface heat transport and thermal in-
teraction of the BHEs with the surrounding rock. The transi-
ent subsurface heat diffusion is calculated by solving Fouri-
erÏs law of heat conduction for the model domain [Eq. (4)]:

1scs
@T
@t
¼ r ¡ lrT þ q ð4Þ

in which 1s is the soil density, cs is the volumetric heat capaci-
ty of soil, T is the temperature, t is the time, l is the thermal
conductivity, and q is the heat sources and sinks. Given that
low-permeable rock bodies with negligible ground water

flow are targeted for MD-BTES systems, convective heat
transfer is disregarded. Also, temperature dependency of the
material parameters is not taken into account. The standard
Galerkin method[17] is applied in an adapted MATLAB[18]

implementation for finite elements[19] on an unstructured tet-
rahedron mesh.[20] A predictor–corrector method is used with
a second-order Adams–Bashforth predictor and a Crank–
Nicolson corrector for automated time stepping.[21]

The thermal interaction of the BHEs is calculated by a 1 D
analytical thermal-resistance and capacity model.[22–24] Fed
with inlet temperature and flow rate data, it provides the
temperature distribution in the inlet and outlet pipes in pre-
defined depth levels. The solution takes into account all ther-
mal and hydraulic parameters of the BHE materials and the
borehole wall temperature. In the finite element mesh, the
BHEs are discretized as vertical lines of mesh nodes. The
temperature at these nodes defines the borehole wall tem-
perature and is passed to the analytical solution. In return,
the analytical solution sets heat sources on the basis of the
thermal resistances within the BHEs and the difference be-
tween the borehole wall temperature and the calculated
BHE fluid temperature at the corresponding nodes. This re-
sults in a contribution to the right-hand side term of the re-
spective equations.[25] As the heat source terms depend on
the temperature, which is the solution vector, the system of
equations is nonlinear [Eq. (5)]:

M _TþKT ¼ FðTÞ ð5Þ

in which M is the heat capacity matrix, K is the thermal con-
ductivity matrix, F is the right-hand side vector including
source terms, and T is the solution vector for temperature. A
Picard iteration scheme is applied on the corrector to solve
the system of nonlinear equations, whereas the predictor pro-
vides a tentative solution to start the iteration loop.[26]

Prior to the study, the code was tested and showed good
agreement with FEFLOW[25] in a benchmark simulation. For
the benchmark, the BHE outlet temperatures in the

Scheme 1. General process of optimizing the design of an MD-BTES system.
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MATLAB implementation and in FEFLOW were compared
against each other (Figure 4).

Proxy model by arbitrary polynomial chaos expansion

The physical model described in the previous section is used
to construct a proxy model on the basis of the theory of poly-
nomial chaos expansion (PCE). The basic idea of PCE was
introduced by Wiener[27] and consists in the construction of
the proxy model (response surface) of the original model
with the help of an orthonormal polynomial basis in the pa-
rameter space. Simply, the dependency of the model output
on all relevant input parameters is approximated by projec-
tion onto a high-dimensional polynomial. The key attractive
features of all PCE techniques are the high-order approxima-
tion of the model combined with its computational speed.

Formally, we will consider the vector of N input parame-
ters w= {w1, …, wN} for the physical model that is simply de-
noted as W= f(w). Our goal is to capture the influence of all
parameters w on the model output W. According to PCE
theory, the model output W can be approximated by polyno-
mials Yi(w) [Eq. (6)]:

W wð Þ �
XM

i¼1

ci wð ÞY i wð Þ ð6Þ

The number M of polynomials Yi(w) and the correspond-
ing coefficients ci depend on the total number of analyzed
input parameters N and on the order d of the polynomial
representation [Eq. (7)]:

M ¼ N þ dð Þ!
N! ¡ d!ð Þ ¢ 1 ð7Þ

The coefficients ci wð Þ quantify the dependency of the
model output W on the input parameters w for each desired
point in the parameter space, which results in a surrogate for
model W.

In the current paper, we will apply a recent generalization
of the PCE technique known as the arbitrary polynomial
chaos (aPC).[28] In aPC, the multidimensional orthonormal
polynomial basis can be constructed for arbitrary probability
distribution shapes of input parameters and, in addition, can
even work with unknown distribution shapes if only a few
statistical moments can be inferred from limited data or
from expert elicitation. To project the MD-BTES model re-
sponse onto an orthogonal polynomial basis, a uniform distri-
bution is assumed for the modeling variables, which is simply
dictated by equal interest to all possible outcomes of the
physical model. The orthogonal polynomial basis of order d
can be constructed according to Equation (4) in Oladyshkin
and Nowak.[28]

To determine the unknown coefficients ci(w) of the proxy
model, the original model is run at least once, but preferably
more often, for every input parameter by using so-called
training simulations with various sets of the input parameters
(see details in the next section). Such training simulations
are used to create an initial prediction for the following opti-
mization procedure. However, to assure robustness of the
overall modeling procedure, the quality of the proxy model
is iteratively improved by incorporating additional simula-
tions indicated by the optimization algorithm: specifically,
the performance of the ideal design found by the optimiza-
tion algorithm is validated by an additional numerical simu-
lation. The approximation error of the proxy model must not
be bigger than 1 %. If the verification simulation results in
a violation of this criterion, it is used as an additional train-
ing simulation for refinement of the proxy model. Thus,
a new projection of the model onto the orthonormal basis is
performed by using all cumulatively available training simu-
lation within the least-squares collocation method.[29,30] The
optimization is then repeated by using the refined proxy
model for the constraint function. From a practical point of
view, the computational costs of our framework are dominat-
ed by the model calls required for constructing the surrogate
model.

Mathematical optimization

Drilling is the cost-critical factor and needs to be optimized.
Thus, the fitness function y for this study is the total drilled
borehole length, which is simply the product of the number
of BHEs and their length [Eq. (8)]. Additionally, the bore-
hole length is penalized against the number of BHEs, be-
cause drilling costs rise exponentially with depth:[31]

y ¼ x1 ¡ x2 ¡ e a¡x2ð Þ ð8Þ

in which x1 is the number of BHEs, x2 is the BHE length,
and a is a scaling factor. The optimization algorithm tries to
minimize the value for y by altering the number of BHEs
and their length. Each parameter combination represents
a certain design for an MD-BTES system, the performance
of which has to meet a specific requirement. In the presented

Figure 4. Comparison of BHE outlet temperatures of the central pipe of
a BHE array in the MATLAB implementation and in FEFLOW; model: 7 BHEs
of 100 length, 182 days of heat storage (90 8C inlet temperature) and
183 days of heat extraction (30 8C inlet temperature) at 2.5 L s¢1 injection
rate.
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study, it has to cover a buildingÏs heat demand after a certain
amount of operation time. This represents a constraint to the
optimization algorithm: the MD-BTES system cannot be in-
definitely small, as this would lead to a vanishingly low per-
formance.

The design parameters for MD-BTES systems can include
discrete variables such as the number of BHEs or industrial
standard sizes for pipes. Consequently, the optimization algo-
rithm has to be able to handle discrete features. Genetic al-
gorithms[32] can solve mixed integer optimization problems,
that is, the variable parameters are real or integer values.
Hence, the optimal design for an MD-BTES system is deter-
mined with a genetic algorithm, which is included in the
MATLAB Global Optimization Toolbox.[33] The integer vari-
ables can relate to discrete ordinate values or even catego-
ries. Each combination of variables constitutes an individual,
whereas a set of individuals represents a population. For
every iteration, called generation in genetic algorithm termi-
nology, the individuals of a population are tested by their fit-
ness function score. The algorithm tries to minimize the
score partly by combining variable values of individuals with
a low score and partly by choosing random values for the in-
dividuals of the next population, which are tested in the fol-
lowing generation. A defined number of best individuals,
called elite, make it to the next generation unaltered, regard-
less of the algorithmÏs choices.

As mentioned before, predicting the performance of an
MD-BTES system requires a numerical simulation. The ge-
netic algorithm has to evaluate hundreds of parameter com-
binations to converge on an optimal solution. It only stops if
the best individualÏs score cannot be improved more than
a predefined fitness function tolerance after a predefined
number of so-called stall iterations. Given that the per-
formance of each tested configuration has to be checked
against the constraint, this results in an enormous computa-
tional effort: depending on the model size a single numerical
simulation can take a few days up to several weeks. To over-
come this problem, we use a proxy model generated from
significantly fewer numerical training simulations by arbitra-
ry polynomial chaos expansion,[34] as mentioned in the previ-
ous section. Whereas the computational effort for larger
models is still high, they have to be rendered only once. The
resulting proxy model calculates the performance of the
MD-BTES system in a matter of seconds, as only a poly-
nomial function has to be evaluated instead of a numerical
model.

Specifically tailored optimization of the simulation model
can converge on an optimal solution with less model evalua-
tions without the help of a proxy model. However, the per-
formance of an MD-BTES system depends on many more
parameters than the number of BHEs and their length (e.g.,
thermal properties of rock and BHE materials, radial dis-
tance of BHEs, operational parameters such as flow rate,
etc.). A pre-existing proxy model can be easily expanded by
additional training simulations to incorporate more model
parameters. Furthermore, it is possible to formulate more
than one optimization objective on the basis of the additional

variable parameters. In general, this can be included in the
fitness function as well as in the constraints to add to the
detail of the model. The genetic algorithm in MATLABÏs
Global Optimization Toolbox is capable of multiobjective
optimization. Whereas renewed optimization under altered
considerations requires laborious changes to a specifically
tailored solution and profound mathematical knowledge, the
rather generic approach of using a genetic algorithm on
a proxy model is a ready-to-use tool that allows quick re-
evaluations of the optimization problem. Therein lies the
main potential of this approach.

Training Model Setup

For the proxy training simulations, the varying MD-BTES
configurations are applied to a standard model, which in-
cludes constant parameters for the subsurface (Table 1) as
well as for the BHE materials (Table 2).

The finite element mesh is 100 m by 100 m wide with the
BHE array in its center, whereas the depth of the model is
variable and always 50 m more than the BHE length for the
considered scenario. An initial temperature field is set, which
corresponds to a geothermal gradient of 3 K per 100 m. Di-
richlet boundary conditions are defined accordingly: 10 8C as
an average annual near-surface temperature at the top,

Table 1. Geological model parameters.

Parameter Value

thermal conductivity 2.6 Wm¢1 K¢1

density 2600 kg m¢3

specific heat capacity 800 J kg¢1 K¢1

surface temperature boundary condition 10 8C
geothermal gradient 0.03 K m¢1

Table 2. BHE material and operational parameters.

Parameter Value

radial distance between BHE 5 m
borehole diameter 0.1522 m
outer pipe, outer diameter 0.127 m
outer pipe, wall thickness 0.0056 m
outer pipe, thermal conductivity (steel) 54 Wm¢1 K¢1

inner pipe, outer diameter 0.075 m
inner pipe, wall thickness 0.0068 m
inner pipe, thermal conductivity (PE) 0.4 Wm¢1 K¢1

grout, thermal conductivity 2 Wm¢1 K¢1

working fluid dynamic viscosity (water) 0.000504 kg m¢1 s¢1

working fluid density (water) 977 kg m¢3

working fluid specific heat capacity (water) 4145 J kg¢1 K¢1

working fluid thermal conductivity (water) 0.65 Wm¢1 K¢1

flow rate 2.5 L s¢1

heat storage period 182 days
injection temperature during heat storage 90 8C
heat extraction period 183 days
injection temperature during heat extraction 30 8C
simulated time of operation 7 years
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whereas the boundary condition at the bottom depends on
the depth of the model for each respective scenario.

Predefined geometric relations determine the layout of the
MD-BTES system for the different number of BHEs
(Figure 5). The axial reference distance between the BHEs is
set to 5 m. Preliminary simulations have shown that the ideal
axial distance depends on the thermal properties of the sub-
surface and the BHE materials rather than the number or
length of BHEs.

As a result, only the number and length of the BHEs are
variable, and the performance of the MD-BTES system is
evaluated on the basis of their variation. For each configura-
tion, the same basic operational scenario is simulated. The
MD-BTES system is charged and discharged at constant
inlet temperatures and at a constant flow rate (Table 2),
whereas the change of flow direction in the coaxial pipe for
winter and summer time is accounted for.

To minimize the time for which a redundant heating
system is required, an MD-BTES system has to meet the
heat demand soon after its construction, which is typically
long before the break-even point is reached. Whereas longer
simulations would be beneficial for the economical assess-
ment of the long-term operation, they are not necessary for
finding the ideal design of an MD-BTES system, which can
cover a specified heat demand after a few years. Hence, the
basic operational scenario is only simulated for seven years
to reduce the computational effort. The long-term operation
can be simulated once the ideal design has been determined.

For the numerical simulation of the subsurface heat trans-
port, the initial time step size is set to 1 s and is limited to
a maximum of 4 h. It cannot grow by more than 20 % per
time step. The error tolerances for the time step control and
Picard iterations are set to 0.001 and 0.005, respectively. If
the Picard scheme fails to converge below the tolerance level
within five iterations, the time step size is reduced by 20 %
and the time step is repeated.

The parameter space is sampled by a full factorial
design[35] of experiments with nine levels for the BHE length
and seven levels for the number of BHEs (Table 3). The re-
sulting 63 numerical simulations each provide values for
stored and extracted heat, storage coefficient, and specific

heat extraction rate for all 7 heat charging/discharging cycles.
Including the years of operation as an additional variable pa-
rameter, a total of 441 sample points serve as input to the
aPC. The polynomial order for the proxy model is chosen in
such a way that it is in good agreement with the training
data without overfitting them (see the results).

The resulting aPC proxy model is a function of the
number of BHEs, their length, and the year of operation and
is used to constrain the fitness function as previously men-
tioned. It returns the value for extracted heat in MWh in the
specified extraction cycle. Individuals must yield an aPC
function value that satisfies a predefined constraint function
to qualify as a possible solution. For the optimization, only
the performance after the seventh year of operation is con-
sidered. Thus, the operational time is kept constant in the
optimization and is only used afterwards with the proxy
model to display the temporal evolution of the optimal per-
formance of the MD-BTES system.

Comparably to Tester et al.,[31] the BHE length is penal-
ized in the fitness function exponentially with a scaling factor
a=7.51 × 10¢4. In a real case, the scaling factor should be de-
ducted empirically from typical drilling cost data for the
local geology.

For this study, two optimization scenarios are considered.
In both cases, the constraint for the fitness function is set to
500 MWh minimum heat extraction. This resembles roughly
the annual heat demand of a midsized energetically modern-
ized office building. The second scenario includes, in addi-
tion, a constraint of 200 m on the minimum BHE depth to
take into account a legal requirement (in this case fictional).
In both cases, the objective of the genetic algorithm is to de-
termine the smallest possible MD-BTES system that still
provides enough heat to cover the annual demand. Prelimi-
nary simulations have shown that the increase in the system
efficiency slows down after a few years (see Figure 3) There-
fore, the requirement has to be met only after seven years of
operation to rule out systems that turn out to be oversized
later on. All settings for the genetic algorithm are summar-
ized in Table 4.

Optimization of the Performance of the MD-
BTES System

All 63 training simulations reflect the typical behavior of
BTES systems: the storage efficiency increases over time
(Figure 6) and bigger storage systems perform better than
smaller ones. After seven years of operation, the storage co-
efficient ranges from approximately 22 to 50 % (Figure 7),
and the recovered heat during extraction ranges from ap-
proximately 90 to 1800 MWh depending on the storage size

Figure 5. Templates for BHE array layouts, r : axial reference distance.

Table 3. Sampled parameter variations for proxy training.

BHE length [m] 100 133 166 200 233 300 366 433 500

Number of BHEs 4 5 6 7 8 9 10
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(Figure 8). The specific heat extraction rate reaches values of
up to 86 W m¢1 (Figure 9).

Whereas the MATLAB implementation does not allow for
parallel processing, several simulations can be run simultane-
ously in multiple MATLAB instances depending on the
available CPU nodes. The computation time for each simula-
tion ranges from 50 h (smallest model, 4 BHEs of 100 m
length) to 95.3 days (biggest model, 10 BHEs of 500 m
length), which corresponds to 0.17 and 7.89 % of the total
computation time of 1208.5 days, respectively. A complete
list of all simulation results and the computational time is in-
cluded in the Supporting Information.

The proxy model allows for fast evaluation in between the
sampled training simulations. The quality of the proxy model
is quantified by a mean relative approximation error
(MRAE), which is the sum of relative approximation errors
normalized by the sample size for each model output at the
training sample points [Eq. (9)]:

MRAEi ¼
Pn

j¼1
yi;j;numerical ¢ yi;j;proxy

�
yi;j;numerical

n

�����
����� ð9Þ

Table 4. Settings for the genetic algorithm.

Parameter Value

number of independent variables 3
integer variables 1, 3
lower bound, number of BHEs 4
upper bound, number of BHEs 10
lower bound, BHE length 100 m
upper bound, BHE length 500 m
lower bound, operational time 7 years
upper bound, operational time 7 years
fitness function y ¼ x1 ¡ x2 ¡ e a¡x2ð Þ

scaling factor a 7.51Ö10¢4

population size 200
generations 500
number of elite individuals 3
stall generation limit 20
fitness function tolerance 1Ö10¢6

constraint C1 500 MW h
constraint C2 200 m
constraint function for scenario 1 and 2 0 � ¢aPCproxy x1; x2ð Þ a½ ¤þC1

constraint function for scenario 2 only 0�¢x2 +C2

error tolerance (numerical to proxy model) 1%

Figure 6. Temporal evolution of the performance of a 250 m deep MD-BTES
system with 4, 6, and 8 BHEs.

Figure 7. Response surface of the storage coefficient after seven years of op-
eration as a function of the number of BHEs and BHE length.

Figure 8. Response surface of extracted heat in the seventh year of operation
as a function of the number of BHEs and BHE length.

Figure 9. Response surface of specific heat extraction rate after seven years of
operation as a function of the number of BHEs and BHE length.

Energy Technol. 2016, 4, 104 – 113 Ó 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 110



in which yi is the model output, j is the training simulation
index, and n is the number of training simulations. By simple
testing the polynomial degree can be set as high as fourth
order. All MRAE values are summarized in Table 5. A

higher polynomial degree could achieve better MRAE
values but would also lead to overfitting owing to the well-
known polynomial properties. However, a moderate order of
the proxy model such as four is sufficient to capture the
modelÏs nonlinearity and also to assure acceptable accuracy
with MRAEs below 0.1 %.

In the first optimization scenario, the genetic algorithm
fails to improve the solution any further without violating
the constraint function after 55 generations and 11 000 evalu-
ations of the fitness function. The second scenario converges
on an optimum after 46 generations and 9200 function evalu-
ations. These are approximate numbers as the irreproducible
selection of individuals for a new generation involves
random processes. Finding the ideal solution, however, is re-
producible. For an annual heat demand of 500 MWh extract-
ed in the described operation, the ideal BHE arrays have to
have 10 BHEs of 134 m length (total drilled length: 1340 m)
for scenario one and 7 BHEs of 220 m length (total drilled
length: 1540 m) for scenario two. The MD-BTES system
would operate at 43.6 and 40.7 % storage efficiency with
a specific heat extraction rate of 84.4 and 74.2 W m¢1, respec-
tively, in the seventh year of operation. Any configuration
with fewer, but deeper, BHEs also located on the intersec-
tion of the model response surface of extracted heat and the
500 MWh plane would provide the required heat as well
(Figure 10). However, those solutions have been ruled out by
the genetic algorithm, as the increased length is exponential-
ly penalized relative to the number of BHEs in the fitness
function.

The ideal MD-BTES designs found by the genetic algo-
rithm are each verified by an additional numerical simulation
and are compared against the proxy model prediction with
respect to the relative approximation error (RAE) (Table 6).
In the second scenario, the RAE does not violate the previ-
ously defined tolerance criterion of 1 %. Hence, no further
iteration is required and an MD-BTES system with 7 BHEs
of 220 m length can be regarded as the solution to the opti-
mization problem of scenario two. However, the verification
of the first scenario fails : the numerical simulation of an
MD-BTES system with 10 BHEs of 134 m length returns
494 MWh extracted heat in the last cycle, which results in
a RAE of 1.2 % and a violation of the 1 % criterion. Conse-
quently, the proxy model is refined with the numerical verifi-

cation simulation. Renewed optimization of scenario one
with the refined proxy model yields an optimal MD-BTES
design of 10 BHEs with 134.5 m. An additional numerical ve-
rification shows that the RAE criterion is now satisfied
(Table 7).

Discussion

Optimization using a proxy model

The low MRAE values indicate good quality of the proxy
modelÏs predictions of the storage performance for low com-
putational costs. This is especially true for the center region
of the parameter space. However, as a result of the lack of
training points beyond the parameter space boundaries, the
proxy model predictions become less accurate at the edges
of the response surfaces and even more so in the corners. A
corner is a point in multidimensional parameter space at
which every variable has its lower or upper boundary value.
Therefore, it is important to choose the parameter space for
the training simulations in such a way that the optimal solu-
tion can be expected to be nowhere close to a corner.

In the first scenario, the optimal solution converges inevi-
tably on the proxy model boundary of two variables. On the
one hand, the performance of the MD-BTES system is evalu-

Table 5. Approximation errors of the fourth polynomial order proxy model.

Model output MRAE [%]

specific heat extraction rate 0.0028
storage coefficient 0.0132
stored heat per cycle 0.0279
extracted heat per cycle 0.0868

Figure 10. Response surface of extracted heat in the seventh cycle showing
the two optimal solutions found by the genetic algorithm.

Table 6. Verification of the optimal solutions on the unrefined proxy
model.

Model output Specific heat extrac- Storage coef- Heat per cycle [MW h]
tion rate [Wm¢1] ficient [%] stored extracted

Scenario 1
numerical 83.9 43.5 1136.8 494
proxy 84.3 43.5 1129.9 500
RAE <1 % <1% <1% >1 %

Scenario 2
numerical 74.5 40.7 1238.1 503
proxy 74.2 40.7 1229.6 500
RAE <1 % <1% <1% <1 %
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ated for the seventh year of operation, which is the upper
boundary for the simulation time. On the other hand, be-
cause it is unconstrained, it converges at the top boundary
for the number of BHEs owing to the fitness penalty on the
BHE length. Still, the MRAE compared to verification simu-
lation barely violates the 1 % tolerance criterion by 0.2 per-
centage points and only one refinement iteration of the
proxy model is required. However, if more variables are con-
sidered, it is advisable to use a more sophisticated experi-
mental design to handle the exponential increase in training
simulations. Typically, experimental designs such as the Latin
hypercube[35] or Box–Behnken[36] design sample the parame-
ter space much more efficiently but provide proxy models
that are less accurate at their boundaries. Therefore, for
more complex cases we recommend using wider boundaries
for the training simulations than required for the optimiza-
tion. In this way, the algorithm can converge on an optimiza-
tion variableÏs boundary without reaching the edge of the
proxy model parameter space.

Implications of the optimal solution for the design of MD-BTES
systems

The solutions for both scenarios indicate that storage effi-
ciency increases more quickly with the number of BHEs
than with their depth: The proxy model returns a heat
supply of nearly 300 MWh for a hypothetical MD-BTES
system with 7 BHEs and 134.5 m length. To raise this value
to the required 500 MWh, the total drilled borehole length
has to be increased by approximately 600 m for the 7 BHEs
of 220 m array (i.e. , deeper boreholes), but only by approxi-
mately 400 m for the 10 BHEs of 134.5 m array (i.e., addi-
tional boreholes). However, with only 134.5 m depth the so-
lution of scenario one barely qualifies as a medium-deep
BTES system. As a consequence, a possibly decreased effi-
ciency of the MD-BTES system with fewer, but deeper,
BHEs has to be accepted to meet legal requirements of mini-
mum depth.

Furthermore, both scenarios are characterized by over
50 % storage losses. Although the storage performance
would further increase over time, this improvement already
slows down significantly after a few years of operation (see
Figures 3 and 6). A larger MD-BTES system would operate
at higher efficiencies but would also store and extract more
heat in each cycle. Hence, a heat demand of 500 MWh can
be considered too low for the proposed operational scenario.
MD-BTES systems are rather suited for large-scale applica-
tions with a heat demand of several GWh. On the basis of

previous estimates,[37] MD-BTES systems are then expected
to achieve over 80 % storage efficiency.

Extension of the optimal MD-BTES system design to real field

Whereas the genetic algorithm easily determines the ideal
design of an MD-BTES system, the actual solution to the op-
timization problem depends on several assumptive boundary
conditions and simplifications. In particular, the operational
scenario of continuous storage charging and discharging
cycles is unrealistic. In a real case, it should be based on
annual heat demand and supply curves with high temporal
resolution. Such curves can be provided by comprehensive
building model simulations that take into account the inter-
action of infrastructural installations and weather conditions.
This would greatly influence the long-term behavior of MD-
BTES systems and possibly lead to a different result even if
the total annual heat demand is the same. However, every
application requires its own building model, and building
models are not the scope of this study. For the sake of sim-
plicity, the presented operational scenario is sufficiently suit-
able to demonstrate the concept of MD-BTES design optimi-
zation.

Another crucial factor is the choice of the parameter
space. Many parameters that influence the performance of
an MD-BTES system, including thermal conductivities and
heat capacities of the BHE materials and the reservoir rock,
are kept constant and are not considered as variables. In
a real case study, some of the modeling parameters such as
subsurface thermal conductivity could also be subject to un-
certainty. The aPC method is specially designed to account
for uncertain parameters.[34] Hence, the presented procedure
could be extended to optimization under geological uncer-
tainty.

Conclusions

We showed in an arbitrary example that the presented soft-
ware tool can predict the performance of a medium-deep
borehole thermal energy storage system and optimize its
design efficiently. Careful definition of the problem and se-
lection of the variable parameters and their boundaries is im-
perative to obtain significant results. The application of
a proxy model generated by arbitrary polynomial chaos ex-
pansion greatly accelerates the optimization algorithm. The
possibility to rerun optimizations considering different boun-
dary conditions with little additional computational cost
gives this approach an advantage over simulation codes tail-
ored for a specific optimization problem. Our generic and
modular approach allows for easy adaptation to other opti-
mization problems with different objectives.
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Abstract In the heating sector, borehole heat exchangers

have become popular for supplying renewable energy.

They tap into the subsurface to extract geothermal energy

for heating purposes. For advanced applications, borehole

heat exchangers require insulation in the upper part of the

borehole either to meet legal requirements or to improve

their performance. A priori numerical heat transport mod-

els of the subsurface are imperative for the systems’

planning and design. Only fully discretized models can

account for depth-dependent borehole properties like

insulated sections, but the model setup is cumbersome and

the simulations come at high computational cost. Hence,

these models are often not suitable for the simulation of

larger installations. This study presents an analytical

solution for the simulation of the thermal interactions of

partly insulated borehole heat exchangers. A benchmark

with a fully discretized OpenGeoSys model confirms suf-

ficient accuracy of the analytical solution. In an application

example, the functionality of the tool is demonstrated by

finding the ideal length of a borehole insulation using

mathematical optimization and by quantifying the effect of

the insulation on the borehole heat exchanger performance.

The presented method allows for accommodation of future

advancements in borehole heat exchangers in numerical

simulations at comparatively low computational cost.

Keywords Borehole insulation � Borehole heat

exchangers � Borehole thermal energy storage

Introduction

Public awareness on renewable energies focuses mostly on

the electricity supply. Yet, countries in high latitudes spend

vast amounts of energy on heating. For example, in Ger-

many, heating purposes alone account for more than half of

the total end energy consumption (Ageb 2013). The use of

borehole heat exchangers (BHEs) is an increasingly pop-

ular way to supply renewable heat all over the world

(Angelino et al. 2014; Lund and Freeston 2005). BHEs are

typically installed in vertical boreholes; a heat carrier fluid

is circulated in closed-loop pipes. A cement grout used as

backfill material ensures a good thermal connection to the

borehole wall and protects the groundwater from possible

contamination by antifreeze contained in the pipes. Heat is

extracted from the subsurface rock by thermal conduction

in the grout and by convection in the pipes (Sass et al.

2016a). Typically, at the surface a heat pump raises the

temperature to the required level for the specific heating

purpose. Its efficiency depends on the outlet temperature of

the BHE and on the required temperature level for heating.

Higher outlet temperatures reduce the required temperature

lift and consequently the heat pump’s energy consumption.

As the subsurface temperature increases with depth due to

the geothermal gradient, deeper BHEs can provide higher

outlet temperatures. However, heat losses in the shallow
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subsurface can eliminate the temperature gains originating

from the deeper section of the boreholes (Nakevska et al.

2015) and render the increased investment costs for deeper

BHEs worthless. Thus, a thermal insulation in the upper

section of a borehole is favorable for deeper BHEs. Fur-

thermore, legal regulations in some countries may restrict the

temperature increase of the uppermost aquifer to a certain

maximum to protect drinking water from negative biological

or chemical alterations (Haehnlein et al. 2010). Hence, a

thermal insulation has been proposed for the upper part of

medium deep borehole thermal energy storages (BTES) as

well (Bär et al. 2015). On the one hand, a backfill material

with reduced thermal conductivity and an increased borehole

diameter are supposed to reduce the heat losses and the

consequent warming of the shallow subsurface due to an

increased thermal resistance between the pipes and the

borehole wall. On the other hand, a backfill material with a

high thermal conductivity can enhance the heat exchange at

elevated ambient temperatures in the bottom part of the BHE

(Sass et al. 2016a).

In the past, BHEs rarely exceeded 100 m depth. Therefore,

no partial thermal insulation was necessary. On the contrary,

due to the small temperature differences between the heat

carrier fluid and the borehole wall, a high thermal conductivity

of a single grout was favorable along the entire borehole.

Consequently, simulation models did not need to account for

grout thermal conductivities or borehole diameters changing

with depth. Based on Eskilson and Claessons’s solution

(1988), Bauer et al. (2011) and Diersch et al. (2011a) devel-

oped a thermal resistance and capacity model (TRCM) which

reduces a BHE to a one-dimensional discretization of nodes in

a finite element mesh. This model accounts for a detailed

description of the geometry of different BHE types and their

material parameters. While it is more accurate than many line

source models as it calculates depth-dependent grout and fluid

temperatures within the BHE, it cannot accommodate

changing borehole diameters or backfill material properties

along the borehole length. Thus, up to now only fully dis-

cretized 3D numerical models have been able to simulate

BHEs with vertically varying thermal conductivities. How-

ever, these models are laborious to set up, require expensive

computations and lack the efficiency of fast analytical solu-

tions, especially for larger models with multiple BHEs as

needed for borehole thermal energy storages.

In this paper, Eskilson and Claessons’s solution is

improved to a model, which considers boreholes with an

upper and a bottom section, with both different borehole

diameters and different thermal conductivities of the

backfill material represented in a TRCM. Our approach is

independent from the specific BHE type and can handle

coaxial, U-pipe and double U-pipe BHEs. The novel

solution is linked to a numerical subsurface heat transport

model and tested against a fully discretized numerical

benchmark model for a coaxial BHE. Finally, in an

application example the model is combined with a math-

ematical optimization algorithm to determine the ideal

length of the insulated section for a double U-pipe BHE.

An extended analytical solution

Eskilson and Claesson’s analytical BHE solution (Eskilson

and Claesson 1988) describes the fluid temperature in the

downstream and upstream pipes Tin and Tout in �C as two

codependent functions of depth z (in the range of f = 0 to

the total borehole length L) and the current borehole wall

temperature Tb at time t.

Tin z; tð Þ ¼ Tin 0; tð Þf1 zð Þ þ Tout 0; tð Þf2 zð Þ

þ
Zz

0

Tb f; tð Þf4 z� fð Þ df ð1Þ

Tout z; tð Þ ¼ �Tin 0; tð Þf2 zð Þ þ Tout 0; tð Þf3 zð Þ

�
Zz

0

Tb f; tð Þf5 z� fð Þ df ð2Þ

The functions f1, f2, f3, f4 and f5 are given by the fol-

lowing expressions:

f1 zð Þ ¼ ebz cosh czð Þ � d sinh czð Þ½ �

f2 zð Þ ¼ ebz
b12

c
sinh czð Þ

f3 zð Þ ¼ ebz cosh czð Þ þ d sinh czð Þ½ �

f4 zð Þ ¼ ebz b1 cosh czð Þ � db1 þ
b2b12

c

� �
sinh czð Þ

� �

f5 zð Þ ¼ ebz b2 cosh czð Þ þ db2 þ
b1b12

c

� �
sinh czð Þ

� �

ð3Þ

The functions’ auxiliary variables a,b,b1,b2,b12, c and d,

which are based on the TRCMs of the involved BHE com-

ponents, are calculated according to the BHE type after

Bauer et al. (2011), whereas the derivation of the functions

f1–f5 can be found in Eskilson and Claesson (1988). Since the

solution describes only local steady-state conditions, time t is

omitted from the following equations for better readability.

The analytical solution has to be linked to a numerical sub-

surface model by deriving a heat source term from the dif-

ference between the borehole wall temperature and the fluid

temperature (Diersch et al. 2011a) to account for transient

heat transport in the subsurface. Then, the numerical model

calls the analytical solution every time step, providing the

time-dependent borehole wall temperature.

As the upstream and downstream pipes form a closed

loop, the fluid temperature must be the same at the bottom.

Hence, Eqs. (1) and (2) can be equalized at z = L and
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resolved for Tout ¼ Toutðz ¼ 0Þ for a given inlet tempera-

ture of the BHE Tin ¼ Tinðz ¼ 0Þ:

Tout ¼ Tin

f1 Lð Þ þ f2 Lð Þ
f3 Lð Þ � f2 Lð Þ þ

ZL

0

Ts fð Þf4 L� fð Þ þ f5 L� fð Þ
f3 Lð Þ � f2 Lð Þ df

ð4Þ

Determining the outlet temperature Tout is the imperative

first step, as Eqs. (1) and (2) require both the inlet and the

outlet temperature of the BHE to calculate the depth-de-

pendent temperature profile in the downstream and upstream

pipes. However, Eq. (4) shows that the solution for the outlet

temperature integrates functions f4 and f5 over the entire

borehole length L. Likewise, functions f1, f2 and f3 depend on

the total borehole length L as well. Hence, borehole prop-

erties changing with depth cannot be accounted for in this

equation, as they are constants in the auxiliary variables of

the functions f1–f5. Instead, a BHE with a borehole insulation

in the upper part requires a split calculation.

As the design splits the BHE into two sections with dif-

ferent grout properties and drilling diameters (Fig. 1),

Eqs. (1) and (2) apply for the upper and lower section sep-

arately. This allows for an independent consideration of

different TRCMs with different auxiliary variable values for

the functions f1–f5 in each section. The downstream and

upstream pipes are connected in the bottom section. There-

fore, Eqs. (1) and (2) cannot be equalized for the bottom of

the upper part at the interface between the two different grout

types at depth zgc to derive Eq. (4). However, at the interface

the fluid temperatures Tin, top(zgc) and Tout, top(zgc) of the

upper section of the wellbore are equal to the inlet and outlet

temperatures Tin, bottom and Tout, bottom of the bottom section.

Tin; bottom ¼ Tin; top zGCð Þ
Tout; bottom ¼ Tout; top zGCð Þ

ð5Þ

Equation (4) is still valid for the bottom section, but the

inlet and outlet temperatures are unknown. Thus, substi-

tution according to (5) gives

Fig. 1 Sketch of a coaxial BHE (centered inlet) with the insulated

uppermost borehole section and the initial corresponding temperature

profile for heat storage operation. The step-like offset of the borehole

wall temperature at zgc is smoothed out after prolonged operation due

to vertical heat transport in the subsurface
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Tout; bottom ¼ Tin; bottom

f1; bottom Lbottomð Þ þ f2; bottom Lbottomð Þ
f3; bottom Lbottomð Þ � f2; bottom Lbottomð Þ

þ
ZzL

zGC

Ts fð Þf4; bottom Lbottom � fð Þ þ f5; bottom Lbottom � fð Þ
f3; bottom Lbottomð Þ � f2; bottom Lbottomð Þ df �

Tout; top zGCð Þ ¼ Tin; top zGCð Þ f1; bottom Lbottomð Þ þ f2; bottom Lbottomð Þ
f 3; bottom Lbottomð Þ � f2; bottom Lbottomð Þ

þ
ZzL

zGC

Ts fð Þf4; bottom Lbottom � fð Þ þ f5; bottom Lbottom � fð Þ
f 3; bottom Lbottomð Þ � f2; bottom Lbottomð Þ df

:

ð6Þ

Inserting (1) and (2) for Tin; top zGCð Þ and Tout; top zGCð Þ, the

resulting equation can be solved for Tout, top:

Tout; top ¼ Tin; top

�
jþ m

RzGC

0

Tb fð Þf4; top Ltop

� �
dfþ

RzGC

0

Tb fð Þf5; top Ltop

� �
dfþl

k
ð7Þ

with

j ¼ m f1; top Ltop

� �
þ f2; top Ltop

� �
k ¼ f3; top Ltop

� �
� m f2; top Ltop

� �

l ¼
ZzL

zGC

Tb fð Þ f4; bottom Lbottomð Þ þ f5; bottom Lbottomð Þ
� �

f3; bottom Lbottomð Þ � f2; bottom Lbottomð Þ df

m ¼ f1; bottom Lbottomð Þ þ f2; bottom Lbottomð Þ
f3; bottom Lbottomð Þ � f2; bottom Lbottomð Þ ð8Þ

Subsequently, the depth-dependent temperature profiles

in the downstream and upstream pipes can be calculated with

(1) and (2) using Tin, top and Tout, top for the upper insulated

section of the wellbore and Tin; bottom ¼ Tin; topðzGCÞ and

Tout; bottom ¼ Tout; topðzGCÞ for the lower section. The new

solution now takes into account borehole properties chang-

ing with depth and can be coupled to a numerical subsurface

model as described in Diersch et al. (2011a).

Benchmarking

The enhanced analytical solution is integrated in a

MATLAB (The MathWorks 2015a) finite element method

(FEM)-based simulator called BASIMO (borehole heat

exchanger array simulation and optimization tool, Schulte

et al. 2016). In a benchmark problem, it is compared

against a benchmark simulation of a fully discretized

detailed numerical 3D model using OpenGeoSys (OGS;

Kolditz et al. 2012). OGS is a process and object-oriented

simulator (Kolditz and Bauer 2004) that uses a FEM to

solve the arising thermal and hydraulic processes. The

OGS model is based on the same principle as introduced in

Boockmeyer and Bauer (2014) and was successfully veri-

fied against detailed experimental data for a BHE

(Boockmeyer and Bauer 2014). The OGS model can

account for spatially varying and temperature–dependent

material parameters and is applied for the simulation of

heat storage in the subsurface (Bauer et al. 2013, 2015).

A simple heat storage and extraction operation scenario

is set up for the benchmark: A partly insulated 100-m

coaxial BHE is located in the center of the model domain,

which is 100 m by 100 m wide and 150 m deep. The initial

temperature distribution corresponds to a geothermal gra-

dient of 0.03 K/m. Dirichlet boundary conditions are set

accordingly: 10 �C at the top and 14.5 �C at the bottom. An

enlarged drilling diameter and a reduced thermal conduc-

tivity of the grout provide a borehole insulation from the

surface to 30 m depth (Fig. 2).

Heat is stored for 182 days with an inlet temperature of

90 �C and a flow rate of 2.5 l/s. Subsequently, the heat

extraction period lasts 183 days with the same flow rate

and an inlet temperature of 5 �C. The change of the flow

direction from the centered inlet for heat storage to the inlet

through the annular gap for heat extraction is considered.

Table 1 summarizes the material properties, the BHE

geometry and the according abbreviations used in Fig. 2.

Both simulators are set up with the model described

above. In the benchmark, the temporal evolution of the

outlet temperatures is compared against each other. As the

simulators use independent time-stepping schemes, results

are saved after 1 day and after 10 days of storage and

extraction operation, respectively, to ensure at least two

comparison points per period. The results show that the

improved analytical solution lacks in accuracy to match the

fully discretized model for the early time steps during

transient input situations (Fig. 3a, c), but achieves a very

good fit after a few hours of simulation time (Fig. 3b, d).

After 10 days of operation, the temperature difference is

less than 0.14 �C. At the end of the storage and extraction

periods, the BHE outlet temperature differs less than

0.02 �C between the BASIMO and the OGS model.

It is not possible to quantify the difference in the outlet

temperature for the entire time domain without interpola-

tion of the results due to the different time-stepping

schemes. Instead, the heat balance Q, which represents the

heat exchanged with the subsurface and requires the inte-

gration for the storage and the extraction period, is

considered:

Q ¼
Z

Tin � Toutð Þ f qf cf t dt ð9Þ

with Tin: inlet temperature, Tout: outlet temperature, f: flow

rate of the heat carrier fluid, qf: density of the heat carrier

fluid, cf: specific heat capacity of the carrier fluid and t:

time. The results of the benchmark and the relative
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Fig. 2 Schematic of the coaxial

BHE used in the benchmark

(not to scale)

Table 1 Model parameters and

BHE properties for benchmark

simulation

Parameter Value Unit Abbreviation

Rock thermal conductivity 2.6 W�m-1�K-1 ks

Rock density 2600 kg�m-3 qs

Rock specific heat capacity 800 J�kg-1�K-1 cs

Rock volumetric heat capacity 2.08 MJ�m-3�K-1 qcs

Upper section borehole diameter 0.25825 m Db, top

Upper section grout thermal conductivity 0.04 W�m-1�K-1 kg, top

Upper section length 30 m Ltop

Lower section borehole diameter 0.200025 m Db, bottom

Lower section grout thermal conductivity 4 W�m-1�K-1 kg, bottom

Lower section length 70 m Lbottom

Outer pipe outer diameter 0.127 m Dop

Outer pipe wall thickness 0.0056 m wop

Outer pipe thermal conductivity (steel) 54 W�m-1�K-1 kop

Inner pipe outer diameter 0.0872 m Dip

Inner pipe wall thickness 0.0055 m wip

Inner pipe thermal conductivity (polyethylene) 0.4 W�m-1�K-1 kip

Heat carrier fluid dynamic viscosity (water) 0.000504 kg�m-1�s-1 l

Heat carrier fluid density (water) 977 kg�m-3 qf

Heat carrier fluid specific heat capacity (water) 4145 J�kg-1�K-1 cf

Heat carrier fluid thermal conductivity (water) 0.65 W�m-1�K-1 kf
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difference of the models are summarized in Table 2. The

amount of transferred heat differs by 1.6 and 5 % during

storage and extraction, respectively. Considering only the

first 10 days of the storage and extraction periods,

increased errors of 6.8 and 13.54 % indicate the strong

influence of the analytical solution’s inaccuracy during the

first time steps, whereas the remaining storage and

extraction periods yield smaller errors (Table 2). The

accuracy of the analytical solution and sources for the

remaining error are addressed in the ‘‘Discussion’’ section

below.

Application example

In most applications, double U-pipe BHEs are coupled with

heat pumps (Sass et al. 2016a). Deeper boreholes are often

fitted with coaxial BHEs instead (Bär et al. 2015; Schulte

et al. 2016; Welsch et al. 2015). They benefit from the fact

that the inner pipe is not in contact with the grout and can

be designed to have a low thermal conductivity, which can

reduce heat losses of the upstream fluid within. For double

U-pipe BHEs, the full length of the downstream and

upstream pipes acts as a heat exchange surface with the

Fig. 3 Comparison of the coaxial BHE model responses. Top: a short-term and b long-term evolution of the BHE outlet temperature. Bottom:

BHE temperature profiles after c 1 day and after d 10 days of extraction
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surrounding rock and the grout material. Thus, double

U-pipe BHEs suffer growing heat losses in the upstream

pipes with increasing borehole length: the heat extracted at

the bottom of the BHE is lost to the shallow subsurface and

the cooler downstream pipes (so-called thermal short-cir-

cuiting) before it reaches the surface. Consequently, only

lower inlet temperatures can compensate the heat losses

and maintain the required difference between inlet and

outlet temperature for the desired heat extraction rate. This,

however, directly translates to an increased power con-

sumption of the heat pump and an efficiency loss.

Assuming an ideal Carnot process, the efficiency of a heat

pump can be calculated by determining the theoretical

maximum coefficient of performance (COP):

COPtheor;max ¼ Thot

Thot � Tcold

ð10Þ

where Thot represents the required temperature level for the

specific heating purpose and Tcold the outlet temperature of

the BHE (all temperatures in Kelvin). Although being a

simplification, which neglects internal losses, the theoreti-

cal maximum COP reflects the influence of the outlet

temperature and can give an estimate on the change of the

system performance.

In a synthetic simulation example, a 400-m double U-pipe

BHE is to be fitted with a borehole insulation in the upper

section. Again, BASIMO (Schulte et al. 2016) is used to

simulate the BHE’s operation. The vertical BHE is located in

the center of the model with a horizontal extension of 100 m

by 100 m. The model domain is 450 m deep. Dirichlet

boundary conditions and initial conditions concur with a

geothermal gradient of 0.03 K/m and a surface temperature of

10 �C. Table 3 and Fig. 4 plot the considered material prop-

erties and the BHE specifications. A simple scenario to sim-

ulate the BHE operation applies: Heat is extracted at a constant

rate of 20 kW for 30 days at a flow rate of 0.5 l/s. For the given

fluid heat capacity and density, this equates to a required

difference of about 9.88 �C between inlet and outlet temper-

ature. Strong coupling by a Picard iteration loop (Reddy and

Gartling 2010) enforces this requirement by altering the inlet

temperature for every time step accordingly. The beneficial

effect of the insulation is quantified by comparing the outlet

temperature against the results of a BHE without insulation,

which serves as the base case.

Table 2 Benchmark results
Period QMATLAB (MWh) QOGS (MWh) Error: (QOGS–QMATLAB)/

QOGS (%)

Storagetotal 106.57 108.29 1.6

Storage0–10 days 8.34 8.95 6.8

Storage10–182 days 98.24 99.34 1.1

Extractiontotal -23.55 -24.77 5.0

Extraction0–10 days -3.84 -4.45 13.54

Extraction192–365 days -19.70 -20.33 3.1

Table 3 Model parameters and

BHE properties for application

example

Parameter Value Unit Variable

Rock thermal conductivity 2.6 W�m-1�K-1 ks

Rock density 2600 kg�m-3 qs

Rock specific heat capacity 800 J�kg-1�K-1 cs

Rock volumetric heat capacity 2.08 MJ�m-3�K-1 qcs

Upper section borehole diameter 0.25825 m Db, top

Upper section grout thermal conductivity 0.04 W�m-1�K-1 kg, top

Lower section borehole diameter 0.13 m Db, bottom

Lower section grout thermal conductivity 4 W�m-1�K-1 kg, bottom

Depth of diameter and grout change variable m zgc

Pipe outer diameter 0.032 m Dp

Pipe wall thickness 0.0029 m wp

Diagonal shank space 0.06 m sp

Pipe thermal conductivity (polyethylene) 0.38 W�m-1�K-1 kp

Heat carrier fluid dynamic viscosity (water) 0.000504 kg�m-1�s-1 l

Heat carrier fluid density (water) 977 kg�m-3 qf

Heat carrier fluid specific heat capacity (water) 4145 J�kg-1�K-1 cf

Heat carrier fluid thermal conductivity (water) 0.65 W�m-1�K-1 kf
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An entirely insulated borehole will perform worse than a

BHE without any insulation. Hence, an ideal length of

borehole insulation must exist. A basic optimization algo-

rithm contained in the MATLAB Optimization Toolbox

(Brent 1973; The MathWorks 2015b) for finding the min-

imum of a single-variable function on a fixed interval is

used to determine the ideal length. The optimization

algorithm calls the simulator repeatedly, varying the length

of the borehole insulation (i.e., the depth of borehole

diameter and grout change) within preset boundaries until

it fails to improve the outlet temperature of the BHE with

respect to a tolerance criterion for the variable (i.e., length

of insulation) or the function value (i.e., the outlet tem-

perature, Table 4).

After 15 iterations, the optimization algorithm con-

verges on an optimal solution of approximately 142 m

(Fig. 5a) for the insulation length. At the end of the 30-day

period, the outlet temperature of the insulated double

U-pipe BHE is 2.36 �C. Compared to the outlet tempera-

ture of the same BHE without insulation, this represents an

increase of approximately 1.7 �C (Fig. 5b). The effect of

the insulation becomes apparent by comparing the tem-

perature profiles of both BHEs after 30 days of operation

(Fig. 6a, b). The insulation reduces the heat extraction in

the upper section of the downstream pipe. As a result, the

heat carrier fluid cannot reach temperatures as high as at

the bottom of the uninsulated borehole. However, the

insulation also mitigates the heat loss in the upstream pipe,

ultimately providing a higher outlet temperature at the top

of the insulated borehole.

Assuming an ideal Carnot heat pump, which raises the

temperature to a target level of 35 �C (i.e., Thot), the the-

oretical maximum COP for the insulated BHE is 9.44,

whereas the BHE without an insulated borehole only

achieves a theoretical COP of 8.97. This equates to a

performance increase of about 5 %. Table 5 gives a

selection of the optimization iterations’ results. The first

iteration with an insulation length of 244.85 m shows how

an insulation that is too long negatively affects the BHE

performance.

Fig. 4 Schematic of the double

U-pipe BHE used in the

application example (not to

scale)

Table 4 Optimization algorithm settings

Parameter Value Unit

Lower variable boundary 10 m

Upper variable boundary 390 m

Maximum number of iterations 20 [–]

Variable tolerance 0.1 m

Function tolerance 0.001 �C
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Discussion

Although the presented solution only accounts for two

borehole sections with different borehole diameters and

backfill materials, the method is expandable to any number

of segments by further substitution in Eq. (7). Additional

segmentation results in nested functions, but is only limited

by the increment size of the one-dimensional discretization

of the borehole. However, for better readability the calcu-

lation rule for two sections sufficiently describes the

concept.

In general, any other parameter included in the TRCM

(e.g., pipe properties) can be altered as well. Yet, for the

purpose of modeling a borehole insulation, the scope in this

study is restricted to the borehole diameter and the thermal

conductivity of the backfill material. As the solution for

modeling insulated BHEs represents an improvement

solely on Eskilson and Claesson’s work (Eskilson and

Claesson 1988), the TRCM providing the parameters for

functions (3) is not affected. Consequently, our novel

solution can handle improved TRCMs as long as they

provide the required parameters for the auxiliary functions

(3). For example, future TRCMs can be expanded to

include additional standpipes in the thermal resistance

network.

Despite the adequate benchmark results, the two simu-

lations still show an observable mismatch. The conceptual

differences between the fully discretized OGS model and

the FEM-coupled analytical solution can contribute to this

error in various ways. Most importantly, the OGS model is

transient, whereas the analytical model is a local steady-

state solution coupled to a transient FEM algorithm. Con-

sequently, the FEM-coupled analytical model struggles to

match the numerical model in transient input situations on

short timescales. Diersch et al. (2011b) have shown that the

analytical solution overestimates the outlet temperature

during the first time steps of storage operation. However,

the errors vanish with increasing time step size until further

inlet temperature changes occur. The same is true for the

presented analytical solution for insulated BHEs: The

outlet temperature difference between the BASIMO and

the OGS model decreases to less than 0.02 �C in the long-

term prediction. After changing from storage to extraction

operation, the difference in outlet temperature soars up

before the error diminishes again.

Another source of error in the FEM-coupled analytical

model is the grid spacing around the BHE nodes. The

nodes representing the BHEs are dimensionless singulari-

ties in the finite element mesh, whereas the actual BHE

cross section has an extent. Thus, the heat exchange with

the FEM model does not occur exactly where the borehole

wall would be. In a semi-structured triangular prism mesh,

numerical accuracy can be attained by choosing a specific,

optimal distance of the horizontally neighboring nodes

depending on the borehole diameter (Diersch et al. 2011b).

However, the simulator for borehole thermal energy stor-

age (Schulte et al. 2016) uses a tetrahedral finite element

mesh. This inhibits the possibility of placing all neigh-

boring nodes at an equal distance. The nodes sharing a

tetrahedron element with a BHE node inherently have

Fig. 5 Optimization results: a Tempout after 30 days of operation for each iteration, b Tempin and Tempout evolution of the base case and the

ideally insulated BHE

Environ Earth Sci  (2016) 75:910 Page 9 of 12  910 

123



different distances from one another. Consequently, this

problem cannot be overcome by optimal conditions of

mesh spacing as suggested by Diersch et al. (2011b).

Solving this problem to achieve better accuracy is, how-

ever, subject of further research. Altogether, the FEM-

coupled analytical solution still achieves an acceptable ac-

curacy compared to the fully discretized OGS model. The

greater portion of the error can be attributed to the short-

comings in transient situations on short timescales, but

since typical simulations of BHE arrays usually span

several years of operation, this deficit is negligible for most

applications.

In the past, considerations of insulation focused on the

pipes used in BHEs (Acuña et al. 2011; Acuña and Palm

2013) to mitigate thermal short-circuiting. However, the

application example shows that an insulation of the bore-

hole can have significant impact on the output temperature

of a BHE. Despite its beneficial effect on deep BHEs and

although it has been proposed for BTES systems for

environmental reasons (Bär et al. 2015), to our knowledge

Fig. 6 Temperature profiles of

a the double U-pipe BHE

without insulation and b the

ideally insulated double U-pipe

BHE after 30 days of operation
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thermal borehole insulation has not been put into practice

so far. Consequently, the development of grouts for BHEs

has focused on enhancing the thermal conductivity (Lee

et al. 2010) rather than reducing it. Thus, the thermal

conductivity of the insulating grout in the application

example does not refer to any available BHE grout, but to

polyurethane. Polyurethane may very well be a potential

candidate for a BHE insulating grout as it is watertight, has

a very low thermal conductivity and is already in use for

sealing wellbores in other applications (Mansure 2002;

Zawislanski and Faybishenko 1999). Thus, a thermal

conductivity as low as 0.04 W m-1 K-1 is a reasonable

assumption.

It is necessary to evaluate the effect of the borehole

insulation on the system performance for each scenario

specifically. Heat pump specifications, heat losses and the

load profile for the heat demand have to be taken into

account. As building specifications are beyond the scope of

this paper, the performance increase of the synthetic

application scenario can only consider the improvement of

the theoretical maximum COP neglecting all losses an

actual heat pump would have. However, the results still

provide a good estimate on the magnitude of a possible

performance gain by an insulated borehole.

A gain of 5 % in heat pump performance may appear

miniscule considering the increased costs for drilling with a

larger borehole diameter and fitting the BHE with the

insulation. Simply extending the BHE or adding a second

BHE instead of using insulation could achieve the same

efficiency gain. At least for U-pipe and double U-pipe

BHEs extending the borehole length is not a viable option

due to the increased thermal short-circuiting mentioned

above. A comparative simulation shows that an uninsulated

BHE with the same specifications, but twice the length

(i.e., 800 m) provides an outlet temperature of 1.95 �C
after 30 days in the described operational scenario. This

corresponds to a theoretical maximum COP of 9.32 and a

relative COP increase of 3.9 %. Extending the BHE proves

to be effective, but even so the borehole insulation provides

better results. Furthermore, doubling the borehole length

represents a considerable rise in investment costs and does

not even factor in the increased power consumption for the

circulation pump, which is about twice as high.

On the other hand, using two BHEs without insulation

instead of an ideally insulated one can be a cost-saving

alternative. Applying the mathematical optimization algo-

rithm on a system of two identical BHEs without insula-

tion, which are 5 m apart and have the load of 20 kW split

equally among them, yields a required length of 162.60 m

each to match the outlet temperature of the ideally insu-

lated BHE. While the setup with two shorter BHEs results

in saving about 19 % of total borehole length as well as

pumping power (considering the described scenario with

0.5 l/s per BHE) compared to the single insulated 400 m

BHE, the two BHEs without insulation also require more

space at the surface. With only 5 m distance in between,

the BHEs will eventually influence each other, which will

result in decreasing outlet temperatures. If the reservoir is

not replenished by heat storage cycles or prolonged

recovery phases, the distance between the BHEs has to be

increased even further. For arrays of BHEs this can raise

the required surface area significantly. As mentioned

before, recharging the reservoir by heat storage cycles can

have a negative impact on the drinking water quality in the

topmost aquifer and can therefore be legally restricted.

BHEs as short as *160 m are likely to affect this aquifer

along a large part of their length, which limits the possi-

bilities of replenishment by heat storage. Therefore, a

borehole insulation is a favorable option to increase BHE

efficiency where deeper boreholes are required due to

limited space in urban areas (Gehlin et al. 2016) or even a

necessity, when legal regulations require a reduction of the

thermal impact on the topmost aquifer (Bär et al. 2015;

Sass et al. 2016b).

Summary and conclusion

Particular advanced applications for borehole heat

exchangers require some of the borehole properties to

change with depth. This study presents an efficient ana-

lytical solution for modeling such depth-dependent

Table 5 Selection of optimization iteration results (after 30 days of operation)

Iteration Insulation

length (m)

Inlet and Outlet

temperature (�C)

Target temperature

(�C)

COPtheor, max Relative change of

COPtheor, max compared

to base case

0 (base case) 0 -9.21/0.66 35 8.97 not applicable

1 244.85 -9.73/0.15 35 8.84 -1.46 %

2 99.71 -7.73/2.14 35 9.38 ?4.50 %

3 155.15 -7.54/2.34 35 9.43 ?5.14 %

15 (optimal) 142.15 -7.52/2.36 35 9.44 ?5.21 %
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properties. The solution can accommodate future devel-

opments on thermal resistance and capacity networks for

borehole heat exchangers. If coupled to a transient model

for the subsurface heat transport, it is sufficiently accurate

to save expensive and cumbersome simulations of fully

discretized borehole heat exchangers. This method allows

for the implementation of properties like increased bore-

hole diameters and thermal resistances, which can act as

borehole insulation, even for simulations of larger arrays of

borehole heat exchangers.
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Abstract 

Innovative applications and novel modifications of borehole heat exchangers (BHE) require new simulation tools. Currently, 
features like inclined or partly insulated boreholes necessitate fully discretized models. However, those models come at high 
computational cost. We present a tool, which uses an analytical solution for the BHE coupled with a numerical solution for the 
subsurface heat transport. A tetrahedron mesh bypasses the limitations of structured grids for borehole path geometries, while BHE 
properties changing with depth are considered. The tool benefits from the fast analytical solution of the BHEs while still allowing 
for a detailed consideration of the BHE properties. 
© 2016 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Globally, space heating and domestic hot water production constitute about a quarter of the final energy 
consumption [1]. In countries, which are affected by winter seasons, this fraction can be substantially higher (cf. [2]). 
Renewable energy sources like solar collectors are increasingly used to cover the heat demand [3, 4]. They have the 
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potential to reduce the consumption of fossil fuels and to mitigate the CO2 emissions. However, like the demand, the 
renewable heat supply is subject to seasonality in higher latitudes. Excess heat is available in summer, while the heat 
demand is highest in winter. Consequently, renewable heat sources rely on seasonal storage systems [3-8]. Shallow 
arrays of borehole heat exchangers are already in use for seasonal heat storage at comparably low temperature levels 
[9-12]. In many countries legal regulations restrict alterations of the groundwater that may have a negative impact on 
the drinking water quality [13]. Excessive heating of the shallow subsurface can induce microbial growth and, 
therefore, has to be prevented in these aquifers [14].  

Instead, medium deep borehole thermal energy storage systems (BTES) can store the heat in greater depth at high 
temperature levels evading the topmost aquifers. For that purpose, medium deep BTES have to be fitted with an 
insulation in the upper section of the borehole. This can be achieved by larger borehole diameters and the use of 
insulating grouting material in the regarding borehole section. [15-17] 

Compared to shallow installations, drilling is an even more critical cost factor for the construction of a medium 
deep BTES. Thus, simulations of the storage operation are imperative prior to the investment. Furthermore, the design 
of the BHE array has to be optimized to avoid badly sized systems. Consequently, a simulator for the BHE array 
should allow for mathematical optimization [17]. Also, a partly insulated borehole corresponds to depth-dependent 
BHE properties and implies additional special requirements to numerical models. These requirements rule out most of 
the available simulation tools like EED [18], FEFLOW [19] or line source-based approaches (e.g. [20, 21]). Up to 
now, only fully discretized models could fulfill these requirements. However, fully discretized models come at high 
computational cost and are not a viable option for the simulation of entire arrays of BHEs. 

In this paper, we present BASIMO: a Borehole heat exchanger Array SIMulation and Optimization tool. It 
comprises a simulator that employs the finite element method (FEM) to calculate the transient conductive heat 
transport in the subsurface. The thermal response of the BHEs is calculated using an adapted analytical solution based 
on thermal resistance and capacity models (TRCM), which allows for the consideration of partly insulated boreholes, 
but still grants fast computation compared to fully discretized models [22]. As the simulator is MATLAB-based, it can 
be readily used with the MATLAB Global Optimization Toolbox [23] for the mathematical optimization of the storage 
performance with respect to variable system parameters. For elaborate optimization problems, the computational time 
can be reduced using a previously trained proxy model [17]. Furthermore, it is possible to link BASIMO to building 
models for coupled BTES-building simulations.  

2. BASIMO 

BASIMO was initially developed for the design optimization of BTES [17]. On the one hand, this determines the 
required features for the simulator, namely the consideration of borehole insulation and the possibility to couple the 
simulator to mathematical optimization algorithms. On the other hand, it allows for certain simplifications: BTES 
systems typically target low permeable rocks for heat storage, as groundwater flow decreases the storage efficiency 
[15]. Therefore, BASIMO neglects the convective heat transport in the subsurface, which decreases the computational 
cost significantly. Nevertheless, BASIMO can also be used for the simulation of regular BHE arrays in mere heat 
extraction scenarios as long as groundwater flow is non-existent. BASIMO applies a dual continuum approach where 
the numerical calculation of the subsurface heat transport is separated from the simulation of the thermal interactions 
within the BHEs. The latter can be solved analytically, which significantly saves computation time otherwise required 
for the full discretization of the borehole. The program structure of the simulator is illustrated in Fig. 1.  
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Fig. 1. Schematic of the program structure of the BASIMO simulator, arrows indicate the interaction of the program components. 

2.1. Finite Element Method and Tetrahedron Mesh 

The core of BASIMO is an improved MATLAB FEM implementation (Galerkin method of weighted 
residuals [24]) originally developed by Alberty et al. [25]. It calculates the transient heat diffusion in the subsurface 
by numerically solving Fourier’s Law of heat conduction for the model domain, which is discretized as a tetrahedron 
mesh generated with TetGen [26]:  

( ) Qsss qT
t

T
c +∇⋅∇=

∂

∂
λρ    (1) 

With s: soil density, cs: volumetric heat capacity of the soil, T: Temperature, t: time, s: thermal conductivity of 
the soil and qQ: heat sources and sinks as internal heat generation per unit volume. The tetrahedron mesh is 
unstructured and eliminates any restrictions for the bore path geometry. Consequently, inclined BHEs can be modeled 
in BASIMO (Fig. 2a), whereas semi-structured triangular meshes or fully structured rectangular meshes, typical for 
most available simulators, only allow for the consideration of vertical boreholes. 

The principles of the FEM in heat transfer problems have been described for instance by Reddy and Gartling [27]. 
Ultimately, the weak formulation of the partial differential equation (1) summarized over the entire model domain can 
be expressed in a short matrix notation: 

)(TFKTTM =+    (2) 

Where M represents the heat capacity matrix, K is the thermal conductivity matrix and F is the right-hand side 
vector including source terms, whereas T is the solution vector, i.e. the subsurface temperature. The BHEs act as heat 
sources or sinks in the FEM mesh and contribute to the right-hand side F. As the heat transfer from and to the BHEs 
depends on the temperature of the surrounding reservoir rock, their contribution to the source terms in F depends on 
the solution vector T. Consequently, the system of equations (2) is non-linear. A predictor-corrector method is used 
with a second order Adams-Bashforth predictor and a Crank-Nicolson corrector to solve the system of equations. It 
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allows for automated time stepping after a few initial time steps provide the acceleration vectors of T required for the 
predictor. A Picard iteration scheme is applied on the corrector to consider the non-linearity. [27] 

As MATLAB is an interpreted programming language, the program’s execution can have significant performance 
drawbacks compared to compiled code. Especially the assembly of the conductivity and capacity matrices M and K 
becomes very slow for large models. This problem is bypassed using C/C++ code [28], which assembles the matrices 
outside of MATLAB and speeds up the computation by several orders of magnitude. In the same way, other libraries 
can be integrated, for example, to replace MATLAB’s solver by GPU based routines. 

2.2. Analytical Solution for Borehole Heat Exchangers 

The thermal interaction of the BHEs is calculated by a one-dimensional analytical thermal resistance and capacity 
model . Fed with inlet temperature and flow rate data, it provides the temperature distribution in the inlet and 
outlet pipes in predefined depth levels. The solution takes into account all thermal and hydraulic parameters of the 
BHE materials and the borehole wall temperature. In the finite element mesh, the BHEs are discretized as vertical or 
inclined (Fig. 2a) lines of mesh nodes. The temperature at these nodes defines the borehole wall temperature and is 
passed to the analytical solution. In return, the analytical solution sets heat sources based on the thermal resistances 
within the BHEs and the difference between the borehole wall temperature and the calculated BHE fluid temperature 
at the corresponding nodes (see above). The same solution is used in the commercial software FEFLOW [19], but has 
been improved for BASIMO to take into account BHE properties changing with depth [22]. This allows for the 
consideration of insulation within sections of the borehole (Fig. 2b).  

 

 

Fig. 2. (a) Cross section of a tetrahedron mesh of a reservoir with inclined BHEs; (b) schematic of an insulated coaxial BHE with centered inlet 
(not to scale) and the corresponding temperature profiles of the borehole wall and of the fluid in the inlet and the outlet pipe , D: borehole section 
diameter, L: borehole section length (simplified after [22]). 

2.3. User Input and Model Output 

BASIMO allows for a detailed model description by the user. Except for the geometry of the BHE array, the model 
is parametrized by self-explanatory Excel sheets. The user can change the model settings by editing these files without 
having to tamper with the code. This way, the model can be generated with a simple stratigraphy of the subsurface, 
where each layer is defined by its bottom depth and can be assigned a different bulk thermal conductivity, density and 
specific heat capacity.  
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In a similar manner, the operation of the BHEs is set up by user-defined time steps, for which the BHEs can be 
assigned a mass flow rate and a corresponding inlet temperature or heat extraction rate. As the analytical solution for 
the BHEs cannot handle heat extraction rates by itself, an additional Picard iteration loop in BASIMO determines the 
corresponding inlet temperature. Furthermore, BASIMO allows the user to choose between U-pipe, double U-pipe 
and coaxial BHEs in the operation setup, which includes the choice between central or annular inlet for coaxial BHEs. 
These settings apply for all BHEs in the array alike. 

The BHEs, on the other hand, are each dealt with independently in a separate file. A detailed configuration allows 
for the consideration of the following parameters: 

• Borehole diameters (two independent sections for possible insulation) 
• Pipe diameters 
• Pipe wall thicknesses 
• Shank space (U-pipe and double U-pipe only) 
• Pipe thermal conductivities 
• Fluid specific heat capacity 
• Fluid thermal conductivity 
• Fluid dynamic viscosity 
• Fluid density 
• Grout thermal conductivities (two independent sections for possible insulation) 
• Length of insulation 

The temperature dependency of the thermo-physical parameters is not taken into account. The borehole insulation 
can be disregarded by keeping the borehole diameters and the grout thermal conductivities the same. 

Lastly, it is possible, to change a few settings, which concern the numerical calculation and the program output of 
BASIMO. Depending on the model size and the scheduled operation time, these settings can greatly influence the 
stability, the accuracy and the simulation time:  

• Time integration weighting coefficient of the corrector to change from Crank-Nicolson to fully implicit 
• Time stepping control tolerance error 
• Picard iteration tolerance error 
• Maximum number of Picard iterations 
• Initial time step size 
• Maximum time step acceleration factor 
• Maximum time step size 
• Switch for graphical output during the simulation 
• Switch for detailed data output for post-processing 

BASIMO provides a subroutine for generating the finite element mesh. It first spatially delimits the model domain 
and then defines the bore paths of the BHEs as lines of nodes in a Cartesian coordinate system before calling TetGen 
[26] to generate the tetrahedral mesh of finite elements. While the geometrical arrangement of the BHEs is predefined 
by templates depending on the number of BHEs (Fig. 3), the user can chose their number, their length and their 
respective distance towards each other. Also, the inclination angle can be defined. In that case, all BHEs radially dip 
away from the center. If there is a central BHE in the particular arrangement, it remains vertical. The templates try to 
place the BHEs in a compact arrangement, as a low enveloping surface to storage volume ratio is important for BTES 
systems. However, BASIMO will also accept user-defined meshes as long as they come with separate files that specify 
the coordinates of the mesh nodes for each BHE. 
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Fig. 3. Exemplary templates for the arrangements of BHEs in the discretized tetrahedron mesh (overhead perspective) and the corresponding 
number of boreholes, model edge length: 100 m. 

 

 

Fig. 4. BASIMO outputs: model cross sections (post-processed) showing the subsurface temperature distribution in a 7 BHE x 70 m array(cf. Fig 
3) after 90 days of (a) heat storage in a homogeneous reservoir (granite) with borehole insulation and (b) heat extraction from a stratified 
reservoir with inclined boreholes (10°); corresponding BHE temperature profiles after 90 days of (c) heat storage in a homogeneous reservoir 
with borehole insulation and (d) heat extraction from a stratified reservoir with inclined boreholes (10°); stratification: 0-20 m: sandstone, 20-
120 m: quartzite. 
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As mentioned above, BASIMO can return various simulation outputs. Every simulation provides time series of the 
BHE return temperatures and the final temperature distribution of the subsurface (Fig. 4a & Fig 4b). The latter can 
also be saved as a time series of distinct time steps for post-processing purposes. Furthermore, it is possible to activate 
a graphical output during the simulation, which plots the time step size and the inlet and outlet temperature during the 
simulation, as well as the current temperature profile of the BHE (i.e. borehole wall, downstream pipe and upstream 
pipe temperature, Fig. 4c & Fig 4d). 

2.4. Optimization 

Since the code of BASIMO is written in MATLAB, it can be easily embedded in a subroutine called as an objective 
function or as a nonlinear constraint function in the MATLAB Global Optimization Toolbox [23]. This way, various 
design or operational parameters can be optimized with regard to characteristic performance indicators. For example, 
BASIMO can minimize the size of a BHE array for heat storage (i.e. number and length of BHEs), which corresponds 
to the investment costs, for a specified amount of heat to be provided by the BTES [17]: BASIMO is called as 
constraint function to ensure sufficient heat provision by the considered array designs. Similarly, the outlet 
temperature of a single BHE can be optimized by finding the ideal length of borehole insulation [22]. In this case, 
BASIMO is the objective function called by the optimization algorithm.  

Despite the advantages of BASIMO over other programs, simulations of large systems can still be lengthy. This 
can pose an impasse for some optimization problems that require a large number of function calls to converge on a 
solution. The problem can be overcome by generating a proxy model from considerably fewer training simulations by 
arbitrary polynomial chaos expansion [17, 32]. Whereas the computational effort for large models is still high, they 
only have to be computed once. The resulting proxy model can be evaluated by the optimization algorithm in a matter 
of seconds, as it consists only of a polynomial instead of a numerical model.  

The adaptability of the MATLAB code not only enables its use in optimization algorithms. With only a few simple 
changes to the code it is possible to couple BASIMO with building models, which consider the heating infrastructure 
like heat pumps and buffer storages on the surface. Heat demand profiles with a high temporal resolution can be taken 
into account. This way, the dynamic interplay of the involved system components can be simulated with 
unprecedented and realistic detail. [33] 

3. Outlook 

BASIMO is a versatile tool specifically tailored for the simulation and the optimization of BTES systems. It closes 
capability gaps of currently available simulators like the consideration of borehole insulation and unrestricted bore 
path geometries, while still maintaining reasonable computational performance. In benchmarks simulations, BASIMO 
showed good agreement with other simulators [17, 22]. The code is still under development. Future work will focus 
on the implementation of the transient convective heat transport calculation in the subsurface and on further 
performance improvements.  
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