03.07.2013 Views

Abstract SYMPHOS 2011

Abstract SYMPHOS 2011

Abstract SYMPHOS 2011

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Dear participants,<br />

On behalf of the Organizing Committee, I am pleased to welcome you to <strong>SYMPHOS</strong> <strong>2011</strong>, the first International<br />

Symposium on Innovation and Technology in the Phosphates Industry, in Marrakech.<br />

Organized and sponsored by OCP, this worldwide scientific and technological event will be a global meeting point for<br />

all major players in the phosphate industry’s diverse fields. <strong>SYMPHOS</strong> <strong>2011</strong> is a landmark event -- the first of its kind<br />

in Morocco.<br />

Industry representatives, scholars, academics and other experts will present and discuss global developments and<br />

specific phosphate topics.<br />

Together we will:<br />

2<br />

• Share information and innovative ideas;<br />

• Review new techniques and technologies that can increase production and productivity;<br />

•Discuss best practices with special attention given to sustainable development and environmental<br />

protection;<br />

• Consider the phosphate industry’s future, within the framework of a sustainable development and<br />

clean technology approach.<br />

The Organizing Committee has prepared a full agenda, including meetings and visits, as you would expect from an<br />

event of this importance.<br />

The technical program will run from May 11th to May 13th, <strong>2011</strong>. On May 10th, OCP will offer visits to our Khouribga<br />

(industrial mining) and Jorf Lasfar (chemical platform) sites.<br />

The exhibition space will be open to all participants throughout the symposium, with more than sixty companies<br />

presenting their activities, products and services.<br />

<strong>SYMPHOS</strong> <strong>2011</strong> also offers a B to B centre accessible to all participants, where interested parties will be able to organize<br />

their own meetings, through an innovative interactive tool accessible on the Symposium website.<br />

We would like to thank all the people who put their worthy efforts into the organization of this event.<br />

Finally, we would like to thank you for your presence and your interest in <strong>SYMPHOS</strong> <strong>2011</strong>, and sincerely hope it will meet<br />

and surpass your expectations.<br />

Enjoy the symposium and your stay in Marrakech!


ORGANIZATION COMMITTEE<br />

Mohamed AMALHAY, Morocco<br />

Qods BENJELLOUN, Morocco<br />

Siham CHERKAOUI, Morocco<br />

TECHNICAL COMMITTEE<br />

Mohamed AMALHAY, Morocco<br />

Jamal CHAOUKI, Morocco<br />

Nawal SEMLAL, Morocco<br />

Abdelhak KABBABI, Morocco<br />

Es-Said JOURANI, Morocco<br />

Mohamed AMALIK, Morocco<br />

Mansour ASRI, Morocco<br />

Abdelkader ALOUANI, Morocco<br />

Faris DERRIJ, Morocco<br />

Ahmed HANINE, Morocco<br />

Mohamed BELGHITI ALAOUI, Morocco<br />

Badreddine ELABID AMRANI, Morocco<br />

Moulay ZEMMARI, Morocco<br />

Amine LOUALI, Morocco<br />

Mohamed BENZEKRI, Morocco<br />

Ali AZERGUI, Morocco<br />

THE SYMPOSIUM COMMITEES<br />

<strong>SYMPHOS</strong> CHAIR<br />

Mr Amar DRISSI<br />

<strong>SYMPHOS</strong> PROGRAM DIRECTOR<br />

Mr Mohamed AMALHAY<br />

<strong>SYMPHOS</strong> TECHNICAL SECRETARY<br />

Ms Nawal SEMLAL<br />

<strong>SYMPHOS</strong> TREASURER<br />

Mr Younes MSOUGAR<br />

STEERING COMMITTEE<br />

Meryem CHAMI, Morocco<br />

Amar DRISSI, Morocco<br />

Mhamed IBNABDELJALIL, Morocco<br />

Kerry McNAMARA, USA<br />

STAND COMMITTEE<br />

Michael P. OAKLEY, Morocco<br />

El Motaoikkil EL BARAKA, Morocco<br />

Nordine ZNIBI, Morocco<br />

Zakaria ZAIRI, Morocco<br />

SCIENTIFIC COMMITTEE<br />

GEOLOGY/HYDROGEOLOGY/PROSPECTION<br />

Hassan BOUMAGGARD, Doyen de la faculté<br />

Poly-disciplinaire, Université Cadi Ayyad,<br />

Safi, Maroc<br />

Es-said JOURANI, Directeur Géologie &<br />

Hydrologie, Mine-Géologie, OCP , Maroc<br />

Abdellah MOUTTAQI, Directeur du Pôle<br />

Technique et exploration de l’ONHYM,<br />

Maroc<br />

3


EXTRACTION<br />

Mansour ASRI, Chercheur en extraction minière,<br />

OCP, Maroc<br />

Jayanta BHATTACHARYYA, Professeur, Indian<br />

Institute of Technology, Inde<br />

Jean-Alain FLEURISSON, MINES ParisTech -<br />

Centre de Géosciences, France<br />

Raja V. RAMANI, Emeritus Professor of Mining<br />

Engineering and Emeritus, The Pennsylvania State<br />

University, USA<br />

Jamal ROSTAMI, Chercheur, Pennsylvania State<br />

University, USA<br />

Maurice SAVE, Ingénieur expert en procédés,<br />

BRGM, France<br />

TREATMENT AND ENRICHMENT OF MINERALS<br />

Abdelkader ALOUANI, Directeur Logistique et<br />

Projets d’Amélioration à Khouribga, OCP, Maroc<br />

Florent BOURGEOIS, Professeur, ENSIACET,<br />

Laboratoire de Génie Chimique, Toulouse, France.<br />

Jamal CHAOUKI, Professeur, Directeur du Centre<br />

Bioraffinage, Département de Génie Chimique,<br />

Ecole Polytechnique de Montréal, Canada<br />

Mohammed EL ASRI, Professeur, Faculté des<br />

Sciences et Techniques FST Fès, Maroc<br />

Hassan EL SHALL, Associate Professor, University<br />

of Florida, USA<br />

Robert HALL, Associate Professor, UBC, Director<br />

Mine Automation / Environmental Simulation<br />

Laboratory (MAESL),Canada<br />

Jim HENDRIX, Professor, Department of<br />

Chemical & Biomolecular Engineering College of<br />

Engineering, University of Nebraska–Lincoln,USA.<br />

El Aïd JDID, Professeur, Laboratoire<br />

Environnement et Minéralurgie LEM, France<br />

My Brahim JOUTI, Chef de Département, OCP,<br />

Maroc<br />

Brij MOUDGIL, Professeur, University of Florida,<br />

Gainesville, USA<br />

Laurindo de S.LEAL FILHO, Professor,<br />

Engineering School – University of Sao Paulo,<br />

Brazil<br />

4<br />

Maurice SAVE, Ingénieur expert en procédés,<br />

BRGM, France<br />

Mohamed SMANI, Directeur de « R-D Maroc »,<br />

Maroc<br />

Ponisseril SOMASUNDARAN, Professor of<br />

Mineral Engineering in the Department of Earth<br />

and Environmental Engineering, New York, USA<br />

Belhaj SOULAMI, Professeur, Ecole des ingénieurs<br />

ENIM Rabat, Maroc<br />

Daniel TAO, University of Kentucky Lexigton, USA<br />

Abdelatif TOUZANI, Professeur, Ecole des<br />

ingénieurs EMI Rabat, Maroc<br />

Patrick ZHANG, Ph.D, Research Director -<br />

Beneficiation & Mining, Florida Industrial and<br />

Phosphate Research Institute, USA.<br />

SULPHURIC ACID, WATER &ENERGY<br />

Jamal CHAOUKI, Professeur, Directeur du Centre<br />

Bioraffinage, Département de Génie Chimique<br />

Ecole Polytechnique de Montréal, Canada.<br />

Henri DELMAS, Professeur ENSIACET, Laboratoire<br />

de Génie Chimique, Toulouse, France.<br />

Ahmed HANINE, Chef de Division Produit<br />

Intermédiaire à Maroc Phosphore III et IV, OCP,<br />

Maroc<br />

Francis LUCK, TOTAL S.A. - DG/DS, Catalysis and<br />

Process Engineering, Paris, France<br />

B.K PAREKH, Professor, University of Kentucky,<br />

Center for Applied Energy Research, USA<br />

SOTUDEH – GHAREBAGH Rahmat, Department of<br />

Chemical Engineering University of Tehran, Iran<br />

PHOSPHORIC ACID, FERTILIZER<br />

Mohamed AMALHAY, Chef de Projet, Directeur<br />

Recherche, Chimie et Valorisation, OCP, Maroc<br />

Mohamed BADRAOUI, Directeur de l’Institut<br />

National de la Recherche Agronomique (INRA)<br />

Rabat, Maroc<br />

Mohamed BELGHITI ALAOUI, Chef de projet<br />

Adaptation Atelier Phosphorique au phosphate<br />

pulpe.<br />

Jamal CHAOUKI, Professeur, Directeur du Centre


Bioraffinage, Département de Génie Chimique<br />

Ecole Polytechnique de Montréal, Canada<br />

Christopher EARL, Technology Consultant,<br />

KEMWorks Technology,Inc, USA<br />

David IVELL, Director of Process Technology,<br />

JACOBS Engineering SA USA<br />

Abdelaâli KOSSIR, Directeur Recherche<br />

&Développement, Pôle Chimie, OCP, Maroc.<br />

Tayeb MRABET, Secrétaire Général de IMPHOS,<br />

Maroc<br />

Marten WALTERS, President, KEMWorks<br />

Technology Inc, Kentucky, Lakeland, USA<br />

MATERIALS& NEW PRODUCTS<br />

Lahcen BIH, Professeur, Faculté des Sciences et<br />

Techniques d’Errachidia, Maroc<br />

Bruno AMEDURI, Directeur de Recherches<br />

CNRS, Ecole Nationale Supérieure de Chimie de<br />

Montpelier (ENSCM), France<br />

Driss DHIBA, Directeur Développement Nouveaux<br />

Produits, Pole Commercial, OCP, Maroc<br />

Diana A. ESTENOZ, Professeur, Institut de<br />

Développement Technologique pour l’Industrie<br />

Chimique. Faculté d’Ingénierie Chimique INTEC,<br />

Argentine.<br />

Gilles LE FLEM, Directeur de Recherche (CNRS),<br />

ICMCB, Bordeaux, France<br />

Jan D. MILLER, Chair Metallurgical engineering,<br />

Mines And Earth Sciences-Dean, University of<br />

Utah, USA.SEMLAL Nawal, Chef de l’Unité R&D,<br />

Matériaux et Corrosion, OCP, Maroc<br />

SECURITY,ENVIRONMENT,SUSTAINABLE<br />

DEVELOPMENT<br />

Mohamed AZAROUAL, Docteur chercheur, Chef<br />

de projet chez BRGM, France<br />

Ismail AKALAY, Directeur Général Managem –<br />

Groupe ONA - Maroc<br />

Pascale COMPAIN, Responsable Développement<br />

Commercial, Bertin Technologies, France<br />

Azeddine EL MIDAOUI, Professeur, Président de<br />

la SMMD : Société Marocaine des Membranes et<br />

de Dessalement, Maroc.<br />

El Aïd JDID, Professeur, Laboratoire<br />

Environnement et Minéralurgie LEM, France<br />

Abdelhak KABBABI, Chef de Projet<br />

Environnement, OCP, Maroc<br />

Faiçal LARACHI, Chair Department of Chemical<br />

Engineering, Laval University, Quebec, Canada<br />

Rahmat SOTUDEH – GHAREBAGH, Department<br />

of Chemical Engineering University of Tehran,<br />

Tehran, Iran<br />

Mohamed TAHIRI, Professeur, Maitrise des<br />

Risques et Sûreté de Fonctionnement, Maroc.<br />

Serge VIGNERON, Ingénieur, Sales and project<br />

Manager at LESNI A/S,ex-Monsanto, France<br />

INDUSTRIAL MANAGEMENT<br />

Muthanna AL-DAHHAN, Professor and Chairman,<br />

Department of Chemical and Biological<br />

Engineering, Missouri University of science and<br />

Technology (Missouri S&T), Missouri, USA<br />

Aziz CHRAIBI, Directeur Adj. CRIP Bioraffinage,<br />

Ecole Polytechnique de Montréal, Département<br />

Génie Chimique, Canada<br />

Faris DERRIJ, Director of performance, OCP, Maroc<br />

Amine LOUALI, Director of performance, OCP,<br />

Maroc<br />

5


PLENARY LECTURES<br />

KEYNOTES<br />

MINING<br />

PHOSPHATE BENEFICIATION<br />

SULFURIC ACID, ENERGY & WATER<br />

PHOSACID & FERTILIZER<br />

ENVIRONMENT & SUSTAINABLE DEVELOPMENT<br />

INDUSTRIAL MANAGEMENT<br />

MATERIALS & NEW PRODUCTS<br />

POSTERS<br />

WORKSHOPS<br />

INDEX<br />

TABLE OF CONTENTS<br />

9<br />

15<br />

29<br />

39<br />

47<br />

51<br />

73<br />

87<br />

91<br />

103<br />

123<br />

144<br />

7


I - PLENARY LECTURES<br />

9


10<br />

L’INNOVATION TECHNOLOGIQUE DANS L’AVENTURE HUMAINE.<br />

- LE CAS DE LA CHIMIE -<br />

CP 1<br />

François GUINOT,<br />

Président Honoraire Académie Française des Technologies<br />

Conférence Plénière d’Ouverture de <strong>SYMPHOS</strong> <strong>2011</strong><br />

Aux origines, l’espèce humaine fragile et vulnérable, dominée par la nature et d’autres espèces, a dû à son<br />

codéveloppement en symbiose avec l’outil de pouvoir émerger. Elle s’est affirmée dans la « révolution néolithique<br />

» par son refus de subir passivement la domination de la nature. Elle atteint alors ses tout premiers millions<br />

d’individus, et se renforce en s’organisant en sociétés dont le développement se fait en symbiose avec la technique<br />

et les sciences observations.<br />

Au tout début du XIXe siècle, elle atteint son premier milliard. La rationalisation des techniques, conséquence de<br />

la naissance de la méthode et des sciences expérimentales, conduit à des innovations qui joueront un rôle majeur<br />

dans la première révolution industrielle. À la fin du XIXe siècle, la naissance des technologies par la combinaison des<br />

savoirs techniques et scientifiques, et l’explosion des innovations qui en découle seront un facteur d’accélération<br />

continue du progrès et de structuration des sociétés modernes. Peu à peu, de dominée, l’espèce humaine est<br />

devenue hyper dominante. Elle est dès aujourd’hui avec 6,8 milliards d’êtres humains et demain avec plus de 9<br />

milliards, une véritable force de la nature. L’homme découvre cependant que, quelle que soit sa puissance créatrice,<br />

il reste une créature qui ne pourra survivre qu’en respectant les équilibres naturels.<br />

On montrera que la chimie, qui est le langage de la nature, de la matière comme de la vie, a joué un rôle essentiel<br />

dans chacune des étapes de cette aventure humaine. Cette aventure ne pourra se poursuivre, un vrai développement<br />

durable ne sera possible qu’en s’appuyant sur la chimie nouvelle qui est en train de se bâtir. Toutes celles et ceux qui<br />

y concourent portent une responsabilité toute particulière dans cette étape marquante de l’évolution de l’humanité.<br />

SURFACE MINING TECHNOLOGY : PROGRESS AND PROSPECTS<br />

Raja V. Ramani,<br />

Ph.D., P.E. Emeritus Professor of Mining Engineering and Emeritus<br />

George H. Jr and Anne B. Deike Chair in Mining Engineering<br />

Department of Energy and Mineral Engineering<br />

The Pennsylvania State University<br />

209 Research West University Park, PA 16802, USA<br />

Mining CP2<br />

Surface mining methods dominate the world production of minerals. Currently, almost all non-metallic minerals<br />

[more than 95%], most metallic minerals [more than 90%] and a large fraction of the coal [more than 60 percent]<br />

are mined by surface methods. In terms of materials moved, of the over 30 billion tons of ore and waste materials<br />

that are mined each year, surface mining accounts for over 80% and in terms of ore and coal mined, over 66%. In


the last two decades, the mining industry has seen consolidation of operating companies, growth in the size of<br />

individual operations, increase in size of equipment, and greater demands for sustainable development.<br />

These trends would continue into the future impacting in a very large way both the opening of new mines and the<br />

closure of existing operations.<br />

The specific surface mining method applied in a particular deposit may vary but the operations of drilling, blasting,<br />

loading and hauling are common to all methods. Advances in research and development in all these areas are<br />

needed to increase productivity and decrease cost to continue increasing the application of surface mining to<br />

greater depths. Common to all methods and operations also are the removal of the surface cover over the deposit,<br />

the changes to the original topography, the effects on soil and hydrologic conditions, the issues of mining and<br />

processing wastes, and ultimately the future economic potential of the mined areas and communities. However,<br />

the scope and solutions to the issues can be different. While research and development are needed to address<br />

technical aspects associated with these issues, there is also a need to develop innovative ways of approaching<br />

the overall problem of environmental and ecological planning for post mining community development. In this<br />

presentation, an overview of surface mining technology and the research needs is presented.<br />

AN INDUSTRIAL ECOLOGY APPROACH TO THE USE OF PHOSPHORUS<br />

Environment & sustainable development CP3<br />

Roland Clift,<br />

Emeritus Professor, Centre for Environmental Strategy<br />

Executive Director of the International Society for Industrial Ecology<br />

University of Surrey, Guildford, GU2 7XH, UK<br />

Phosphorus management presents two complementary problems: availability and pollution control. Long-term<br />

management of phosphorus requires the two to be addressed together by moving (back) to closed-loop use of<br />

phosphorus.<br />

Resource scarcity is increasingly recognised as an impending problem for the global economy. Phosphorus is<br />

in a unique position: it is essential for life and can not be substituted by any other element. Estimates for nonrenewable<br />

reserves of phosphorus cover a wide range, around an order-of-magnitude of 100 years. Thus, the issue<br />

is not yet recognised as pressing but it will certainly become serious unless practices which use P once only are<br />

replaced. The principal pollution problem is eutrophication of water bodies, which can also be mitigated if releases<br />

of phosphorus to the environment are avoided.<br />

This talk will review the industrial ecology of phosphorus, to explore where strategic attention should be directed<br />

to promote “closing the loop” on phosphorus use.<br />

11


NANOSTRUCTURE PROCESSING OF ADVANCED<br />

PHOSPHATE-BASED MATERIALS<br />

Materials & new products CP4<br />

Jackie Y. Ying,<br />

Institute of Bioengineering and Nanotechnology<br />

31 Biopolis Way, The Nanos, Singapore 138669<br />

Nanostructured materials are of interest for a variety of applications. This talk describes the synthesis and<br />

properties of nanoparticulate materials. Nanoparticulate materials are made up of crystallites or particles of ~ 10<br />

nm. They may be generated by various physical and chemical approaches with ultrahigh surface areas. We have<br />

prepared hydroxyapatite (Ca10(PO4)6(OH)2) nanoparticles of well-defined size and morphology for orthopedic<br />

implant applications. These nanocrystals facilitated the sintering of high-strength ceramics that are biocompatible<br />

to bone. They can also be combined with collagen to form bone grafts with a foam-like structure. In addition,<br />

nanocrystalline hydroxyapatite can be added to a polymer matrix to form a nanocomposite system for the<br />

controlled delivery of drugs and growth factors. For example, this system has provided the long-term, zero-order<br />

release of bone morphogenetic proteins to promote the healing of bone defects. Such a protein delivery system can<br />

also be combined with tissue engineering approaches to promote cartilage repair.<br />

Besides biomaterials, wet-chemical synthesis has led to the derivation of various phosphate materials with<br />

controlled porosity, crystalline orientation and particle size. These materials are of great interest for catalytic and<br />

energy storage applications.<br />

12<br />

Chris Earl<br />

KEMWORKS, USA<br />

Mohamed Belghiti Aloui<br />

OCP, Morocco<br />

PHOSPHORIC ACID TECHNOLOGY –<br />

HISTORY, EVOLUTION & FUTURE PERSPECTIVES<br />

Phosacid & fertilizer CP5<br />

The first Wet Process Phosphoric Acid (WPA) plants were built between World War I & II. Plant size has increased<br />

from 25 t/d up to 2650 t/d. During the last forty years the wet process phosphoric acid industry has evolved under<br />

the influence of several major factors. Among the most important are:<br />

• Changes in phosphate quality<br />

• Greatly improved instrumentation and control<br />

• Improved materials of construction<br />

• Improved equipment & processes<br />

• Continuous increase of World demand for phosphate fertilizers<br />

This paper reviews those factors and their effect on the design and construction of modern phosphoric acid plants.


PHOSPHORUS, CROPS AND FOOD<br />

Agriculture & fertilization CP6<br />

Dr. Donald L. Smith<br />

Plant Science Department, McGill University, Macdonald Campus<br />

Ste. Anne de Bellevue, Quebec, Canada H9X 3V9<br />

Phosphorus is one of the three crop plant macronutrients contained in almost all fertilizers applied to agricultural<br />

lands. In plants large pools of phosphorus reside in DNA and RNA and in the phospholipids of membranes.<br />

A smaller pool is in ATP, where phosphorus plays a pivotal role in energy metabolism, including photosynthesis.<br />

Finally, phosphorylating and dephosphorylating proteins is a key mechanism for regulating protein conformation<br />

and enzyme activity, including the enzymes that regulate the cell cycle. When other growth requirements are not<br />

limiting crops have a very clear pattern of yield response to phosphorus fertilizer additions.<br />

This has been a very important contributing factor in increased global food production over the last six decades, and<br />

has allowed food production to keep pace with population growth during that time.<br />

However, application of large amounts of fertilizer phosphorus has also been an important contributor to<br />

agricultural pollution of water, contributing to eutrophication of rivers and lakes and even, in some cases, the<br />

development of “dead zones” in the open ocean.<br />

Agricultural phosphorus utilization has continued to expand in response to food requirements, however, there is<br />

now concern that we will reach “peak phosphorus” extraction sometime in the reasonably near future (perhaps<br />

only a few decades from now).<br />

If this is so it poses an important challenge to global food security. The thinking on peak phosphorus has paralleled<br />

that of peak oil and assumes a more or less bell shaped curve of extraction rate.<br />

Clearly, there are things that can be done to mitigate this, and phosphorus recycling is the most obvious. It may<br />

well be possible to integrate a biogas biofuel approach whereby municipal sewage treatment plants produce and<br />

sell biogas into energy markets and use the returns to extract and recycle phosphorus from the remaining sludge,<br />

selling this back to the agricultural sector.<br />

Food prices are already rising, in part because of higher energy prices and diversion of food material into biofuels.<br />

If we are going to avoid a potentially serious problem with world phosphorus and global food production levels we<br />

should begin broader and more integrated phosphorus management activities quite soon.<br />

13


II - KEYNOTES<br />

15


16<br />

A NOTE ON HUBBERT’S HYPOTHESES AND TECHNIQUES<br />

Pierre-Noël Giraud<br />

Professor of Economics at Mines ParisTech and Paris-Dauphine<br />

Mining KN1<br />

Many have attempted to forecast the date of the production peak and the volume of the ultimate reserves of a<br />

mineral commodity, using techniques derived from Hubbert’s thesis.<br />

This note aims at exploring the scientific foundations and therefore the scope of validity of these forecasting<br />

techniques. Looking at the basic assumptions of Hubbert’s thesis, it concludes that these techniques should not<br />

be used to forecast neither the peak (or plateau) of the annual production rate, nor the ultimate reserves of any<br />

mineral, unless given exceptional conditions.<br />

RECENT TECHNOLOGY BREAKTHROUGHS IN PHOSPHATE PROCESSING<br />

Mining KN2<br />

Patrick Zhang,<br />

Ph.D, Research Director – Beneficiation and Mining, Florida Industrial and<br />

Phosphate Research Institute<br />

This paper gives a review of promising technologies for phosphate processing, covering flotation, analysis and<br />

process control, and tailings treatment and utilization. Air bubbles of micron-size range in combination with<br />

relatively large bubbles has been demonstrated, both in the lab and on pilot scale, to improve flotation dramatically<br />

by reducing reagent use while improving product grade. Innovative use of polymers has allowed rapid dewatering<br />

of fine tailings with a final product that does not segregate. The first on-line LIBS analyzer was born allowing rapid<br />

analysis of wet samples using the laser technology. Many large commercial projects are taking off for utilization<br />

of phosphogypsum. Research has become very active in recovering many valuable minerals associated with<br />

phosphate rock, such as uranium and rare earth elements.


LES MÉTHODES GÉOPHYSIQUES DE SUBSURFACE: UN OUTIL<br />

INCONTOURNABLE POUR L’INGÉNIEUR<br />

Mining KN3<br />

Teresa Teixido<br />

Institut Andalous de Géophysique, Université de Granada<br />

SPAIN<br />

Les méthodes géophysiques de sub-surface sont devenues un outil incontournable dans les études liées à la géologie<br />

minière, à la géotechnique, à la prospection hydrogéologique, aux études d’impacts environnementaux, etc. Depuis<br />

quelques années, l’évolution des composants électroniques et des techniques informatiques a permis de mettre<br />

au point des équipements sophistiqués et des approches adéquates pour mieux appréhender les problématiques<br />

posées. L’objectif de la conférence est de faire le point sur les derniers développements en matière de géophysique<br />

de sub-surface par la présentation des champs d’application des méthodes les plus utilisées, des techniques de<br />

mise en œuvre, des logiciels d’inversion et d’interprétation des données acquises et de la manière rationnelle de<br />

présenter les résultats des levés de terrain. L’accent sera principalement mis sur les techniques de géoradar, de<br />

tomographie électrique et de sismique haute résolution. Des développements au niveau des dispositifs de mesure<br />

pour certaines méthodes électromagnétiques seront également p résentés. L’illustration de chaque méthode<br />

présentée se fera grâce à des études de cas réalisées par une équipe de géophysiciens espagnols sur différents<br />

projets en Espagne, au Maroc et en Egypte. Un intérêt particulier sera accordé à la présentation des résultats des<br />

travaux géophysiques effectués dans le cadre de partenariat entre le Groupe Office Chérifien des Phosphates,<br />

l’Université de Granada et l’Université Caddi Ayyad. Ces travaux portent sur le sujet des « dérangements » de la<br />

série phosphatée dans le centre minier de Khouribga et sur l’étude d’impact des rejets miniers abandonnés de<br />

l’ancienne mine de Kettara, région de Marrakech.<br />

Mots clés : géophysique de subsurface, imagerie du sous-sol, inversion, études de cas<br />

AN EFFICIENT AND EFFECTIVE PROCESS FOR DISPOSAL OF PHOSPHATIC CLAY<br />

SLURRIES<br />

Environment & sustainable development KN4<br />

B.K.Parekh and D.P.Tao<br />

University of Kentucky Lexington, KY 40511 - USA<br />

Phosphatic clays suspension produced during the beneficiation of phosphate, is colloidal in nature, more than 90<br />

percent is finer than 0.044mm (44 microns). It takes several years for the waste slurries to thicken from about 3<br />

percent to 20 percent solids in the impoundments. The impoundments ties up a tremendous amount of water as<br />

well as land. Potential from the dam failure causes environmental as well as property damages. In this presentation,<br />

pilot-scale studies results obtained using the Deep Cone Thickener (DCT) will be presented. The study found that<br />

the phosphatic clays combined with the coarse sand refuse in the ratio of 2:1 produced a paste containing about<br />

35 percent solids. Addition of anionic and cationic flocculants additions in certain mode was necessary to produce<br />

thickened slurry. The overflow from the DCT thickener was clear with no solids present and could be recycled back<br />

in the plant. A preliminary cost estimate for the process will also be presented.<br />

17


Environment & sustainable development KN5<br />

Michael Zammit Cutajar<br />

Former Ambassador on Climate Change, Malta<br />

Sustainability will be a component of corporate competitiveness in this half-century – driven both by the perpetual<br />

search for resource efficiency and by rising expectations of environmental and social standards. The phosphate<br />

industry will need to pursue these general aims amidst growing global concern about feeding a “9-billion world”.<br />

In pursuing a strategy for sustainability to 2050, the phosphate industry and its main actors should:<br />

• promote sustainable use of fertilizers, notably in regions (e.g. Africa) where access to them is inadequate;<br />

• set verifiable benchmarks of environmental performance that should be integrated in measuring and<br />

rewarding corporate success;<br />

• invest in economic diversification and social development around operating hubs, as well as in national<br />

infrastructure that is supportive of production operations;<br />

• support research on new resources and processes, and engage in open dialogue with all stakeholders.<br />

18<br />

Dr Philippe A. Tanguy<br />

Total SA, Paris, FRANCE<br />

“PHOSPHATES IN SUSTAINABLE HUMAN DEVELOPMENT”<br />

CARBON AND WATER MANAGEMENT FOR INDUSTRIAL SUSTAINABILITY –<br />

EXAMPLES FROM THE OIL INDUSTRY<br />

Environment & sustainable development KN6<br />

The present energy system based on non-sustainable resources is reaching its limits. As the “business-as-usual’<br />

scenario will not be able to cope with the increased energy demand while addressing climate change issues,<br />

new scenarios must be deployed to reduce the environmental footprint of energy production and use. They rely<br />

mostly on a significant increase in energy efficiency, the development of renewable and new energy sources, and<br />

greenhouse gas mitigation measures, especially carbon capture and storage. The proposed scenarios, however, pay<br />

little attention to their underlying water requirements. Yet, the development of several “new” energies requires a<br />

large amount of water, which may jeopardize their industrial deployment at large scale. In a sustainable world, it is<br />

essential to establish sound management policies for the access and use of water. This brings a clear and important<br />

message to industry that it is of paramount importance to develop and implement water use improved practices<br />

and find alternative water sources, especially in countries where the supply of water is already constrained. Process<br />

engineering innovations will be needed to establish solutions that are sustainable on the long term.


LES PHOSPHATES, LE LITHIUM ET LE STOCKAGE DE L’ÉNERGIE<br />

Materials & new products KN7<br />

Dr. Michel Gauthier<br />

Consultant, R&D et PI Phostech Lithium inc<br />

Chercheur, Département de chimie, Université de Montréal<br />

CSMG inc.<br />

237 St-Ignace La Prairie, J5R 1E6, (Québec) CANADA<br />

La légèreté du lithium (7g/at. Vs 207g/at. pour le plomb), son électronégativité (DG), son faible rayon ionique<br />

(0.6Ao) et sa facilité à former des films de passivation conducteurs (SEI) en on fait le matériau de choix pour le<br />

stockage de l’énergie sous forme d’accumulateurs. En 50 ans les générateurs au lithium sont passés de piles boutons<br />

non-rechargeables, à des accumulateurs rechargeables au lithium métallique, aux lithium-ion et aux ‘berçantes’<br />

électrochimiques (Rocking Chair) à la suite du développement d’électrolytes solides (cristallins ou polymériques) ou<br />

liquide organiques aprotiques conducteurs des ions lithium et surtout à la suite du développement des électrodes<br />

à insertion du lithium, essentielles à la rechargeabilité prolongée.<br />

Un scientifique en particulier à influencé le développement phénoménal des accumulateurs au lithium-ion c’est le<br />

Dr. J.B. Goodenough, inventeur des cathodes de LiCoO2 présentes dans la majorité des accumulateurs au lithiumion<br />

actuels (1), co-inventeur des spinelles de manganèse et plus récemment inventeur des cathodes phosphates de<br />

structures Olivines et Nasicon (2).<br />

L’accumulateur au lithium idéal est le lithium-air à case de sa légèreté et de la réactivité du couple Lio-O2 pour<br />

former Li2O (>5kWh/kg). En pratique pour assurer la réversibilité au cyclage on a dû à ce jour utiliser des oxydes<br />

de métaux de transition au lieu de l’air (0.5kWh/kg avec le LiCoO2). Toutefois les oxydes sont parfois instables en<br />

recharge et ont conduit à des problèmes de sécurité consécutifs à la libération d’oxygène (rappel de cellulaires et<br />

d’ordinateurs portables suite à des incendies). Le développement du véhicule électrique et le stockage de l’énergie à<br />

grande échelle repose sur des accumulateurs au lithium sécuritaires, performants et réalisables à un prix abordable.<br />

En montrant que le phosphate de fer peut insérer réversiblement les ions lithium et que le lien covalent des<br />

polyanions PO4 peut non seulement avoir un effet inductif sur le potentiel de couple redox mais également<br />

retenir l’oxygène, le Dr. Goodenough (2) a ouvert un marché prometteur pour les phosphates comme structures<br />

de stockage de l’énergie. La difficulté d’induire la conductivité électrique dans des matériaux jusqu’alors considérés<br />

comme des isolants a été résolue par après par la déposition de carbone pyrolytique lors de la synthèse du LiFePO4<br />

par Ravet et al (3), faisant d’un composé constitué d’éléments abondants et non-toxiques : Li, Fe, PO4 un matériau<br />

de choix pour le stockage de l’énergie à grande échelle.<br />

La présentation fera le point sur les voies de synthèse du LiFePO4, les précurseurs utilisés ainsi que sur les autres<br />

applications possibles de la chimie des phosphates dans les nouvelles générations d’accumulateurs au lithium.<br />

(1) J.B. Goodenough et al, Material Research Bulletin, Vol. 15 (6), p. 783-789, June 1980.<br />

(2) J.B. Goodenough et al, J. Electrochem. Soc., 144, 1188, 1997.<br />

(3) N. Ravet, J.B. Goodenough et al, ECS 196th Meeting, <strong>Abstract</strong> 127, Honolulu, Hawai, oct. 1999.<br />

19


20<br />

RHEOLOGICAL PROPERTIES OF CONCENTRATED SUSPENSIONS OF<br />

COLLOIDAL AND NON COLLOIDAL PARTICLES<br />

Materials & new products KN8<br />

Pierre J. Carreau<br />

Center for Applied Research on Polymers and Composites (CREPEC), Dept. of<br />

Chemical Eng.,<br />

Ecole Polytechnique, Montreal, QC H3C 3A7, CANADA<br />

Although considerable efforts have been devoted to the determination of the rheological properties of concentrated<br />

suspensions, the behavior of concentrated suspensions is still far from being understood. A new approach has been<br />

developed with the help of the newest generation of high precision rheometers. Instead of the traditional shear<br />

rate sweep method, that is quite disruptive or even destructive for the particle arrangement in the suspension,<br />

softer measurement strategies have been used for understanding phenomena and interactions in concentrated<br />

suspensions. These strategies include low stress creep tests and low strain oscillatory measurement. Also, special<br />

care must be taken in sample preparation and conditioning before doing any rheological measurement. These<br />

strategies have been tested on model suspensions of non colloidal particles (hollow glass beads in low molecular<br />

weight polybutene) and are shown to provide a better understanding of the rheological behavior of concentrated<br />

suspensions.<br />

More recently, we have examined the rheological properties of colloidal suspensions. These include concentrated<br />

suspensions of charged latex particles of poly(styrene-butadiene) and silica particles. The suspensions were found<br />

to behave as elastic solids at small strains and to require a finite stress to flow. This was related to an ordered<br />

structure of the suspensions at rest, resulting from electrostatic and dispersion forces. Important shear-thinning<br />

effects were also observed as a consequence of structure rearrangements under shear. At a fixed shear rate, the<br />

steady-shear viscosity as a function of the ionic strength exhibits a minimum. Under oscillatory shear flow, the<br />

behavior of the concentrated suspensions was found to be non-linear at very small strain amplitude values. The<br />

behavior of these suspensions could be qualitatively described using a structural model.<br />

HIGH VALUE PHOSPHATE MATERIAL DEVELOPMENT,<br />

A SCIENTIST VIEWPOINT.<br />

Materials & new products KN9<br />

Gilles Le Flem<br />

Institut de Chimie de la Matière Condensée de Bordeaux<br />

(ICMCB), CNRS UPR 9048<br />

Avenue du Dr. Schweitzer 33608 PESSAC (FRANCE)<br />

High value material including phosphates can result from: (I) major efforts to maintain and possible improve the<br />

quality of education, (II) cross disciplinary approach (Chemistry, Physics, Geology, Biology etc.), (III) implementation<br />

of new concepts which are able to push back the technological frontiers.<br />

Composite materials, metamaterials (properties depending on the structure and architecture rather than<br />

composition), laser processing, size of the particles (aggregates, nano, micro etc.), chemical reaction in<br />

supercritical atmosphere, surface–functional material, “lab on chip” (microfluidic, micromachining),<br />

template effect ( pre-organization of the final architecture of the material) are typical examples of such new<br />

concepts which have been recently developed.<br />

A non exhaustive list of typical high value phosphate materials resulting from cross-disciplinary approach and new


material engineering concepts can be given.<br />

1) Composites for high temperature uses with LaPO 4 (Geology, Chemistry, Mechanics, High<br />

temperature)<br />

2) Electrode for battery with LiFePO 4 (Composite, Chemistry, Electrochemistry, Surface reaction,<br />

Nano- size particles)<br />

3) Chemical bonded phosphate ceramics: cements for low temperature environments (Chemistry, Mechanics,)<br />

4) Phosphate glass laser for fusion energy (Chemistry of glasses, Optics, Mechanics)<br />

5) Phosphates for second harmonic generation (Chemistry, Crystal growth, Crystallography, Optics)<br />

6) Photonic component for information storage (Phosphate chemistry Materials Laser Processing, Aggregates, Optics)<br />

7) Biomaterials (Chemistry, Biology, Medicine, Ceramics)<br />

8) Waste storage (Chemistry, Geology, Mechanics)<br />

Most of them are commercially exploited.<br />

As an example phosphate glass composite used as Perennial High Capacity Optical Recording Medium is<br />

schematically introduced in the figure ( from A. Royon , K. Bourhis , M. Bellec , G. Papon , B. Bousquet , Y.<br />

Deshayes , T. Cardinal and L. Canioni in Adv. Mater. 2010, 22, 5282–5286).<br />

Steps for the design of the photonic component<br />

1) Phosphate chemistry leads to the preparation of silver glass,<br />

2) Laser processing allows the construction of three dimensional laser silver aggregates within the glass and<br />

consequently of three-dimensional fluorescent sequential nanostructures,<br />

3) Such sequential fluorescent nanostructures are used for the optical storage of information.<br />

Figure (a) Writing set-up. A Near Infra Red high repetition-rate femtosecond laser is focused into a silver<br />

phosphate glass, which can be moved in 3D by translation stages to make sequential silver aggregates.<br />

(b) Reading set-up. A “Blu-Ray” laser diode is focused into the glass. Some of the fluorescence emitted in<br />

the entire space by the photoinduced silver clusters is collected by the focusing element, filtered from the<br />

excitation with a long pass filter (LPF), and detected with an avalanche photodiode (APD).<br />

As a result are shown the images of three peoples in 3D space.<br />

21


22<br />

SCALE-UP CHALLENGES IN CHEMICAL ENGINEERING: THE ROLE OF THE<br />

CHEMICAL ENGINEERS IN THE 21ST CENTURY.<br />

Jocelyn Doucet<br />

Kengtek Engineering Inc.<br />

Phosacid & fertilizer KN10<br />

With increasingly complex process being developed due to increasingly heterogeneous feedstocks, severe<br />

environmental regulations and increasing cost of energy, chemical engineers require developing new heuristic<br />

and theoretical tools such as models to allow for development of process in a time and resource limited project<br />

environment. The selection of experimental work to be done at both lab and pilot scale as well as selecting the<br />

appropriate scale required to obtain relevant results for scale-up analysis is of their jurisdiction.<br />

It is no surprise to say that engineers and scientists speak sometimes a different language. In fact, scaling of chemical<br />

processes is often considered as a trivial debate by the former and seems essential by the latter. Nevertheless, it<br />

is well assumed, indeed, that scale-up requires knowledge of key parameters -but not all- in order to be able to<br />

anticipate the effect of scale change on the overall dynamics and performance of a certain operation.<br />

This talk will present a quick discussion on the physics of scale and then cover couple of industrial examples where<br />

application of different models combined to appropriate lab and pilot work lead to successful commercial process<br />

development.<br />

LE DÉVELOPPEMENT DES PROCÉDÉS AU SERVICE DE LA CRÉATION DE<br />

RICHESSES ET DU DÉVELOPPEMENT DURABLE<br />

Ismaïl AKALAY<br />

Directeur Général de la Branche Cobalt et Spécialités<br />

B.P. 469 Marrakech-Medina MAROC<br />

Phosacid & fertilizer KN11<br />

Managem groupe minier privé a fait du développement des procédés son axe majeur pour une stratégie de création<br />

de valeur.<br />

Au moyen de sa filiale Reminex, Managem a développé au niveau de son centre de recherche 20 procédés qui ont<br />

été industrialisés. Son bureau d’ingénierie a réalisé tous ces projets industriels au cours de ces vingt dernières années.<br />

L’exemple type pour illustrer cette politique est le projet de production d’oxydes de zinc. Ce projet, dont le procédé a<br />

été breveté, a permis de désenclaver et de créer des emplois dans des régions très pauvres au Maroc.<br />

La technologie de production de ZnO nanométrique permet de viser des marchés niches tels que celui des engrais.<br />

Il est démontré que le développement des procédés peut créer de la richesse par la pénétration de nouveaux marchés<br />

en aval et par l’enrichissement des populations des régions minières en amont.


PHOSPHATE FERTILIZER PRODUCTION<br />

FROM THE 1835 TO <strong>2011</strong> AND BEYOND<br />

Phosacid & fertilizer KN12<br />

David M. Ivell<br />

Jacobs Engineering SA (JESA), Lakeland, USA<br />

Early Fertilizer Production<br />

In 1835 Gotthold Escher pointed out the value of bone as a fertilizer and suggested a “cheap and not too strong<br />

acid” to decompose the bones before applying to the soil. Later in 1840, the Duke of Richmond stated that the<br />

fertilizer value of bones was due to the phosphoric acid that they contained. In that same year, Justus Von Leibig<br />

added sulfuric acid to crushed bones to make them more soluble and proved that phosphate of lime and not gelatin<br />

was the fertilizing agent in the material. In 1843 he proved that phosphate of lime performed identically whether<br />

obtained from bones or phosphate rock.<br />

John Bennet Lawes, founder of the Rothamstead Experiment Station in Harpenden, England, put Leibig’s suggestions<br />

to practical use and began to manufacture artificial fertilizer in Deptford, London (See Figure 1), by mixing<br />

sulfuric acid with crushed bones and coprolites. He called his product “superphosphate”. Although Lawes has been<br />

credited with the first commercial success in the manufacture of superphosphate, he was not, contrary to popular<br />

belief, the inventor of the substance. The first commercial production of superphosphate was actually carried out<br />

by Sir James Murray. In his pamphlet “Advice to Farmers”, Murray described a formulated mixture consisting primarily<br />

of superphosphate produced by treating crushed bones with sulfuric acid.<br />

English patents for the manufacture of superphosphate were granted to both Murray and Lawes on the same day,<br />

The Rise of Di-Ammonium<br />

Phosphate<br />

Higher analysis fertilizers incorporating<br />

both nitrogen and phosphorous<br />

were the next step in the<br />

development of the fertilizer industry.<br />

Mono-Ammonium Phosphate<br />

(MAP) production began in about<br />

1920. Major Di-Ammonium Phosphate<br />

(DAP) production began in<br />

about 1954. DAP is now, of course,<br />

the most widely traded phosphate<br />

fertilizer in the world with about<br />

Figure 1<br />

In the original Dorr-Oliver process, the ammoniation was carried out entirely in reaction vessels. Three reactors<br />

were used in series operating at 0.6, 1.4 and 1.85 mole ratio respectively. The slurry from the final reactor flowed<br />

by launder to one or more pugmills or blungers (See Figure 2). Because of the relatively insoluble nature of the<br />

slurry at 1.85 mole ratio, large amounts of water (30% or higher) were necessary to enable the slurry to flow. As a<br />

consequence these early plants operated with a large recycle ratio of up to 12/1. Some refinements were made to<br />

the process whereby partial ammoniation was carried out in two vessels and the remaining ammonia added in the<br />

23


Figure 2<br />

From the 1960’s to Date<br />

The changes to processing techniques since the 1960’s have been evolutionary<br />

rather than revolutionary.<br />

I have the following memories from when I first started out in the fertilizer<br />

industry back in 1975 in the U.K.<br />

The plants that we operated were old, probably dating back to the 1940’s and<br />

50’s.<br />

MATERIALS OF CONSTRUCTION<br />

A lot of wood was used, especially for floors and roof beams etc. Today<br />

practically no wood is used for any purpose – steel and concrete have taken<br />

over as cheaper and superior materials. Not much stainless steel was in<br />

evidence – rubber, and, where appropriate, brick lining, on carbon steel was<br />

employed. As better stainless steels have become available, these have tended to replace lined carbon steel in<br />

many duties due to lower maintenance costs.<br />

PRODUCT SIZE<br />

At the time our focus was on maximizing capacity rather than maximizing product quality. Standard product size<br />

was maybe 85% between 1 and 4 mm. Today’s customer requires a much tighter and larger size specification to<br />

optimize distribution of the fertilizer by mechanical spreaders. Typically a size distribution of 95% between 2 and<br />

4 mm is required.<br />

This has become a practical proposition as the available screening machines have improved considerably. The<br />

machines that we operated when I first started work were essentially horizontal, frame vibrated machines with no<br />

in-built mechanism for keeping the cloths clean. The cloths tended to blind quite quickly leading to progressively<br />

more and more fines in the product. As a result we actually had an operator with a long handled brush whose job it<br />

was to physically clean the screens (“the screen man”)! Luckily the current generation of screens that are available<br />

are inclined at some 35deg. to the horizontal, have static frames and the cloths are directly vibrated by electric<br />

motors, meaning that they are, to a large extent, self-cleaning.<br />

CONTROL SYSTEMS<br />

The plants that we operated back in 1975 had a very rudimentary measurement and control scheme. Such controls,<br />

24<br />

A major break-through came in 1956 when<br />

Frank Nielsson of TVA patented the Ammoniator-Granulator<br />

(See Figure 3). This invention<br />

allowed large quantities of ammonia to be<br />

injected beneath the rolling bed of wet solids<br />

in a rotary drum with reasonable efficiency. In<br />

the TVA process only one “preneutralizer” vessel<br />

was used, operating at the point of maximum<br />

solubility (mole ratio 1.4-1.45) to minimize the<br />

slurry moisture (16-20%). This enabled recycle<br />

ratio to be reduced to about 5/1. Modern plants<br />

Figure 3


ENVIRONMENTAL ISSUES<br />

The plants that I worked on at that time either had no dedusting system or at best only a very rudimentary system<br />

to keep the working environment clean. Modern plants are designed with dedicated dedust systems with suction<br />

applied at all materials handling transfer points.<br />

In general there have been giant strides in the HSE area.<br />

Scrubbing systems were also very rudimentary – often, single stage scrubbing in simple void spray towers. Modern<br />

plants now typically involve three stages of scrubbing. The first two stages employ phosphoric acid as the scrubbing<br />

medium – the so-called dual mole ratio system consisting of a low pressure drop duct-cyclonic scrubber operating<br />

at a mole ratio of about 1.5 and higher pressure drop venturi-cyclonic scrubbers operating at a mole ratio of about<br />

0.7. The last stage is typically a cyclonic tail gas scrubber utilizing water acidified with sulfuric acid to recover<br />

traces of fluoride, ammonia and particulate. All of these scrubber liquors are recycled back to the process via the<br />

preneutralizer.<br />

PLANT SIZE<br />

The plants that I worked on back in 1975 had capacities of 25 t/h or even less and were designed to serve the market<br />

area around the plant. At that time we operated at eight plant sites and that was in a small country like England!<br />

World scale capacities have increased five-fold and product is now routinely transported in bulk by ship to global<br />

markets.<br />

PIPE REACTORS<br />

Conventional tank reactors have in many parts of the globe been replaced by so-called pipe reactors. Pipe reactors<br />

are located directly in the granulator and do not require pumping of the reaction products. This allows them to<br />

operate at high pressure and temperature and therefore the slurry produced can have a lower water content. In<br />

theory this allows a reduction in recycle ratio provided the slurry from the pipe reactor can be spread evenly on the<br />

recycle material.<br />

My belief is that the advantages of pipe reactors are a little over-hyped. From the many plants that I have visited,<br />

I don’t see many of them operating at a recycle ratio much lower than can be achieved in a well-designed and<br />

operated preneutralizer plant. Also, none of the large world-scale plants in the U.S., North Africa or Australia of 120<br />

t/h and more are employing pipe reactors.<br />

THE FUTURE<br />

I believe that the definition of a world-class DAP plant will continue upwards – the 5,000 t/d DAP plant is just<br />

around the corner. Actually, I am confident it could be designed right now.<br />

Environmental standards will continue to be tightened up and scrubbing systems will continue to evolve to meet<br />

those new standards.<br />

Product quality – meaning closer control of chemical and physical quality (tighter and tighter size specifications, a<br />

demand for increased sphericity and improvements in anti-caking treatments – will continue to be a focus point.<br />

The production of specialty fertilizer containing micronutrients will grow. Following the tightening of environmental<br />

emission standards worldwide and the consequent reduction of acid rain, soils are becoming deficient in sulfur. I<br />

expect sulfur enhanced fertilizers to become a growth market<br />

And lastly, I believe that granulation plant control systems will become more intelligent, taking a lot of decisions<br />

away from the operator to be determined by computer. This will in part assist in achieving the advances mentioned<br />

above.<br />

In summary, we’ve come a long way since we started crushing up bones and solubilizing the phosphate by adding<br />

sulfuric acid in batch pits!<br />

25


SUSTAINABLE AGRICULTURAL PRACTICES IMPACT ON<br />

PHOSPHATE ROCK PRODUCTION<br />

Agriculture & fertilization KN13<br />

James L. Hendrix<br />

University of Nebraska-Lincoln<br />

Lincoln, NE 68588-0643, USA<br />

In many areas of the world sustainable agricultural practices are being touted as a necessity for a sustainable<br />

world. In the United Kingdom, China, and other nations the use of phosphorus fertilizers has been highlighted as<br />

an area in which more sustainable practices can be employed. The possible advantages of using organic sources<br />

for the phosphorus required by intensive agriculture are investigated. The potential for replacing inorganic<br />

sources of phosphorous is estimated.<br />

Limitations to the use of organic sources of phosphorus are considered and their impacts on the possible<br />

general use of organic sources are discussed.<br />

BENEFICIAL MICROORGANISMS FOR THE SUSTAINABLE USE OF<br />

PHOSPHATES IN AGRICULTURE<br />

Agriculture & fertilization KN14<br />

Hani Antoun<br />

Département des Sols et de Génie agroalimentaire et<br />

Centre de recherche en Horticulture, Pavillon Paul-Comtois, Université Laval<br />

2425 rue de l’Agriculture<br />

Québec (Qc) CANADA G1V0A6<br />

Phosphorus (P) is an essential nutrient for plant growth and reproduction; however the concentration of P in soil<br />

solution is very low, varying from 0.001mg L-1 in very poor soils to 1 mg L-1 in heavily fertilized soils. The inorganic P<br />

- -2 (Pi) is absorbed by plant roots mainly as phosphate anions (H PO and HPO4 ) which are chemically very active and<br />

2 4<br />

in the presence of cations like Ca +2 in alkaline soils or Al +3 and Fe +3 in acid soils, they form sparingly soluble P, not<br />

available for plants. Therefore, to secure high crop yields farmers are using amounts of Pi- fertilizers exceeding plant<br />

requirements, which result in an important yearly accumulation of Pi in soils. Soil organic P (Po) is another important<br />

reserve which can form from 20 up to 80% of total soil P. To be available for plant Po must first be mineralized<br />

by soil microorganisms to orthophosphate anions. Since the fifties when large scale field inoculation trials were<br />

performed in the former Soviet Union with phosphobacterin, a plant inoculant based on the Pi solubilizing bacterium<br />

Bacillus megaterium var phosphaticum, empiric observations indicated that it is possible to improve plant P<br />

nutrition by using phosphate solubilizing microorganisms (PSM). However although there is a huge literature on<br />

PSM, there is until now important variability in the results obtained. This variability clearly reflects the complexity<br />

of the different interactions taking place between the different constituents of the soil-plant ecosystem: soil, plant,<br />

microorganisms and fauna. Weather and crop history are also factors affecting the results obtained in field trials. In<br />

this presentation the complexity of the soil-plant ecosystem will be discussed by showing some important points<br />

overlooked in previous studies and that should be considered when developing the PSM beneficial inoculants of the<br />

future. Different strategies for using PSM will be presented, that will allow the use of soil reserves in Pi and Po, while<br />

also using chemical P fertilizers in a rational manner for a sustainable agriculture, or for the direct use of phosphate<br />

rock for organic agriculture.<br />

26


FOOD SECURITY AND THE ROLE OF FERTILIZER IN SUPPORTING IT<br />

Agriculture & fertilization KN15<br />

W.M. Stewart and T.L. Roberts<br />

International Plant Nutrition Institute, Norcross, GA , USA<br />

World population is expected to increase by some 35% over about the next 40 years. With this projection comes<br />

mounting concerns over an already higher than acceptable level of food insecurity. The issue of food security is<br />

of course much more complex than simple population projections and involves other factors such as economics,<br />

government policies, and natural disasters. The demand on agriculture to increase production will continue<br />

to grow at least for the next few decades. Some new land will likely be put under the plow to help meet the<br />

demand; however, the majority of the increased production will have to come from land already being farmed, thus<br />

necessitating more intensive agriculture and higher crop yields. The great challenge for the world’s farmers and<br />

their affiliates will therefore be to increase output in a (sustainable) manner that minimizes environmental impact<br />

and at the same time provides sufficient, safe, and nutritious products.<br />

Many believe that biotechnology holds the key to producing more food, but it is only one piece of the puzzle. The<br />

employment and further advancement of many technologies (e.g., irrigation, equipment, pest control, fertilizer,<br />

and seed) will be needed to meet the challenge ahead and to close the gap between actual and attainable<br />

yields. It is the positive interactions among the advancement of several technologies that holds the key. Nutrient<br />

management practices and fertilizer technologies are among those that will need to continue advancement and<br />

improvement, as adequate and balanced nutrition is the foundation of healthy crops.<br />

Evaluation of long term field studies has shown that fertilizer input is critical to crop production. In temperate<br />

climates such as in the USA and England the average percentage of yield attributable to fertilizer generally ranged<br />

from about 40 to 60%. However, in the more highly weathered soils of the tropics (Amazon Basin in Brazil and in<br />

Peru) fertilizer input was much more critical to production. After the second year of land clearing yields attributable<br />

to fertilizer and lime were never below 90%.<br />

Based on past evaluations it is safe to say that without adequate plant nutrition, the world would produce only<br />

about half as much staple foods and more forested lands would have to be put into production. Inorganic fertilizer<br />

plays a critical role in the world’s food security, but it must be recognized that highest yields are in some systems<br />

the result of using both organic and inorganic nutrient sources. Integrated soil fertility management is critical to<br />

optimizing food production and efficient use of plant nutrients. The 4Rs — right source at the right rate, right time,<br />

and right place — are the flexible underpinning principles of nutrient management that can be adapted to all<br />

cropping systems to ensure productivity is optimized.<br />

27


III - MINING<br />

29


30<br />

CONCEPTION ET RÉALISATION DES TALUS DE MINES À CIEL OUVERT<br />

APPROCHE GÉOLOGIQUE ET GÉOMÉCANIQUE<br />

MN-O-01<br />

Jean-Alain FLEURISSON<br />

MINES ParisTech - Centre de Géosciences<br />

Fontainebleau/FRANCE<br />

Les talus de mine à ciel ouvert doivent être reconnus comme des ouvrages géotechniques à part entière dont<br />

le dimensionnement, réalisé suivant les règles de l’art, doit prendre en compte des préoccupations techniques,<br />

économiques, environnementales et de sécurité. Mais ces ouvrages sont, avant tout, des ouvrages géologiques<br />

et géomécaniques naturels pour lesquels la structure géologique et la nature pétrographique des matériaux<br />

constitutifs contrôlent les processus de déformation et de rupture par rapport auxquels il faut les dimensionner.<br />

Il importe donc de mettre en œuvre une méthodologie bien maîtrisée qui peut se décomposer en plusieurs étapes :<br />

1) la caractérisation du massif rocheux par l’acquisition, puis l’analyse de données géologiques et<br />

géomécaniques ;<br />

2) la détermination des mécanismes potentiels de déformation et de rupture, et leur modélisation ;<br />

3) l’analyse des facteurs déclenchants ou aggravants des ruptures.<br />

Cet article présente différentes techniques et outils existants pour aborder ces étapes successives, et illustre leur<br />

mise en œuvre pratique ainsi que leurs limitations par des études de cas de dimensionnement de mines à ciel<br />

ouvert.<br />

SLOPE DESIGN AND IMPLEMENTATION IN OPEN PIT MINES : GEOLOGICAL AND GEOMECHANICAL APPROACH<br />

Slopes in open pit mines must be considered as geotechnical structures. Therefore their design and implementation<br />

must be conducted with all consideration including technical, economical, environmental and safety issues. But<br />

these structures are above all natural geological and geomechanical features and the geological structures as well<br />

as the petrographical nature of the rock material control the deformation and failure mechanisms.<br />

It is therefore important to implement a well-defined methodology which should be conducted according to<br />

the following phases: 1) rock mass characterization derived from the acquisition and analysis of geological and<br />

geomechanical data; 2) determination of the potential mechanisms of deformation and failure, and their numerical<br />

modelling; 3) analysis of triggering or aggravating factors of failure.<br />

This paper presents various available techniques and tools to achieve these successive phases and illustrate their<br />

implementation and also limitations through case studies of slope design in open pit mines.<br />

GRIDDED SEAM VS 3D BLOCK MODELS IN MINE PLANNING<br />

OF PHOSPHATE DEPOSITS<br />

MN-O-02<br />

Daniel M GAGNON<br />

P. Eng, Manager – Mining Group – Met-Chem Canada Inc,<br />

Montreal, QUEBEC CANADA<br />

Advantages of using gridded seam models over 3D block models for mine planning of industrial<br />

minerals and other tabular deposits such as phosphates.<br />

Keywords: Gridded Seam, 3D block model, mine design, mine planning<br />

Met-Chem Canada Inc. is an engineering consulting firm serving the mining industry since 1969 and based in<br />

Montreal Canada. Met-Chem is a wholly owned subsidiary of UEC Technologies LLC which is part of United States<br />

Steel Corporation. Mining engineers and geologists at Met-Chem have been using 3D block models and gridded<br />

seam models since the mid-80s for geological modelling, resource/reserve estimation, economic evaluations and<br />

mine planning.<br />

Over the years, Met-Chem has prepared numerous mine plans for mining operations based on either 3D Block models<br />

or Gridded Seam models developed by Met-Chem or client geologists. These models were initially developed by the


geologists to accurately model the deposits shape and grade distribution and not for mine planning purposes.<br />

In the last few years, Met-Chem’s mining engineers have developed their own mine planning 3D block or Gridded<br />

Seam models based on these geological models to better predict mine operation and facilitate mine planning<br />

activities. The decision of which model to use for mine planning is dependent on the type of operation, deposit<br />

geometry, grade distribution and blending requirements.<br />

This paper will discuss the advantages and disadvantages of using gridded seam or 3D block models for mine<br />

planning purposes depending on the type of operation and blending requirements. A number of real cases will be<br />

presented as examples.<br />

ASSESSMENT OF RELIABILITY, AVAILABILITY AND<br />

REPAIRABILITY OF FIELD EQUIPMENT IN MINES<br />

MN-O-03<br />

Jayanta Bhattacharya<br />

Professor, Department of Mining Engineering, Indian Institute of Technology, haragpur-721302<br />

Honorary Advisor of Environmental and Social Performance, Tata Steel, India and Expert, Ministry of<br />

Environment and Forest, Government of India - INDIA<br />

Large equipment involving huge capital expenditure should be always measured in terms of performance to<br />

assess the utilization and profitability. Reliability analysis helps in understanding the failure characteristics of<br />

large equipment in mines. Availability assessment helps in understanding the maintenance requirements of the<br />

equipment and its critical parts. Repairability indicators help in measuring the performance of both machine and<br />

manpower in the maintenance exercise.<br />

The paper deals with the exact measurement methods of the above with case studies in a surface mine.<br />

Andreas Marquardt<br />

Wirtgen GmbH<br />

Windhagen/GERMANY<br />

NOUVELLES MÉTHODES POUR L’EXTRACTION DE PHOSPHATES<br />

MN-O-04<br />

EXPLOITATION EFFICACE ET ÉCOLOGIQUE DES PHOSPHATES<br />

La méthode consistant à tailler, à concasser et à charger en une seule opération est nettement plus efficace que les<br />

procédés conventionnels.<br />

Les stricts règlements antipollution concernant les émissions de bruit et de poussière rendent le rabotage<br />

intéressant par rapport aux procédés conventionnels du forage et du minage.<br />

L’extraction sélective des phosphates contribue à augmenter le taux d’exploitation des gisements.<br />

Les surfaces planes et stables produites par les travaux de terrassement ou de taille des roches peuvent être utilisées<br />

directement comme voies de circulation, talus ou radiers de tunnel.<br />

TAILLER, CONCASSER ET CHARGER EN UNE SEULE OPÉRATION<br />

Des coûts de main d’oeuvre, de machines et d’exploitation considérablement réduits ainsi qu’un faible volume de<br />

déblais sont les signes distinctifs d’une technologie de rabotage de roches moderne.<br />

L’enlèvement sélectif de couches rocheuses fournit un rendement élevé de minéraux très purs tout en ménageant<br />

les ressources.<br />

Le tracé plan obtenu constitue un support idéal pour les revêtements de chaussées, pouvant déjà être emprunté<br />

sans danger par les véhicules de transport pendant les travaux.<br />

Un effet positif direct de l’exploitation douce sans minage: les procédures d’obtention d’autorisations et les temps<br />

de préparation pour l’exploitation de nouveaux gisements sont nettement raccourcis.<br />

31


LE SURFACE MINING: UN STANDARD INTERNATIONAL<br />

LE FONCTIONNEMENT D’UN SURFACE MINER MODERNE<br />

Le Surface Miner est entraîné par quatre<br />

trains à chenilles réglables en hauteur.<br />

En cas de chargement direct, le matériau<br />

enlevé est transporté par le système<br />

de convoiement pivotable et réglable<br />

en hauteur pour être déversé dans des<br />

camions ou tombereaux.<br />

En cas de chargement indirect, le<br />

matériau est déversé latéralement en tas<br />

où il pourra être mélangé ultérieurement<br />

de façon ciblée.<br />

En déposant le matériau en cordon entre<br />

les trains de roulement, il est possible<br />

d’atteindre des rendements journaliers<br />

particulièrement élevés, associés à de<br />

faibles coûts d’exploitation.<br />

32<br />

2500 SM, Inde + Etats-Unis :<br />

Le chargement direct<br />

du calcaire fraisé...<br />

... protège le matériau de<br />

l’humidité et de la pluie<br />

2500 SM, Etats-Unis :<br />

Extraction de roche calcaire concassée sans broyeur dégrossisseur<br />

LES INNOMBRABLES POSSIBILITÉS DE L’EXTRACTION PAR RABOTAGE<br />

Le champ d’application de l’innovant Surface Mining ne cesse de s’agrandir, intégrant toujours de nouvelles<br />

dimensions prometteuses. Nos ingénieurs repoussent toujours les limites de la faisabilité technique pour<br />

développer de nouvelles possibilités d’utilisation rentables et respectueuses de l’environnement. C’est ainsi que,<br />

dans l’exploitation minière, l’extraction de bauxite, de phosphate, de kimberlite ou de sel à l’aide du Surface Mining<br />

offre une rentabilité toujours croissante. De plus, nous concevons des machines extrêmement robustes pour la taille<br />

des roches, capables de fraiser même du calcaire ou du granit durs allant jusqu’à 260 MPa, sans minage.


DEVELOPMENTS IN DC AND AC TECHNOLOGY FOR<br />

SURFACE MINING EQUIPMENT<br />

MN-O-05<br />

Mark JOHNSTON,<br />

General Manager Electrical Upgrades, Bucyrus International Inc.,<br />

South Milwaukee, USA<br />

This paper and presentation will reflect the latest developments in Excavator Electrical Control Systems in<br />

association with the latest technological advances in Diagnostics, Condition Based Monitoring Systems and Data<br />

gathering equipment as it applies to mobile Surface Mining Equipment.<br />

Examples will show how Bucyrus International Inc, has incorporated this technology with Safety, Reliability and<br />

Productivity as the major focus. Topics that will be covered during the presentation include:<br />

- AC and DC Drive Technology<br />

- Complete Electrical System Diagnostics<br />

- Continuous Data Monitoring stored to on-board servers<br />

- Automated Condition Monitoring utilizing<br />

wireless vibration sensors<br />

electronic fluid analysis for debris and oil<br />

wireless strain gauges<br />

- Production Monitoring<br />

- Complete Remote Access via GSM networks<br />

OPTIMISATION OF DRAGLINE OPERATIONS IN PHOSPHATE MINING<br />

Vince Osborne,<br />

SRK Consulting (UK) Ltd,<br />

UK<br />

MN-O-06<br />

This presentation addresses the application of large walking draglines to overburden removal in open pit phosphate<br />

mining, with particular emphasis on optimisation.<br />

Where dragline stripping is the dominant method of waste removal, optimisation of the dragline operation will act<br />

to maximise ore uncovery rate and minimise stripping costs.<br />

Optimising the dragline operation requires consideration of a number of factors which affect the efficiency of<br />

dragline stripping. Such factors include dragline selection, pit layout, waste allocation, dragline stripping method,<br />

scheduled maintenance, downtime, walking and deadheading, and operator technique.<br />

The choice of dragline stripping method is a primary determinant of productivity and the object of mine planners<br />

is to select the dragline method that best suits the deposit and dragline. This presentation focuses on choice of<br />

stripping method, but also addresses the other factors which influence dragline productivity.<br />

33


34<br />

LA STRATIGRAPHIE SEQUENTIELLE<br />

OUTIL DE PREDICTION DES CORTEGES PHOSPHATES ET DE PLANIFICATION<br />

DE L’EXPLOITATION MINIERE<br />

MN-O-07<br />

Mustapha MOUFLIH 1 , El Hassan CHELLAI 2 , Abdelmajid BENBOUZIANE 1 ,<br />

Es-said JOURANI 3 , Mbarek AMAGHZAZ 3 & Hamid EL HADDI 1<br />

1- Laboratoire des Géoressources Sédimentaires et Environnement, Université<br />

Hassan II Mohammedia-Casablanca, Faculté des Sciences Ben M’Sik, Maroc<br />

2- Département de Géologie, Faculté des Sciences Semlalia, Université Cadi<br />

Ayyad, Marrakech.<br />

3- Direction Géologie et d’Hydrogéologie, Pôle Industriel, Groupe OCP.<br />

Durant ces dernières années, l’application du concept de la stratigraphie séquentielle couplé aux simulations<br />

stratigraphiques par ordinateur a confirmé la cohérence des approches de cette doctrine dans d’interprétation<br />

3D et 4D des cortèges des bassins sédimentaires. Il en découle deux applications qui intéressent particulièrement<br />

l’industrie, d’abord en domaine pétrolier la prédiction et la localisation de réservoirs et de couvertures. D’autre part,<br />

en domaine minier la corrélation régionale des séquences dont l’objectif est le calcul des réserves et la planification<br />

de l’exploitation. En effet, la détermination des cortèges de dépôt (école d’Exxon) et la modélisation stratigraphique<br />

(Colorado School of mines) permet non seulement le fractionnement spatial des sédiments (stock sédimentaire en<br />

progradation par rapport à l’aggradation), mais aussi la configuration et le fractionnement volumétrique.<br />

En s’appuyant sur des données de terrain, biostratigraphiques, géochimiques et diagraphiques, l’application de ce<br />

concept aux séries des bassins phosphatés du Maroc central (Oulad Abdoun, Ganntour et Meskala) et du Moyen<br />

Atlas, permet la détermination de l’ensemble des cortèges sédimentaires :<br />

- Cortèges sédimentaires transgressif (transgressive Systems Tract) qui se démarquent, du Maastrichtien à<br />

l’Yprésien, par des faciès très riches en P2O5 : les phosphates ossifères riches en débris d›ossements, vertèbres<br />

et dents de vertébrés, et les phosphates granulaires coprolithiques (oocoprophospharénites). Ces faciès<br />

traduisent une évolution progressive vers des faciès phosphatés fins, reflétant ainsi des milieux de dépôt marin<br />

très agités à agités qui deviennent de plus en plus calmes avec approfondissement du milieu. Au Lutétien ce<br />

type de cortèges se manifeste par des corps lumachélliques à gastéropodes de type Thersites et Térutelles.<br />

- Cortèges de haut niveau marin inférieur (Early Highstand Systems Tract) se traduisent par les dépôts de<br />

phosphatés marneux et/ou argileux, des marnes phosphatées et des faciès argileux et/ou silteux très peu<br />

phosphatés. Les surfaces d›inondation maximale (maximum flooding surfaces), marquées par un liseré<br />

argileux et des surfaces à bioturbations intenses, des concrétions siliceuses et des nodules de silex.<br />

- Cortèges de haut niveau marin supérieur (late Highstand Systems Tract) qui se définit par des faciès silteux<br />

à sableux très peu phosphatés dans la paléogéographie proximale du bassin et des faciès argileux et marneux<br />

progradants dans les parties distales de la plate-forme de l’époque. Ce sont des cortèges très remarquables par<br />

une silicification et une dolomitisation intenses.<br />

- Cortèges sédimentaires de bordure de plateforme (P.B.P) qui s’articulent en trois paraséquences à faciès


phosphatés, riches en débris bioclastiques de lamellibranches à la base et calcareux au toit.<br />

Ces cortèges, reconnaissables surtout dans le gisement d’El Brouj (bassin des Oulad Abdoun), ont pris place à la<br />

fin du cycle eustatique yprésien, pendant la baisse relative du niveau marin de l’époque.<br />

L’identification des niveaux stratigraphiques isochrones à partir des données biostratigraphiques, lithologiques,<br />

géochimiques et diagraphiques nous a permis de définir l’ensemble des séquences de dépôt (unités génétiques)<br />

et les discontinuités sédimentaires (ligne-temps) corrélables à l’échelle de tout ces bassins sédimentaires. Ces<br />

séquences enregistrent des oscillations marines qui s’intègrent globalement dans des cycles eustatiques de 3ème<br />

ordre. Les séries phosphatées globales constituent une superséquence déposée pendant un supercycle eustatique<br />

(cycle eustatique de 2ème ordre) avec comme surface d’inondation maximale qui se démarque dans l’étage<br />

Yprésien. L’intégration de ces données dans un système d’information géographique constitue une étape seconde<br />

et valorisable pour l’exploitant et l’industriel.<br />

Mots clés : Stratigraphie Séquentielle, Cortèges phosphatés, Séquences de dépôt, Corrélation, Maroc.<br />

DÉPÔTS DE PHOSPHORE ET TITANE DU LAC À PAUL<br />

PROJET MINIER À CIEL OUVERT DE PLUS DE 300MT DE TONNE<br />

MN-O-08<br />

Bernard Lapointe ,<br />

Ariane - Canada Phosphate<br />

Depuis le début de 2010 le prix des roches phosphatés augmente progressivement. Alors qu’il s’était stabilisé aux<br />

environs de 90 US$/tonne en 2009 après une chute importante causée par la crise de 2008, il a atteint les 170 US$/<br />

tonne en décembre dernier. Les marchés boursiers commencent à prendre conscience de l’importance stratégique<br />

des fertilisants dans notre monde moderne et de la place qu’ils occuperont dans les échanges internationaux dans<br />

un futur proche. De plus en plus de compagnies ayant des intérêts dans le domaine des fertilisants essaient de<br />

s’intégrer verticalement. Ceci leur permet de s’assurer d’un approvisionnement constant en volume et en qualité<br />

des matières premières dont elles ont besoin. Cette intégration verticale implique pour ces compagnies l’achat<br />

de dépôts de minéraux phosphatés déjà en activité ou susceptible de l’être au cours des prochaines années.<br />

L’augmentation des prix, l’intérêt des marchés boursiers ainsi que le besoin constant de nouveaux dépôts pour<br />

répondre à une demande croissante sont de bons augures pour le projet du Lac à Paul.<br />

LES DÉPÔTS DU LAC À PAUL<br />

- Localisation : Cette propriété est située à environ 200 km au nord du Saguenay-Lac-<br />

St-Jean au Québec, Canada. Elle couvre une superficie de plus de 15 000 hectares. Elle<br />

est facile d’accès grâce à un réseau de routes forestières. La voie ferroviaire de Dolbeau<br />

est accessible par route en quelques heures seulement. Le port de Grande Anse, sur la<br />

rive sud du Saguenay, constitue aussi une avenue possible pour la sortie du minerai.<br />

La propriété est située à quelques kilomètres des centrales électriques de Péribonka<br />

(Hydro Québec) et de Chutes des Passes (Rio Tinto Alcan). Plusieurs lacs et rivières<br />

permettraient l’approvisionnement en eau nécessaire à l’exploitation des dépôts.<br />

35


- Calcul de Ressources et Étude Économique :<br />

Les trois dépôts de ce projet totalisent maintenant 78,34 Millions de tonnes (Mt) de ressources indiquées à<br />

7,24 % P2O5 et 7,84 % TiO2 et 260,15 Mt de ressources présumées à 5,70 % P2O5 et 7,64 % TiO2 (teneur<br />

de coupure à 2 %) calcul de ressources effectué par la firme SGS Geostat Ltd (NI 43-101).<br />

L’évaluation économique préliminaire<br />

(Scoping Study) effectuée par la firme<br />

IOS Inc. de Chicoutimi, à la fin de 2009,<br />

et mise à jour en 2010 démontre que<br />

le projet est rentable. Cette étude ne<br />

traite que du dépôt de la Zone Paul<br />

qui compte actuellement 78,34 Mt<br />

36<br />

Calcul historique<br />

Calcul actuel (Ressources indiquées<br />

et présumées 43-101)<br />

Dépôts<br />

Millions<br />

tonnes<br />

%P2O5 Classification Millions<br />

tonnes<br />

%P2O5<br />

Zone 1 20,1 3,78 - - -<br />

Zone 2 17,6 4,27 Présumées 64,25 4,54<br />

Zone Manouane - - Présumées 137,65 5,71<br />

Zone Paul - -<br />

Présumées<br />

Indiquées<br />

58,25<br />

78,34<br />

6,97<br />

7,24<br />

Total 37,7 4,01<br />

Présumées<br />

Indiquées<br />

260,15<br />

78,34<br />

5,7<br />

7,24<br />

de ressources indiquées et 58,25 Mt de ressources présumées. Elle prévoit une production annuelle de 2 Mt<br />

de concentré d’apatite à 39,9 % P 2 O 5 . Seuls les concentrés d’apatite sont considérés et aucune valeur n’a<br />

été attribuée pour d’éventuels concentrés de titane ou de fer. La dernière campagne de forages sur la Zone Paul<br />

(complétée en décembre 2010) et a clairement démontré que cette Zone se continue en profondeur jusqu’à<br />

400 mètres verticaux et qu’elle demeure encore ouverte.<br />

COÛTS D’INFRASTRUCTURE ET D’OPÉRATIONS (CAN$)<br />

- ÉTUDE DE PRÉFAISABILITÉ ET NOUVEAU CALCUL DE RESSOURCES :<br />

L’étude de préfaisabilité du projet du Lac à Paul est en cours et nous attendons les résultats pour le mois de juin.<br />

Une campagne de forage sur la Zone Manouane est en cours. Cette campagne vise à catégoriser une partie<br />

des ressources présumées de cette zone en ressources indiquées et à vérifier les extensions latérales de ce dépôt<br />

qui s’établit, selon le dernier calcul de ressources NI 43-101(SGS Canada Inc, 2010), à 137.65 Mt de ressources<br />

présumées titrant 5,71 % P 2 O 5 et 8,92 % TiO 2 pour une teneur de coupure à 2%. Un nouveau calcul de ressources<br />

(SGS Canada Inc) concernant les zones Paul et Manouane sera inclus dans l’étude de préfaisabilité qui traitera donc<br />

d’un projet minier ayant une durée de vie de 25 ans au minimum.


À la fin de l’été 2010 un échantillonnage en vrac<br />

de huit tonnes a été réalisé sur la Zone Paul dans<br />

le but d’effectuer des tests de concentration du<br />

minerai à une échelle plus importante. Une<br />

entente a été conclue avec COREM (Québec)<br />

dans le but d’obtenir une tonne de concentré<br />

d’apatite provenant de cet échantillon. Cette<br />

firme, un consortium de recherche en traitement et<br />

transformation de substances minérales, a comme<br />

mandat d’élaborer le processus de recouvrement<br />

de l’apatite à partir d’une usine pilote. L’échéance<br />

de ces travaux est pour le mois de mai <strong>2011</strong>. Les<br />

résultats de ces essais métallurgiques seront<br />

inclus dans l’étude de préfaisabilité. Ces travaux<br />

permettront à la Société de distribuer un<br />

concentré de haute qualité auprès de clients<br />

actuellement en attente.<br />

37


38<br />

I


IV - PHOSPHATE BENEFICIATIONS<br />

39


40<br />

BENEFICIATION OF INDIAN LOW GRADE ROCK PHOSPHATES<br />

A FEW CASE STUDIES<br />

BN-O-01<br />

Arun Kumar Majumder,<br />

Department of Mining Engineering Indian Institute of Technology, Kharagpur<br />

721302, INDIA<br />

Jayanta Bhattacharya,<br />

Department of Mining Engineering Indian Institute of Technology, Kharagpur<br />

721302, INDIA<br />

Kaushik Dey,<br />

Department of Mining Engineering Indian Institute of Technology, Kharagpur721302,<br />

INDIA<br />

India, with its vast agricultural base remains one of the major fertilizer consuming countries in the world. The<br />

domestic requirements of primary nutrients such as nitrogen, phosphorous and potash (NPK) are being mostly<br />

met by imports.<br />

Out of 200 million tonnes of rock phosphate reserves, approximately 15 million tonnes only have been estimated to<br />

be of high grades (> 30% P 2 O 5 ) which are being mined by different government agencies for commercial purposes.<br />

The rock phosphate assaying between 20 to 30% P2O5 is currently being used for different purposes such as<br />

blending with high grade rock phosphates, direct application to soil as fertilizer, partially acidulated phosphate<br />

rock (PAPR) concentrate. The low grade (


PILOT SCALE DIRECT FLOTATION OF A PHOSPHATE ORE<br />

WITH SILICATE-CARBONATE GANGUE<br />

BN-O-02<br />

Rodrigo O. Albuquerque1 , José A. Aquino1 , Carlos A. Pereira2 ,Antonio E. C.<br />

Peres3 1 CDTN/CNEN BRAZIL,<br />

2 UFOP, BRAZIL<br />

3 UFMG, BRAZIL<br />

The present pilot scale study addresses the direct flotation route for the concentration of a phosphate ore bearing<br />

a silicate-carbonate gangue. The target was to selectively separate apatite from the contaminating silicate<br />

minerals and, especially, carbonates, using flotation columns. Based on the results of a previous laboratory scale<br />

investigation, a reagents scheme was selected and tested, consisting in the use, under alkaline conditions, of corn<br />

starch and a natural collector extracted from the distillation of coconut oil. An open rougher-cleaner circuit yielded<br />

a final concentrate reaching 30.5% P 2 O 5 grade, at 80.8% recovery level.<br />

EVALUATION OF DEPRESSANTS FOR PHOSPHATE<br />

ORE BEARING SILICATE-CARBONATE GANGUE<br />

Miessa F. de Souza 1 , Gilmara M. Lopes 2 , Michelle dos Santos Oliveira 3 ,<br />

Antonio E. C. Peres 4 , Carlos A. Pereira 5 ,<br />

UFOP Ouro Preto/BRAZIL<br />

BN-O-03<br />

The fertilizer use has increased significantly due to the growth of food consumption by the population. It was<br />

necessary, thus, the development in the Brazilian fertilizer industry to improve the beneficiation of phosphate<br />

concentrate. The treatment of phosphatic silicate-carbonate ore is of great interest since it refers to the use of the<br />

deposit of the Alkaline Complex of Catalão - GO, which represents 45% of the reservation. However, the separation<br />

of phosphates and carbonates, classified as sparingly soluble, it is difficult, mainly due to the similarity of their<br />

chemical properties of surface. This study aimed to evaluate different depressants in pure mineral apatite and<br />

calcite, through microflotation tests in Hallimond modified tube. The reagents used were sodium oleate as anionic<br />

collector, in proportion 5:1 starch, carboxymethylcellulose (CMC), guar gum, tannin, dextrin, as depressants, and<br />

sodium hydroxide and hydrochloric acid as pH regulators. This study was conducted in laboratory scale and showed,<br />

among other results, a good performance carboxymethyl starch and selectivity of phosphatic ore.<br />

41


42<br />

Johan SIIRAK,<br />

AkzoNobel Surface Chemistry,<br />

Stenungsund/SWEDEN<br />

COLLECTOR DEVELOPMENTS FOR COMPLEX PHOSPHATE ORES<br />

BN-O-04<br />

The use of flotation to process phosphate ores has increased over the years as phosphate ores become more fine<br />

grained and complex. The selectivity problems between the phosphate mineral and other calcium minerals like<br />

calcite and dolomite call for the development of new collectors. The paper describes cases where different types<br />

of collectors have been developed to process complex phosphate ores with different mineralogical compositions.<br />

SURFACE TENSION MEASUREMENT FOR OPTIMIZATION OF FLOTATION CONTROL<br />

A. Kramer1 , S. Gaulocher1 , M. Martins2 , L.S. Leal Filho2 BN-O-05<br />

1 ABB Corporate Research, Baden-Dättwil, SWITZERLAND<br />

2 University of São Paolo, Engineering School-Mineral Processing Research<br />

Group, São Paulo-SP, BRAZIL<br />

In the mineral processing industry froth flotation is widely used for ore separation and concentration. Recently,<br />

we found that for phosphate flotation there is a specific relation between ore separation efficiency and surface<br />

tension of the slurry with an optimum operating point that maximizes separation efficiency (Figure, left) [1]. In<br />

this paper we suggest online in-situ measurement of surface tension in the flotation cell and application of this<br />

information for process control (Figure, right). We propose appropriate instrumentation which is suitable for the<br />

typically harsh flotation environment. Besides other measurement parameters, such as pH value, ore composition<br />

and feed rate, surface tension represents a valuable complementary process parameter which is beneficial for<br />

improvement of the flotation control. We suggest using this additional information as input for a model predictive<br />

control system (MPC), which was developed by ABB and successfully applied in a zinc flotation plant [2]. Accurate<br />

knowledge of the relation between surface tension of the slurry and the ore separation efficiency in combination<br />

with a refinement of the physical model provides the basis for an improved MPC. A system on this basis will lead to<br />

a more profitable process regarding ore recovery or ore grade.


Figure: Plot of separation efficiency versus surface tension for the apatite/silicate system [1] (left); Froth flotation<br />

cell with sensor, actuators and control system (right).<br />

1] M. Martins, L.S. Filho, B.K. Parekh, “Surface tension of flotation solution and its influence on the selectivity of the separation between apatite and<br />

gangue minerals”, Minerals and Metallurgical Processing, Vol.26, No.2, p.79, (2009)<br />

[2] S. Gaulocher, E. Gallestey, and H. Lindvall, “Advanced process control of a froth flotation circuit”, V International Mineral Processing Seminar,<br />

October 22-24, (2008), Santiago, Chile<br />

DÉVELOPPEMENT DES MODES D’ENRICHISSEMENT DES PHOSPHATES À L’OCP<br />

POUR SATISFAIRE LES EXIGENCES DES CLIENTS<br />

CAS DE LA DIRECTION DE PRODUCTION ET DE SITE DE KHOURIBGA<br />

BN-O-06<br />

ALOUANI Abdelkader & Mountassir<br />

OCP, MAROC<br />

Résumé d’une communication de IDK proposée pour le premier symposium international sur<br />

l’innovation dans l’industrie du phosphate du 09 au 13 Mai <strong>2011</strong> à Marrakech.<br />

L’exploitation des phosphates dans la zone minière de Khouribga se fait à ciel ouvert, les modes d’extraction<br />

et de traitement utilisés ont été adaptés pour préserver la qualité des différents niveaux phosphatés, éviter le<br />

salissement des qualités extraites,<br />

séparer les rejets le plus tôt possible dans la chaine de production et utiliser les techniques les plus adaptées pour<br />

l’enrichissement des phosphates.<br />

Le contrôle qualité des produits est assuré par la surveillance et la mesure des éléments de pilotage le long des<br />

circuits de production. Cette reconnaissance permet d’identifier les caractéristiques des échantillons des qualités<br />

sources et marchandes des phosphates prélevés au niveau des différents stades opératoires.<br />

Les processus de manutention, d’enrichissement et fabrication des qualités marchandes sont certifiées ISO 9001<br />

et ISO 14001.<br />

43


Pour améliorer davantage la qualité des produits, l’OCP a mis au point des nouveaux procédés de lavage et flottation<br />

des phosphates sédimentaires à gangue carbonatée ou silico-carbonatée. Leur enrichissement connaît un grand<br />

développement et suscite un intérêt particulier, motivé d’une part par la demande croissante et d’autre part par le<br />

besoin de traiter des niveaux phosphatés non enrichissables par les procédés de traitement conventionnels.<br />

• les procédés utilisés consistent à flotter les carbonates et les silicates et à récupérer le phosphate avec les<br />

non-flottants, le développement est passé par plusieurs étapes :<br />

• Essais au niveau des laboratoires<br />

• Essais pilotes<br />

• Application industrielle<br />

L’extrapolation des résultats d’une étape à l’autre, a occasionné quelques difficultés, qui ont été résolues au fur et<br />

à mesure de la mise au point, les essais pilotes ont confirmé les résultats obtenus au laboratoire et ont permis de<br />

déterminer les paramètres de stabilisation et d’optimisation du procédé<br />

Les résultats obtenus à l’échelle industrielle ont été concluants et ont confirmé ceux obtenus au laboratoire et à<br />

l’échelle pilote.<br />

L’utilisation de ce procédé à l’échelle industrielle permet de :<br />

- Améliorer le taux de récupération des phosphates<br />

- Rationaliser l’exploitation des gisements et augmenter leurs durée de vie<br />

- Intégrer l’exploitation des différentes couches des gisements de phosphate dans les projets de développement<br />

stratégique de l’OCP<br />

- Produire des qualités marchandes de phosphate à haute valeur ajoutée<br />

Par ailleurs, la Direction de Production et de Site de Khouribga a défini et élaboré tous les processus nécessaires<br />

pour assurer la satisfaction de ses clients et pour assurer une compréhension adéquate de leurs besoins.<br />

Ces processus comprennent l’identification et la revue des exigences relatives à la satisfaction des clients, ainsi que<br />

la planification de la réalisation des produits marchands.<br />

La Direction de Production et de Site de Khouribga s’est dotée également des compétences et des moyens<br />

nécessaires pour atteindre ces objectifs.<br />

44<br />

TAILING RE-BENEFICIATION TECHNOLOGY<br />

BN-O-07<br />

Yuxiang Tuo<br />

Deputy Manager of Wengfu Beneficiation Plant, Wengfu (Group) Co., Ltd.,<br />

Guiyang City, CHINA<br />

The utilisation of phosphate tailings is a common problem in the phosphate industry. The tailing re-beneficiation<br />

process of Wengfu utilises the phosphate beneficiation tailings as raw material coupled with Wengfu’s patented<br />

reagents (WF-01 & WF-02) for re-beneficiation. The produce phosphate concentrate has over 26% P 2 O 5 content<br />

and the P 2 O 5 content of final tailing is reduced from 6-8% to 4%; increasing the beneficiation recovery rate by over<br />

3%. The re-beneficiation process reduces the safety problems of the tailing pond and the environmental problems<br />

associated with solid waste discharge.


EXTRACTION OF LANTHANIDES FROM<br />

THE BRAZILIAN PHOSPHATE ORES<br />

BN-O-08<br />

F. Pereira1 , E. Bilal1 and M. Nasraoui2 1 Ecole Nationale Supérieure des Mines de Saint-Etienne, FRANCE, CNRS - UMR 6524<br />

2 Institut Polytechnique LaSalle Beauvais, FRANCE<br />

Corresponding authors:<br />

Institut Polytechnique LaSalle Beauvais,<br />

19 rue Pierre Waguet, BP 30313, 60026<br />

BEAUVAIS Cedex, FRANCE<br />

École Nationale Supérieure des Mines<br />

de Saint-Étienne<br />

158, cours Fauriel F-42023<br />

SAINT-ÉTIENNE cedex 2, FRANCE<br />

The phosphate ore of Angico dos Dias (Caracol, Brazil) is composed of quartz, fluorapatite and mixed aggregates of<br />

kaolinite, Al-phosphates of the crandallite-group (with Ba, Sr and Ca), iron oxides/hydroxides, potassic feldspaths,<br />

titanite and magnetite with or without associated ilmenite. The principal rare earth elements (REE) bearing-mineral<br />

is monazite (64%) and to a lesser extent apatite (up to 1%). The monazite is characterized by a fine granulometry<br />

and occurs as inclusions either in apatite grains or in the mixed aggregates. Monazite is always bright contrasting<br />

with the light-grey Fe or Fe/Ti minerals. Agglomerates of several minerals are presents in high quantities.<br />

Figure 1 –BSE image of mixed aggregates<br />

(kaolinite, crandallite and iron oxides/hydroxides);<br />

monazite and apatite inclusions.<br />

The mean chemical composition of P-ore of Angico dos Dias show a CaO/P 2 O 5 ratio of 1.17 with high SiO 2 (25.06%)<br />

and Al 2 O 3 (9.06%) contents and low radioactive elements contents (Th and U


Results<br />

REE elements recovery is excellent whatever the treatment undergone by the aqueous refinate. After treatment by<br />

ammonia only, the lanthanides recovery proves to be optimal (near the100%).<br />

But, the lanthanides concentrate obtained presents some phosphates impurities, mainly found in the residue<br />

obtained. The CaO content of this residue remains very low. After treatment by the ammonia and the oxalic acid, REE<br />

recovery is total whatever the ammonia volume added. The major limitation related to this treatment of aqueous<br />

refinate is the presence in the residue of high quantities of CaO (more than 90% of the CaO contents presents in<br />

the aqueous refinate, already very rich in this oxide). For cost reasons, it seems obvious to recover REE by one-stage<br />

Ammonia treatment. In this way we were able to recover as REE-phosphate nearly 80% of REE initially present in<br />

the phosphate ore.<br />

Figure 4 - CaO, P 2 O 5 and (REE)2O3 recovery in solid phase<br />

(calcined residue) according to the ammonia volume added –<br />

aqueous refinate treated by ammonia (ICP/AES analyses).<br />

Conclusions<br />

The mineralogical composition of the phosphate Angico dos Dias/Caracol ore is relatively simple and easy to<br />

treat. In addition to apatite and quartz grains, mixed grains of kaolinite, crandallite and iron oxides/hydroxides<br />

(with apatite and quartz inclusions) predominate. Fe minerals (magnetite/hematite with or without associated<br />

ilmenite), feldspaths, titanite and goethite were also detected.<br />

Phosphoric acid can be extracted from the hydrochloric leachate by the tributylphosphate. Three stages are<br />

theoretically necessary to recover all the phosphoric acid in the organic extract. The extraction experiments<br />

undertaken, in continuous as discontinuous way, led to the comparable results. Lanthanides and calcium chloride<br />

being mainly distributed in the aqueous refinate. The aqueous phase can also be treated by ammonia in order to<br />

recover the lanthanides (as phosphate concentrate), initially presents in phosphate ore.<br />

In the phosphate sector, even almost 100% REE recovery is a realistic target, the technology is available. It is<br />

dependent to a great extent on the various standards imposed by lawmakers and on the investment and operations<br />

costs involved.<br />

46<br />

Figures 2 & 3 - CaCl 2 and lanthanides recovery in refinate.<br />

Figure 5 - CaO, P 2 O 5 and (REE) 2 O 3 recovery in solid phase<br />

(calcined residue) according to the ammonia volume added<br />

– aqueous refinate treated by ammonia and oxalic acid (ICP/<br />

AES analyses).


V - SULFURIC ACID, ENERGY<br />

& WATER<br />

47


48<br />

Marie VOGNSEN<br />

HALDOR TOPSOE A/S, Lyngby/DENMARK<br />

CATALYST SOLUTIONS FOR LOWER SO2 EMISSIONS<br />

AND REDUCED PRESSURE DROP BUILD-UP<br />

SW-O-01<br />

In 1996 Topsoe introduced a new caesium-promoted vanadium catalyst, VK69, designed for operation in the pass(es)<br />

after the intermediate absorption tower in double absorption plants. The high activity of VK69 opens opportunities<br />

for a more than 50% reduction in SO 2 emissions from existing double-absorption plants or alternatively the acid<br />

production rate can be boosted by 15-20% without increasing SO 2 emissions. Today, 15 years later, Topsoe has close<br />

to 100 installations with VK69.<br />

However, still more stringent regulations are being placed on the sulphuric acid industry to lower SO 2 emissions.<br />

TopsÆe has responded to these challenges by developing a new sulphuric acid catalyst designated VK-701<br />

LEAP5 TM . This catalyst was introduced to the market in 2010. VK-701 LEAP5 TM is based on a novel technology which<br />

circumvents the internal transport deficiencies of existing commercial sulphuric acid catalysts and thereby offers<br />

exceptionally high activity at low temperatures in strong gases.<br />

SO 2 emissions from existing four-bed single-absorption sulphuric acid plants can typically be reduced by 30-40% by<br />

loading VK-701 in the final pass compared to a standard potassium-promoted catalyst. SO 2 emissions from the most<br />

efficient double-absorption plants already operating with VK69 can typically be further reduced by up to 40% when<br />

loading VK-701 in the third pass of a 3:1 plant. It is now possible to achieve in the order of 50 ppm SO 2 emissions in<br />

the stack depending on plant layout. For existing plants the reduced SO 2 emissions achievable with VK-701 provides<br />

an attractive alternative to investing in a caustic or hydrogen peroxide scrubber. Even for plants equipped with<br />

tail-gas scrubbing, the VK-701 can be a cost-efficient way of reducing consumption of chemicals for the scrubbing.<br />

The first part of this paper describes case stories disclosing some of the operating experience we have gained on<br />

VK69 and VK-701 LEAP5 TM .<br />

For many sulphuric acid plants the bottleneck for prolonged operating time between plants shutdowns is the<br />

screening requirement of Bed 1 due to increased pressure drop build-up caused by plugging by dust present in the<br />

feed gas.<br />

An improved protection against pressure drop build-up can be obtained by the use of a dust protection catalyst<br />

in the top of Bed 1. In 2007 TopsÆe introduced a new dust protection catalyst in the shape of a 25-mm Daisy.<br />

Installation of a 15cm top layer of this unique VK38 dust protection catalyst results in a doubling of the operating<br />

time between screenings compared to the 12 mm Daisy. Consequently, the number of time-consuming and<br />

expensive shutdowns for catalyst screening is reduced and at the same time significant savings in blower energy<br />

result from the lower pressure drop. Today, 4 years later, close to 80 installations with 25 mm Daisy dust protection<br />

catalyst are in operating around the world.<br />

The second part of this paper discloses actual operating experience obtained from one of our 25-mm daisy dust<br />

protection installations.


ENHANCED HEAT RECOVERY WITH HEROS® AND HIPROS®<br />

IN SULFURIC ACID PLANTS<br />

SW-O-02<br />

Michael Kemmerich,<br />

Outotec, Ludwig Erhard Strasse 21, 61440<br />

Oberursel, GERMANY<br />

Outotec’s technology portfolio includes the design, construction and initial operation of sulfuric acid plants<br />

worldwide with a focus on the most economic and efficient solutions for customers during the entire life cycle of<br />

a plant.<br />

Sulfuric acid plants based on burning sulfur produce large amounts of thermal energy in the various process steps<br />

involved. In modern production facilities, the reaction heat from the combustion of sulfur and oxidation from sulfur<br />

dioxide to sulfur trioxide is used to produce high-pressure steam. Often, the sulfuric acid plant is the primary single<br />

source of steam, serving various industries including those involved with pressure leaching, evaporators or turbo<br />

generators. The focus on maximum heat recovery is an essential prerequisite towards achieving low operational<br />

costs. For each joule recovered, the benefit is doubled by increasing the amount of useable energy and decreasing<br />

the overall cooling load.<br />

For these various applications, Outotec has developed solutions for waste heat recovery for both process gases,<br />

including those which produce high-pressure superheated steam, as well for sulfuric acid recirculation, such as lowpressure<br />

steam, hot water or other forms used to optimize overall plant performance and economy. Obviously, to<br />

develop the most suitable comprehensive solution for a customer, it is always necessary to take into consideration<br />

the local conditions and the existing infrastructure.<br />

This presentation will provide a summary of the various design options and solutions for increasing the efficiency<br />

of a sulfuric acid plant based on a customer’s specific needs. Both equipment enhancements and complete process<br />

technologies such as Outotec’s proprietary HIPROS* solution as well as our enhanced heat recovery system, HEROS*,<br />

will be outlined and discussed.<br />

SULFURIC ACID CATALYSTS – CHANCES AND LIMITS<br />

SW-O-03<br />

Dr. Michael Krämer, Dr. Frank Rosowski, Thomas Lautensack, Dr. Jürgen Zühlke<br />

BASF SE, GERMANY<br />

After a long period using mostly platinum based catalyst, BASF disclosed groundbreaking patents 1 claiming<br />

catalysts for the production of SO 3 containing vanadium pentoxide and alkali metal oxides on porous, silicacontaining<br />

supports in 1913 which are still today the standard catalysts for industrial production of sulphuric acid.<br />

For thermodynamic reasons, the oxidation of SO 2 to SO 3 needs be run at temperatures as low as possible to ensure<br />

high conversions of SO 2 .<br />

Global challenges drive sulphuric acid production. In parallel SO 2 emission are to be reduced – driven either by<br />

emission regulations or company policy. The combination of increasing production at reduced emissions challenges<br />

producers, engineering companies as well as catalyst suppliers.<br />

49


This contribution gives an overview about the chances improving the conversion efficiency of the catalytic SO 2<br />

oxidation, the requirements and the limitations of the oxidation process.<br />

BASF’s current developments in the field of low temperature sulphuric acid production catalysts is a new catalyst<br />

type, called O4-116. BASF upgrades its catalyst portfolio by this second Cs-promoted vanadium-based SO 2<br />

oxidation catalyst which is specially designed for last bed application. By adapting the chemical composition to a<br />

new silica support, catalytic reactivity could be drastically increased under SO 2 lean conditions and at temperatures<br />

below 400 _C compared to the standard O4-115.<br />

50<br />

Weiss Walter<br />

MECSGLOBAL<br />

BELGIQUE<br />

MECS has developed a significant improvement to its heat recovery system (HRS) technology called SteaMax HRS.<br />

SteaMax HRS improves the energy efficiency of a sulfuric acid plant by replacing conventional absorption dilution<br />

water with steam, which is injected in the ductwork ahead of the HRS tower. SteaMax HRS is a natural extension<br />

of MECS’s successful steam injection technology, which had previously limited the ratio of dilution steam to dilution<br />

water to minimize the risk of duct corrosion and the potential for mist formation.<br />

Kathleen Brown, Kyle Bade, and Rudolf J. Schick*<br />

Spray Analysis and Research Services<br />

Spraying System Company Wheaton<br />

IL 60187 USA<br />

STEAMAX HRS MECS INC.<br />

SW-O-04<br />

COMPUTATIONAL MODEL OF LARGE CAPACITY MOLTEN SULFUR<br />

COMBUSTION SPRAY EFFICACY AND PROCESS EFFICIENCY<br />

SW-O-05<br />

The use of precision spray injectors with advanced technology nozzles in the combustion of molten sulfur represents<br />

an active and growing field. The efficient combustion of large molten sulfur volumes is a clear requirement in<br />

the phosphate creation industry. Spraying Systems Company, along with our industry partners, have conducted<br />

significant research both the laboratory as well as in full scale industrial setting to arrive at optimized process<br />

solutions for this application. Additionally, Computational Models have been developed to allow for the assessment<br />

and optimization of the sulfur combustion efficacy. This paper presents the results of a detailed spray injection<br />

modeling study demonstrating the scale up of the spray solution as well as the 100% spray combustion requirement<br />

at these elevated sulfur flow capacities. Through the use of the models developed here, the sulfur combustion was<br />

improved beyond that which was possible using experimental results.


VI - PHOSACID & FERTILIZER<br />

51


52<br />

Marten WALTERS<br />

KEMWorks Technology, Inc.,<br />

Lakeland/USA<br />

Historically phosphoric acid has been made from phosphate rock by reaction with sulfuric acid (the Wet Process) or<br />

a high temperature electric furnace carbon reduction (the Electric Furnace Process). Economic concerns led to the<br />

closure of most Electric Furnaces and the Wet Process came to dominate.<br />

In 1960, Lapple demonstrated that a rotary kiln had the ability to replace the energy supplied by electricity in the<br />

Electric Furnace Process with energy generated by carbon. This concept was advanced by many researchers but all<br />

failed because of melting problems that Dr. Hard later overcame in 1981. The process employs a rotary kiln reactor<br />

and was proven in pilot plant testing.<br />

In 2003, Dr. Joseph A. Megy restarted R&D on the Hard Process, and made additional discoveries that led to the<br />

Improved Hard Process (IHP), and today design of a semi-commercial demonstration plant is in progress.<br />

The IHP is claimed to be able to process low-grade phosphates and to produce phosphoric acid at lower cost than by<br />

the Wet Process. This paper presents the results of a Third-Party review of technical aspects of the process, suitable<br />

phosphate reserves, and environmental issues.<br />

John Gobbitt<br />

Yara Belgium S.A. Brussels,<br />

BELGIUM<br />

A REVIEW OF THE IMPROVED HARD PROCESS<br />

PH-O-01<br />

YARA HEMIHYDRATE (HH) AND HEMIDIHYDRATE (HDH) PROCESSES<br />

FOR PHOSPHORIC ACID PRODUCTION<br />

PH-O-02<br />

Yara own, operate and license fertilizer plants and technologies throughout the world. Phosphoric acid production<br />

is an important part of the Yara licensing portfolio. Formerly known as Hydro Agri and prior to that, Fisons, we have<br />

successfully designed and commissioned several world scale hemihydrate and hemidihydrate process phosphoric<br />

acid plants over the course of the last forty years. The largest of these plants was the IPL (formerly WMC) HH process<br />

phosphoric acid plant in Queensland, Australia. This single line grass roots 1500 tpd P2O5 plant has now been<br />

successfully operating for over ten years.<br />

The HH and HDH processes are characterised by producing high strength phosphoric acid directly from the<br />

hemihydrate filters; either negating or significantly reducing the degree of acid concentration required for<br />

downstream processes. The HH process is therefore energy efficient, simple to operate and as most of the aluminium<br />

reports to the solid phase, the phosphoric acid is of high quality. The HDH process is a two stage process whereby<br />

the hemihydrate produced in the energy efficient first stage is transformed to dihydrate in the second stage and<br />

the liberated P2O5 losses present in the hemihydrate produced in the first stage are recovered, resulting in a very<br />

high P2O5 recovery efficiency.<br />

This paper focuses on the hemihydrate technologies developed by Yara (as Fisons Fertilizers) and looks forward to<br />

the next major hemihydrate complex at Ras As Zwar in the Kingdom of Saudi Arabia where Yara are providing the<br />

license for Ma’aden Phosphate Company (MPC) to operate three independent phosphoric acid trains, each with a<br />

capacity of 1460 tpd P2O5.


NEW DEVELOPMENTS IN DIHYDRATE-HEMIHYDRATE PROCESSES<br />

Tibaut THEYS<br />

Prayon Technologies, Process Manager<br />

PH-O-03<br />

Prayon has more than 30 years industrial experience in the double crystallisation, double filtration dihydratehemihydrate<br />

process (Central-Prayon Process, CPP). The industrial performances are a P2O5 yield higher than 98%<br />

and production of 32% -37% P2O5 acid. Furthermore, the hemihydrate produced is more ecological (purer and<br />

drier) than classical gypsum.<br />

Recently some variations of the Dihydrate-Hemihydrate have been developed.<br />

In the so-called Mixed process, part of the slurry from the dihydrate attack is converted into hemihydrate by<br />

addition of sulphuric acid and steam. The resulting hemihydrate slurry is filtered together with the dihydrate slurry.<br />

This partial conversion increases the P2O5 yield with respect to dihydrate process and the mixture hemihydrate/<br />

dihydrate discharged from the filter is drier than gypsum.<br />

Other developments of the Dihydrate-Hemihydrate process will be described.<br />

Based on pilot test results, yield improvements of about 2% can be expected with respect to dihydrate process.<br />

The above processes (CPP, Mixed, etc) will be described in some detail in this paper and compared to classical<br />

dihydrate and hemihydrate processes in terms of performances.<br />

Biography<br />

He graduated as a Biochemical Engineer at the University of Louvain in Belgium. He joined Prayon Technologies<br />

Company in 1995. After 6 month in production, he joined the licensing division. He participated during three years<br />

to the study, the pilot tests, the construction, the training of operators and the start-up of a purified acid plant in<br />

Morocco. In 1998, He joined the Fertilizer grade Phosphoric acid team to perform the same type of activities.<br />

In 2002 he was the Commercial Manager of Prayon Technologies; the technologies offered include Phosphoric acid<br />

and related technologies along with Profile, an other division of Prayon, for the fabrication equipment as filters,<br />

agitators droplets separators and so on.<br />

In 2004 he joined CYTEC as a Project Manager and Maintenance Specialist. He managed revamping projects of three<br />

production units and improved the reliability of these plants. In 2006 he joined De Smet Engineers and Contractors,<br />

an EPC company specialised in the supply of turn key plant, as Project Manager. He worked in the commercial team<br />

as a Business Development Manger. He developed the biomass business division.<br />

In 2010 he joined back Prayon as a Process Manager. He works on the technical and commercial development of<br />

new and existing phosphoric acid technologies.<br />

53


PH-O-04<br />

B. Messnaoui : Laboratoire d’Analyse et Conception des Procédés Industriels,<br />

ENSA- Safi, Université Cadi Ayyad Marrakech (MAROC)<br />

A. Bouhaouss : Laboratoire de CPG des Matériaux, Nanomatériaux et<br />

Environnement- Faculté des Sciences de Rabat.<br />

A. Derja : ENSA-Safi, Université Cadi Ayyad Marrakech (MAROC)<br />

A steady-state model for the industrial dehydrate phosphoric acid plant is developed. It is based upon material and<br />

balance equations and fundamental treatment of thermodynamics. The thermodynamic model includes the main<br />

species that are present in the aqueous phase of wet phosphoric acid process. For comparison, the electrolyte –<br />

NRTL model was used for describing the activity coefficients of the species in the aqueous solution. The model was<br />

validated by comparing its phosphate lattice loss prediction to data reported by Janikowski et al. [1] and Abutayeh<br />

and Campbell, [2] for Moroccan phosphate rock. A developed model was used to simulate the dehydrate process<br />

with the aim of quantifying the thermodynamically–controlled phosphate lattice loss. The obtained results by<br />

Electrolyte – NRTL model were in agreement with those obtained by Abutayeh and Campbell [2], that use the<br />

Edwards–Maurer–Newman–Prausnitz Pitzer model to describe the activity coefficient of the species present in the<br />

wet phosphoric acid process.<br />

Key words : Wet phosphoric acid, Dehydrate process, ionic activity coefficients, phosphate lattice loss, modelling.<br />

Reference :<br />

Janikowski, S. M.; Robinson N.; Sheldrick W. F. Insoluble Phosphate Losses in Phosphoric Acid Manufacture by the Wet<br />

Process. Proceedings of the Fertilizer Society, London, UK 1961, No. 81.<br />

Abutayeh M, Campbell SW « Predicting the Citrate Soluble Loss of the Dehydrate Process » Industrial & Engineering<br />

Chemistry Research, Vol.48, No.18, 8670-8677, 2009<br />

54<br />

A STEADY STATE MODEL FOR DESCRIBING THE PHOSPHATE LATTICE LOSS<br />

ETUDE DE LA CINÉTIQUE DE DÉCOMPOSITION DE LA ROCHE PHOSPHATÉE<br />

PAR L’ACIDE NITRIQUE<br />

PH-O-05<br />

Dr Khoudir M. ALLAL SERVITHEN<br />

(en collaboration avec l’Institut de Chimie Industrielle, Université d’Annaba<br />

ALGÉRIE) Neauphle le Château FRANCE<br />

Le développement des procédés industriels pour produire des engrais performants est de nos jours d’une grande<br />

importance, particulièrement dans le domaine de l’agroalimentaire. Un des moyens de produire des engrais<br />

phosphatés est l’attaque chimique des roches phosphatées par de l’acide nitrique. Dans ce présent travail, la<br />

cinétique chimique de la réaction a été étudiée à partir du phosphate minéral de la mine de Djebel Onk (Algérie) et<br />

des mesures du taux de conversion de P 2 O 5 ont été réalisées par gravimétrie. L’influence des différents paramètres<br />

opératoires tels le temps de réaction, la température, la concentration d’acide nitrique et la taille des particules a<br />

été étudiée. Les conditions expérimentales ont été optimisées et les données globales de la cinétique, comme la<br />

constante de conversion et l’énergie d’activation ont été déterminées.


La décomposition, au niveau des unités de fabrication d’engrais phosphatés, des roches d’apatite s’effectue selon<br />

la réaction suivante :<br />

Ca 5 (PO 4 ) 3 F + 5H 2 SO 4 → 5CaSO 4 + 3H 3 PO 4 + HF<br />

Ce procédé, malgré la volonté des industriels de réduire et de traiter les rejets industriels et de valoriser les produits<br />

secondaires, génère des sous produits qui sont déversés dans la nature. A titre d’exemple la production d’une tonne<br />

de P 2 O 5 provoque la formation de 5 tonnes de phosphogypse.<br />

La substitution de l’acide sulfurique par l’acide nitrique dans la décomposition des minerais permet non seulement<br />

d’éviter la formation de phosphogypse mais aussi de s’affranchir d’acide sulfurique et par là même des rejets de SOx.<br />

Ca 5 (PO 4 ) 3 F + 10HNO 3 → 5Ca(NO 3 ) 2 + 3H 3 PO 4 + HF<br />

Les avantages de cette voie sont les suivants :<br />

• Diminution voire suppression de la consommation de Soufre entraînant une réduction des rejets SOx dans<br />

les effluents gazeux<br />

• Production d’engrais directement utilisable car les fertilisants ne sont plus grossièrement mélangés mais<br />

intimement mélangés à l’échelle moléculaire<br />

• Valorisation du gaz naturel pour la fabrication de l’ammoniac nécessaire à la production de l’acide nitrique<br />

• Possibilité de récupérer l’énergie de la forme anhydre de H 3 PO 4<br />

A SMART SOLUTION FOR THE PHOSPHATE INDUSTRY HAZARDOUS BY-<br />

PRODUCT FLUOSILICIC ACID (FSA) –A PRE-CURSOR FOR HIGH VALUE GREEN<br />

ENERGY PRODUCT<br />

PH-O-06<br />

Vithal Revankar<br />

VIRASA Technologies, Inc, Houston, TX, USA<br />

Virasa is specialized in providing turn key technology solution. The paper will provide the solution to convert<br />

environmentally hazardous Flurosilicic acid (FSA) into high value silicon product for electronic/solar application. The<br />

FSA process is very straight forward, low cost raw material and economics are much favorable than the traditional<br />

competitive silicon production processes. The rate of return can be less than three years under existing market<br />

condition without a sword hanging over head. This is a win-win situation for phosphate industry.<br />

The by-product fluorinated compounds of the phosphate based fertilizer industry poses a disposal/handling issue,<br />

if they are to be treated in an environmentally responsible manner. The primary fluorinated by-product is fluosilicic<br />

acid (FSA) and is produced in large quantities. The world wide FSA produced by the phosphoric acid industry<br />

is in excess of million tons. Typically the fluorinated material is put into gyp stack ponds or pumped into large<br />

bodies of water sources along with the sulfates. Where required by regulations, the fluorine has to be neutralized<br />

55


at a considerable cost and the water recycled. Long term containment of this material also requires considerable<br />

resources, management, and potential environmental risks. In short, there is no overall “good home” for this<br />

material.<br />

The present primary outlets for FSA are fluoridation of drinking water, manufacturing Al-fluorides/Cryolite or<br />

flurosilicates. It only consumes a small fraction of the potential worldwide production volume. But these are low<br />

value added products and generate additional environmental issues. Our proposed technology has a very smart<br />

solution to convert the FSA into the value chain of “renewable green energy” and/ or of semiconductor industry<br />

without environmental discharge/liability issues associated with the phosphoric acid manufacturing plants. The<br />

technology “value adds” to the FSA stream and at the same time removes the environmental issues associated<br />

with it. It converts fluosilicic acid (FSA) to solar/electronic grade polysilicon without any detrimental environmental<br />

aspects.<br />

This high value technology process utilizes fluosilicic acid (FSA). The FSA when mixed with concentrated sulfuric<br />

acid breaks down in to STF, HF and water. The STF is scrubbed with sulfuric acid to remove any residual moisture,<br />

compressed and piped directly to the process for making polysilicon. The HF and water are absorbed by the<br />

concentrated sulfuric acid. This stream is recycled back to the phosphoric acid plant to be utilized in the phosphate<br />

rock reactors. The STF generated is further processed to produce high purity electronic grade silane and polysilicon.<br />

Parts of this process are practiced by many major polysilicon and silane manufacturers. The major steps for<br />

the process are, FSA to STF, STF to SILANE – SILANE purification – SILANE to POLYSILICON, for solar/electronic<br />

applications. Major aspects of the technology will be discussed along with its inherent advantages.<br />

56<br />

TAILOR MADE SCREENING TECHNOLOGY FOR DIFFERENT SCREENING TASKS<br />

IN THE PHOSPHATE PROCESSING INDUSTRY<br />

PH-O-07<br />

Oliver Pikhard<br />

Dipl.-Ing. Sigurd Schuetz, Dipl.-Ing. Dietmar Koch, Dipl.-Ing. ,<br />

RHEWUM GMbH, Remscheid/GERMANY<br />

The paper will present an overview of specific requirements of the phosphate industry on screening processes and<br />

technology and in which way they can be met by choosing the right screening technology. The investment costs for<br />

the classification of phosphate products are relatively small compared to the total investment costs. On the other<br />

hand the financial impact of the wrong screen type, mesh or anti-clogging device on the production can be high<br />

compared to the investment costs of a screen. Due to numerous developments in screening machines it becomes<br />

ever more important for the plant operator to decide in favour of the best available technique. The choice of the<br />

right screening technology is influenced by various parameters - some basic facts on screening will be presented as<br />

well as different types of screening machines to demonstrate the way to deciding for the best available technique.


Combination of inclined screen with direct agitation of screen cloth and linear<br />

motion screen type MDS<br />

COMPARISON OF PHOSPHORIC ACID PRODUCTION PROCESSES<br />

Donal S. Tunks<br />

Process Engineer, Jacobs Engineering S.A. (JESA)<br />

3-D-Model of a linear motion screening machine Type MDS,<br />

delivered to the fertilizer industry<br />

PH-O-08<br />

Over the years, many different Phosphoric Acid Processes have been developed, some of which have fallen out of<br />

use and others have not yet been fully developed. This paper will present the underlying economics behind several<br />

different routes to phosphoric production. The paper is based on generic processes for each of the routes rather<br />

than processes offered by specific licensors.<br />

The Phosphoric Acid Production Processes that will be analyzed are as follows:<br />

• Dihydrate Process<br />

• Hemihydrate Process<br />

• Hemi-Dihydrate Process<br />

• Di-Hemihydrate Process<br />

• Hemi-Dihydrate Recrystallization Process<br />

• Thermal Process<br />

• Furnace Process<br />

• Nitrophosphate Process<br />

• Hydrochloric Acid Route<br />

The total installed cost of a new facility, cost of raw materials, cost of waste disposal, utilities consumption, and<br />

57


phosphate recovery will be determined and the nine processes mentioned will be ranked by their economic<br />

efficiency.<br />

Also, various other factors will be taken into account to determine when one process will be preferred against<br />

another. These factors include:<br />

• Availability, characteristic, and price of raw materials<br />

• Cost of utilities<br />

• Transportation cost<br />

• Product quality<br />

58<br />

THE ULITILIZATION OF THE RAFFINATES FROM THE PHOSPHORIC ACIDS IN<br />

THE PRODUCTION OF “ECONOMICALLY VIABLE COMMERCIAL FERTILIZERS.”<br />

John Sinden<br />

JSA LTDA, Santos / BRAZIL<br />

PH-O-09<br />

SUMMARY<br />

In general terms the chemical quality of the phosphate rock concentrates are falling and this has a “knock on” effect<br />

on the chemical quality of the resulting phosphoric acid.<br />

The reductions in chemical quality are not uniform across the commercially available phosphate rock concentrates.<br />

Few if any of the sedimentary phosphates do not suffer from this phenomenon!<br />

When the author first started to work with the phosphate rocks, in the 1960’s, both OCP and “Phosrock” – representing<br />

the North American suppliers, mainly Central Florida were offering the option of the grades “75/77 BPL”<br />

- = 34.3 – 35.2% P 2 O 5 and as the “Standard grade 73/75 BPL = 33.4 – 34.3% P 2 O 5 !<br />

Today, IFA data for 2008 shows that the majority of the Central Florida production was in the range of 66/70 BPL -=<br />

30.2 – 32.0% P 2 O 5 and with a significant percentage below 30.2%! Even the OCP grades have declined, leaving out<br />

the Boucraa data, the majority of the production in 2008 was 70/72 BPL -= 32. 0 – 32.9% P 2 O 5 .<br />

This lower grade of phosphate rock results in a more contaminated – less pure phosphoric acid. At the same time<br />

the market is requesting purer phosphate products mainly for non fertilizer applications. To be able to produce<br />

these purer products there are various processes that concentrate the majority of the impurities into one fraction of<br />

the feed, which is called “Raffinate” while generating a mainstream of purified acid.<br />

There several different types of purified acids and consequently there are different types of raffinates. Such as<br />

produced from the “Super phosphoric acid – SPA” which is mainly composed of Magnesium Pyrophosphate. The<br />

raffinates from the Technical grade and Purified Phosphoric Acids contain high levels of metal ions which are normally<br />

in present in the form of non available phosphates.<br />

In today’s world of Sustainability of natural resources in general and phosphates specifically these raffinates need<br />

to be converted/returned to an available form as a commercially viable fertilizers.<br />

The ways that the raffinates can be and are processed depends what are the levels of impurities. This in turn is<br />

directly related to the ratio of “Purified product: Raffinate”<br />

The presentation will show examples of the viable and economic production of fertilizers from different type of<br />

raffinates.


By Eng. Luis María de Urquiola<br />

Technical Manager<br />

COMSPAIN<br />

COOLING FERTILIZERS AND PHOSPHATES :<br />

BY ROTARY DRUM OR FLUID BED ?<br />

PH-O-10<br />

OVER 30 years ago, fluidification – the use of the fluid bed – began to be adopted on a commercial scale by industry.<br />

A COMSPAIN Rotary Drum for fertilizer, capacity 700 T/h of NPK/DAP<br />

A fluid bed consists of two elements, one solid, in this instance fertilizer granules, and one gaseous (cooling air).<br />

“Fluidification” is achieved by pumping cooling air through the solid particles. This agitates the solid particles,<br />

producing a fluid bed in which the physical characteristics of the solid/gaseous mixture approximate those of a<br />

liquid. The exchange of heat between the solid and gaseous elements of the fluid bed thus formed is a mechanism<br />

employed in equipment which provides a competitive alternative to other product cooling options in fertilizer<br />

industry applications, such as rotary drums.<br />

From the point of view of thermal interchange, the fluid bed option has great advantages:<br />

(I) there is close contact between the cooling air and the solid particles (fertilizer granules);<br />

(II) the circulation granules are always separated from each other by the air, exposing all their free surfaces to<br />

the cooling effects of the fluid bed and speeding up the product cooling process;<br />

(III) the constant movement and rotation of the particles also ensures a more uniform cooling process;<br />

(IV) absence of shocks/falling during the cooling process and very reduced residence times within the cooling<br />

plant minimizes granule breakage;<br />

(V) as a consequence of (IV), fewer fines are created during the fluid bed cooling process, making the process<br />

of lines cleaning and dedusting prior to venting of exhaust air easier, reducing dust levels in the vented air.<br />

The cooling of granular fertilizers after the completion of the granulation, drying and classification process is<br />

essential. By reducing the temperature of the product to close to ambient, condensation and other problems<br />

affecting product quality e.g. product degradation (breakage of the granules) and caking/compacting of bagged<br />

product, can be eliminated.<br />

COMSPAIN has over 22 years of experience in addressing such problems throughout the world by supplying<br />

equipment for new or revamped plants. The fertilizer equipment produced by COMSPAIN includes rotary drums and<br />

fluid beds; in addition, the company can provide advice to potential clients on their product cooling problems. In<br />

the last two years alone, COMSPAIN has been involved in 23 fertilizer-related projects (in Colombia, Korea, Japan,<br />

China, Spain, Tunisia, South Africa, France, Ireland, Germany, etc.); the projects have included the installation of a<br />

turn-key granulation plant (in South Africa) and replacing a rotary drum with a fluid bed cooler (in China).<br />

Using this wealth of experience, here COMPSPAIN’s Technical Manager Eng. Luis María de Urquiola discusses the<br />

relative merits of the rotary drum and the fluid bed as cooling mechanisms for granular fertilizers.<br />

59


The residence time of product in a cooler drum has historically been in the range 15 to 20 minutes; this compares<br />

with just 4 to 6 minutes in a fluid bed cooler.<br />

The fluid bed, at its simplest, can operate as a single stage cooler; however, double stage in parallel, double stage in<br />

series or triple stage fluid bed coolers are also in operation in fertilizer industry applications.<br />

An air conditioning unit (incorporating an<br />

open circuit of ammonia) from COMSPAIN.<br />

This unit is suitable for use with a Fluid Bed<br />

or Rotary Drum fertilizer drying facility.<br />

60<br />

A COMSPAIN Static Fluid Bed for fertilizers,<br />

capacity 70 T/h of NPK/DAP.<br />

The more usual system used in the two stage (in series) option<br />

which has the following advantages:<br />

(I) air flow is reduced by 50%;<br />

(II) an air conditioning unit (if used) only needs to be located in the<br />

last cooling zone, where its use is most practical and effective.<br />

For comparison purposes, let us consider a theoretical example. For<br />

cooling 70 tonnes of NPK and DAP from 90o C to 40o C with ambient<br />

air at 25o C, it would be necessary to install either:<br />

(a) one fluid bed cooler of 25 m2 with two blowing fans and one<br />

exhaust fan (total absorbed power 290 kW);<br />

(b) one rotary drum of 3 metres diameter and 21 metres in length,<br />

with and electrical drive motor and an exhaust fan (total absorbed<br />

power 130 kW).<br />

The cost of such a cooling installation using a fluid bed would be<br />

around 40% below that of the rotary drum alternative.


David M. Ivell<br />

Jacobs Engineering S.A. JESA/Maroc<br />

USE OF BAGHOUSES IN A DAP PLANT<br />

PH-O-11<br />

Baghouses have not commonly been used in DAP plants. However it is possible to employ them as an alternative to<br />

cyclones and wet scrubbers in certain circumstances. This paper examines the most appropriate airstreams within<br />

the plant for the application of baghouses and discusses the pros and cons for their use in each case including an<br />

economic assessment for a specific example.<br />

The paper also discusses the necessary design features for the successful use of baghouses<br />

INTEGRATION OF THE PIPE REACTOR TECHNOLOGY IN EXISTING<br />

GRANULATION PLANT TO IMPROVE THE CAPACITY, THE ENERGY<br />

CONSUMPTION, THE QUALITY OF THE PRODUCT AND THE EASINESS TO<br />

CONDUCT THE OPERATION<br />

Mr. Svet Valkov<br />

Senior Process Engineer : Snc-Lavalin<br />

KÉBIR RATNANI<br />

Eng. MSC.A.,CIGC Directeur Général<br />

SNC-LAVALIN INTERNATIONAL MAROC<br />

PH-O-12<br />

Innovations to the existing production of DAP are related to capacity increase, energy, saving and easiness of<br />

operation. New pipe reactor, less recycle ratio, additional cooling and coating system and new performant effluents<br />

treatment system allow to achieve high quality product. SNC performed the study from conceptual stage up to EPC/<br />

EPCM contract realisation. The philosophy that has been respected for the increase of the capacity remains in the<br />

fact to keep the same recycle back to the granulator but with lower recycle ratio.<br />

This paper describes the different steps during the design, commissioning and start up problems till successful hand<br />

over of the plant.<br />

61


62<br />

IMPROVING PHOSPHORUS USE EFFICIENCY WITH POLYMER TECHNOLOGY<br />

Dr. L.S. Murphy, Murphy Agro, Manhattan, KS USA<br />

Dr. Anne Noble, Demeter Technology, Isleham, Cambs. UK<br />

Dr. R. E. Holloway, SARDI, Mintaro, SA, AUSTRALIA<br />

Dr. R J. Melgar, INTA Pergamino, BA, ARGENTINA<br />

Mr. James Perkins, Specialty Fertilizer Products, Leawood, KS USA<br />

PH-O-13<br />

The soil microenvironment surrounding a P fertilizer granule or within a fluid P fertilizer band is subject to a series<br />

of primary and secondary solution reactions which substantially impact P availability to plants. Influencing or<br />

slowing these reactions is a means of improving applied P use efficiency, improving yields and profitability with<br />

positive implications for environmental concerns. It is well recognized that even under the best conditions, only 5<br />

to 25% of fertilizer P is taken up by the crop during the first growing season. Thus, the historical problem with the<br />

soil chemistry of P fertilizers has been the lack of availability due to soil fixation reactions. The patented Avail ®<br />

polymer technology positively affects P use efficiency by reducing soil solution reactions which fix P thus extending<br />

availability of applied fertilizer P and ultimately providing economical and profitable benefits for growers,<br />

manufacturers and distributors. The functionality of the polymer is predicated on the polymer’s high effective<br />

charge density. Extensive studies with Avail® have been conducted since 1999 with investigations in the United<br />

States, Canada, United Kingdom, Australia, Argentina and many other countries. A wide number of species and soil<br />

conditions have been involved in these investigations with both solid and fluid P sources. Results of many of these<br />

investigations are reported in this paper. Examples of polymer effects on applied fertilizer P efficiency are included.<br />

AVAIL POLYMER AND P APPLICATION<br />

METHOD EFFECTS ON WHEAT<br />

USA<br />

__________________________________<br />

Yield<br />

Treatment tonne/ha<br />

_____________________________________________________________<br />

Control 3.14<br />

MAP banded 3.68<br />

MAP + polymer, banded 5.17<br />

MAP broadcast 3.91<br />

MAP + polymer, broadcast 4.41<br />

MAP + seed, broadcast 3.70<br />

Map + polymer + seed, broadcast 4.59<br />

LSD (0.10) 0.46<br />

_____________________________________________________________<br />

14 kg P/ha. Soil P test low. Soil pH=7.6. Palmer, University of Arkansas<br />

MAIZE RESPONSE TO ENHANCED<br />

P AVAILABILITY ON ACID SOIL<br />

USA<br />

Grain Yield<br />

Treatment t/ha<br />

______________________________________________________________<br />

Control, no P 8.47<br />

MAP broadcast 8.28<br />

MAP + polymer broadcast 9.47<br />

MAP banded 8.28<br />

MAP + polymer banded 9.85<br />

LSD (0.05) 1.00<br />

______________________________________________________________<br />

22 kg P 2O 5/ha Soil test Bray P-1: 7 ppm pH: 5.9<br />

Blevins, Univ. of Missouri


RECENT IMPROVEMENT OF THE GRANULATOR PIPE REACTOR FOR THE<br />

PRODUCTION OF GRANULAR AMMONIUM PHOSPHATES<br />

Donal S. Tunks<br />

Jacobs Engineering S.A., Casablanca, MOROCCO<br />

PH-O-14<br />

A Granulator Pipe Reactor can be used in the production of MAP/DAP to increase the production capacity while<br />

substantially reducing the overall fuel consumption. This is accomplished through the mixing of ammonia and<br />

phosphoric acid within the Granulator Pipe Reactor. From the high heat of reaction of this mixing, water is<br />

evaporated prior to the drying step and this causes the significant drop in fuel consumption.<br />

A recent development by Jacobs Engineering involves an elaborate continuous control scheme that maintains the<br />

desired product quality while minimizing fuel consumption by utilizing on-line and at-line measurements.<br />

Adding a Granulator Pipe Reactor to an existing facility is a relatively simple modification which and can pay itself<br />

off in as little as 4 months.<br />

fertilizers.<br />

HOW TO INCREASE THE OVERALL OUTPUT OF PHOSPHORIC ACID<br />

EVAPORATION LOOPS WHILE REDUCING THEIR TOTAL COSOWNERSHIP<br />

Loic BERNARD<br />

SGL Group Saint Martin d’Hères/FRANCE<br />

PH-O-15<br />

The phosphoric acid commercial concentration has been set at 54%. The different wet phosphoric acid processes<br />

used around the world produce green acids with concentrations between 28 and 44% P2O5.thus meaning that<br />

depending on the production process, the acid coming out from the reactor tanks must be concentrated in 1 to 3<br />

evaporation stages. Each evaporation stage consists in an axial pump, a heat exchanger, a flash tank, a scrubber,<br />

and condenser and a vacuum pump. Since industrial green phosphoric acid is extremely corrosive, rubber lined flash<br />

tank and piping, a graphite heat exchanger and an axial pump in nickel-alloy are usually used.<br />

In order to sustain a high productivity of the evaporation loop, the appropriateness between the axial pump<br />

characteristics (curve) and the heat exchanger characteristics (tube diameter, length, cross section) is one of the<br />

key to success. A high velocity in the heat exchanger means a better overall heat transfer coefficient and therefore<br />

a larger output. It might also result in a lower fouling and therefore longer evaporation cycles between cleaning<br />

cycles. However, throughout the complete evaporation cycle, the progressive fouling of the heat exchanger will<br />

result in lower performances, higher pressure drops and therefore lower velocities thus leading to the further<br />

reduction of the performances. The proper selection, design and sizing of the axial pump (construction design and<br />

materials, characteristic curve) and of the graphite heat exchanger (graphite quality, cross section, tube length,<br />

steam bustle, carbon fiber reinforced tubes, expansion system) associated with smooth operations (especially<br />

during start-ups and shut-downs) guaranty a higher productivity, a better reliability, a longer equipment life time<br />

and therefore overall a much higher output and a lower total cost of ownership.<br />

63


PH-O-16<br />

Todd Hutchinson<br />

Director of Research & Development, Philadelphia Mixing Solutions, Ltd.,<br />

1221 East Main Street, Palmyra, PA 17078, USA<br />

Mixer designs for Phosphoric Acid reactor applications are often specified to a fine level of detail in technical<br />

specification documents. The specifications are written with some requirements being stipulated along the<br />

guidelines of design norms such as AGMA for gearbox service factors and ABMA standards for bearing life. Other<br />

specifications are dictated per licensor requirements. Among the items that could be licensor defined are agitator<br />

shaft as well as impeller designs.<br />

The demanding nature of the processes in Phosphoric Acid reactors, irrespective of design technology (Prayon,<br />

Dorrco, Yara etc.), further lead to engineers and plant owners demanding that the mixers be designed with<br />

sufficient mechanical integrity to operate under “Phosphoric Acid Service” conditions.<br />

Philadelphia Mixing Solutions, Ltd. embarked on our work to find an optimal design solution for mixer duty in<br />

Phosphoric Acid reactors by first understanding what precisely “Phosphoric Acid Service” duty meant in terms of<br />

process behavioral impact and then how that influenced mechanical design considerations for the mixers employed<br />

in this duty.<br />

This paper is written based on case study evaluations performed at a Phosphoric Acid plant in the Western<br />

Hemisphere. The root causes behind the mixer failures were identified after studying the typical symptoms of<br />

problematic mixer performance. Design solutions were implemented resulting in measurable overall process<br />

improvements (less scaling / solids buildup). The changes made further allowed for longer continual operation<br />

between vessel cleanings and reduced erosion wear on the impeller blades.<br />

64<br />

OPTIMIZING AGITATOR DESIGN FOR PHOSPHORIC ACID REACTOR DUTY<br />

Jean Noël FERNANDEZ<br />

Mersen, Brignais FRANCE<br />

MERSEN MIXERS : AN INNOVATIVE DESIGN COMBINING PROCESS<br />

OPTIMISATION AND ENERGY EFFICIENCY<br />

PH-O-17<br />

Mersen is a leading multinational industrial group. With its extensive expertise in high-grade materials and<br />

electrical installation reliability and security, Mersen designs innovative solutions tailored to customer requirements<br />

to improve their industrial performance in sectors such as energy, transport, electronics, chemical/pharmaceuticals<br />

and process industries.<br />

Its Process Equipment Division is internationally recognised for its expertise in the design and manufacture of<br />

equipment made from high-grade materials for use in corrosive and hot environments.<br />

For over 50 years, Mersen has been designing and manufacturing mixers for water, chemical and hydrometallurgy<br />

processing.<br />

With its solution-oriented approach, it has developed a range of mixers specially designed for the<br />

phosphoric acid and fertiliser market.<br />

Our 30 years of experience in this field have enabled our research and development teams to create a range of<br />

mixers that improve process performance and energy efficiency. Their innovation essentially focuses on the<br />

hydraulic and mechanic design and their development is based on calculations and simulations generated<br />

by our in-house software.<br />

The know-how of our engineering department and our expertise in noble materials make Mersen a key player in<br />

the design and manufacture of mixers for use in extreme environments. Its industrial plants in Morocco (2,500m²),<br />

France (8,000m²) and China (150,000m²) confirm our international position as the leading supplier of process<br />

equipment for the phosphoric acid and fertiliser market.


MERSEN HEAT EXCHANGERS: INNOVATIONS THAT GUARANTEE RELIABILITY,<br />

LIFESPAN AND ENERGY EFFICIENCY<br />

Laurent Trably<br />

Mersen, Pagny-sur-Moselle FRANCE<br />

PH-O-18<br />

Mersen is a leading multinational industrial group. With its extensive expertise in high-grade materials and<br />

electrical installation reliability and security, Mersen designs innovative solutions tailored to customer requirements<br />

to improve their industrial performance in sectors such as energy, transport, electronics, chemical/pharmaceuticals<br />

and process industries.<br />

Its Process Equipment Division is internationally recognised for its expertise in the design and manufacture of<br />

equipment made from high-grade materials for use in corrosive and hot environments.<br />

Mersen has been designing and manufacturing heat exchangers for over 50 years. With its innovation-oriented<br />

approach, Mersen capitalises on its expertise in heat exchange, its mastery of graphite and its wide range of<br />

heat exchanger designs to develop solutions to meet the difficult constraints of phosphoric acid.<br />

Graphite heat exchangers are very large devices. Their tubes are 6-metres long with no joints to guarantee<br />

better process continuity. Isostatic graphite, a basic component of a heat exchanger, is impregnated with<br />

resin to make it more corrosion resistant. To improve equipment lifespan and reliability, amorphous carbon<br />

sleeves are used to strengthen the exchanger’s tubes and tubular plates.<br />

Mersen affirms its position as a heat exchanger expert with the development of an exchanger with free-flow<br />

welded plates; it re-concentrates sulphuric acid used during the mineral attack. The innovation lies in the plate<br />

design with variable spacing. The design of the plates and the HXC exchanger also make it more energy efficient.<br />

The Mersen industrial plants in Morocco (2,500m²), France (8,000m²) and China (150,000m²) confirm its<br />

international position as the leading supplier of process equipment for the phosphoric acid and fertiliser<br />

market.<br />

PURIFICATION OF WET PROCESS PHOSPHORIC ACID VIA<br />

MEMBRANE TECHNOLOGY<br />

PH-O-19<br />

By Howard Skidmore<br />

Process Engineering Manager, Engineering Manufacturing &<br />

Technology Division, JR Simplot Company, Pocatello, Idaho, USA<br />

Phosphate ore contains a variety of impurities that report to the wet process phosphoric acid.<br />

For the production of most fertilizer products, these impurities are not of considerable concern. But for use in high<br />

purity applications, the impurity content is a significant issue.<br />

A method to purify wet process phosphoric acid has been developed by the JR Simplot Company by means of<br />

membrane technology. Using this method, a significant portion of the residual ore impurities are removed from<br />

the purified phosphoric acid product. The purification process occurs through a variety of steps. These steps include<br />

acid pretreatment, two stage membrane purification, acid post treatment, and concentration to product grade.<br />

The pre and post treatment steps depend on final Purified Phosphoric Acid (PPA) product quality requirements. The<br />

treatment steps for this paper relate to those currently in operation at the JR Simplot Company, Pocatello, Idaho,<br />

USA facility.<br />

65


Wet process phosphoric acid is fed to a pretreatment step where the sulfate content (SO 4 ) is reduced and solids<br />

are removed. Sulfate reduction is performed via chemical precipitation to generate a final PPA product content<br />

of


PURIFIED PHOSPHORIC ACID (PPA) TECHNOLOGY AND ELECT-GRADE<br />

PHOSPHORIC ACID (EPA) TECHNOLOGY<br />

(INTRODUCTION OF THE WET PROCESS TECHNOLOGY)<br />

CONDUCT THE OPERATIONPH-O-20<br />

Honglin Li<br />

Manager of Wengfu PPA Plant Wengfu Group Co., Ltd.,<br />

Guiyang City, CHINA<br />

As the basic material of phosphate products, Industrial and Food Grade Phosphoric Acid are usually produced from<br />

yellow phosphorus. Considering the high energy consumption, high cost of production and serious pollution; there<br />

is the need to substitute production of phosphoric acid from yellow phosphorus with the purification technology<br />

of wet process phosphoric acid in the future. However, the impurities contained in the wet process phosphoric acid<br />

make it not feasible for direct use in the production of phosphate products. Hence the need for the proper purifying<br />

method to get rid of these impurities is essential and beneficial. After a considerable period of deep research,<br />

a brand new liquid extraction technology has been developed by Wengfu (Group) Co., Ltd. This technology has<br />

the advantages of high extraction performance, concise equipment, low investment, and easy controllability. In<br />

addition, a new technology of producing Electronic Grade Phosphoric Acid by crystallization has been developed<br />

and put into production. The technology uses the purified industrial and food grade phosphoric acid produced from<br />

Wengfu’s wet process as raw materials and reduces the impurity content further.<br />

THE HISTORY, OPERATION AND MAINTENANCE OF THE J. R. SIMPLOT<br />

COMPANY PHOSPHATE ORE SLURRY PIPELINE SYSTEMS<br />

PH-O-21<br />

James A. Samuelson,<br />

Director of Engineering,<br />

J.R. Simplot Company AgriBusiness Group<br />

The J.R. Simplot Company operates two separate Phosphate Ore Slurry Pipeline Systems. The first transports<br />

1.8MM tons/year of P2O5 from the Smoky Canyon mine 87 miles to the Don Plant processing facility near Pocatello,<br />

Idaho. The second pipeline system transports Phosphate Ore Slurry 93 miles from the Vernal, Utah Mine to the<br />

processing facility near Rock Springs, Wyoming. This pipeline currently transports about 1.5MM tons/year of<br />

P2O5 but is designed to carry 2.8MM tons/year of P2O5. Positive displacement pumps are used in both pipeline<br />

systems to provide the necessary head to overcome friction loss and move the Phosphate Ore Slurry over mountain<br />

ranges encountered between the mine and the processing facilities. The paper will provide a brief overview of the<br />

design parameters for both pipeline systems as well as a history of significant events related to the operation and<br />

maintenance of these pipelines from their installation in the mid 1980’s to present day.<br />

67


68<br />

Louis Paul Irwin,<br />

ArrMaz Custom Chemicals,<br />

Mulberry/USA<br />

POLYMERIC FILTRATION AID: “TWO DECADES OF LAB AND PLANT<br />

OBSERVATIONS – THE REST OF THE WORLD”<br />

PH-O-22<br />

Many Phosphoric Acid plants use a Polymeric Filtration Aid for increased production and recovery. This paper<br />

presents laboratory filtration data, generated over 20 years, comparing conditions at various plants around the<br />

world. Results for the latest AMCC Filter Aid technology for Brazil and Morocco will be introduced.<br />

Bio:<br />

Louis Irwin has worked in the Phosphate<br />

Industry for 32 years. He started his career<br />

in a chemical and mineral processing lab at<br />

AZ Products, (in Lakeland Florida) in 1979,<br />

and finished his Chemistry BA degree from<br />

Florida Southern College in 1980. He became<br />

the Flotation Amine Chemist and worked on<br />

Flotation Reagents for 12 years. AZ/Sherex<br />

sold the mining group to ARR-MAZ Products<br />

in 1991. Louis has since been the Polymer<br />

Product Manager for 20 years, specializing<br />

in Phosphoric Acid Filtration and Clarification<br />

Aids, and Phosphate mine water treatment.<br />

He is the author of several papers for the<br />

Phosphate Industry. He currently works for<br />

ARR-MAZ Custom Chemicals in Mulberry,<br />

Florida (USA).<br />

M. Azaroual1* , C. Kervevan1 , A. Lassin1 , L. André1 , M. Amalhay2 , L. Khamar2 ,<br />

M. El Guendouzi3 , C. Christov4 THERMOCHEMICAL MODELLING OF ALUMINIUM BEHAVIOUR IN THE<br />

CONTEXT OF WET-PROCESS PHOSPHORIC ACID PRODUCTION (25 < T < 100°C)<br />

PH-O-23<br />

1 BRGM – Water Division - 3, av. C. Guillemin, B.P. 36009, 45060 Orléans Cedex 02<br />

FRANCE<br />

2 Maroc Phosphore – Direction de la Recherche & Développement, BP 118<br />

EL Jadida – MAROC<br />

3 Laboratoire de chimie physique URAC17, Université Hassan II<br />

Mohammédia- Casablanca, Faculté des Sciences Ben M’Sik, Casablanca-MAROC<br />

4 GeoEcoConsulting 2010, San Marcos, CA 92078, USA<br />

The wet-process phosphoric acid (WPPA) production is based on acidic chemical attack of phosphate rock. One<br />

of the main issues encountered in this process is related to the uncontrolled formation of mineral deposits at<br />

sensitive steps. In the generated complex aqueous systems, the dissolved species and the resulting physicochemical<br />

interactions are closely dependant on the variability of the operating conditions of the process (40-95°C; H 3 PO 4


and H 2 SO 4 concentrations up to 20 mol/kg H2O, typically) but also on the phosphate rock quality, in particular on<br />

the aluminium (Al) content of the rock. Indeed, aluminium can interact with dissolved species and play a role on<br />

the cristallinity (cristallisation) of mineral phases. A collaborative project (CA2PHOS) between Maroc Phosphore<br />

and BRGM aims at developing a computation tool dedicated to predicting and quantifying mineral deposits in the<br />

context of WPPA production.<br />

As part of an integrated work, the present study focuses on the description of highly saline chemical sub-systems<br />

containing aluminium. The methodology involves both the characterisation of the deposited Al-bearing minerals<br />

and the development of specific interaction parameters in the framework of the Pitzer formalism. The objective is<br />

to forecast the role of aluminium on the efficiency of the wet-process phosphoric acid production at the industrial<br />

scale.<br />

Keywords: Aqueous solution, binary and ternary systems, aluminium, phosphoric acid, mineral<br />

ÉLIMINATION DU MAGNÉSIUM DE L’ACIDE PHOSPHORIQUE PAR<br />

PRÉCIPITATION OPTIMISATION PAR LES PLANS D’EXPÉRIENCES<br />

PH-O-24<br />

MAZOUZ Hamid,<br />

Direction Recherches & Développement OCP, MAROC<br />

La fabrication d’acide phosphorique par la voie humide est réalisée par la mise en contact de la roche phosphatée<br />

avec l’acide sulfurique. Lors de cette opération, la majorité des impuretés contenues dans la roche se dissolvent dans<br />

l’acide phosphorique produit.<br />

La présence du magnésium dans l’acide phosphorique affecte sa qualité et la marche des unités de fabrication,<br />

d’où l’importance de son élimination. Dans le présent travail nous avons étudié l’élimination du magnésium dans<br />

l’acide phosphorique par précipitation sous forme de l’un des composés MgAlF 5 ou MgAl 2 F 8 . La précipitation du<br />

magnésium est réalisée par l’ajout simultané d’aluminium et du fluor. Nous avons appliqué la méthodologie des<br />

plans d’expériences pour la réalisation de ce travail, les essais ont été menés selon les plans d’expérimentations<br />

édités par le logiciel NEMRODW.<br />

L’étude de criblage des paramètres influents sur le rendement d’élimination du magnésium de l’acide phosphorique<br />

a montré que parmi les paramètres suivants : Température, rapports (F/Mg et Al/Mg), forme d’aluminium et forme<br />

de fluor, seuls la température et le rapport F/Mg ont une influence effective sur l’élimination du magnésium.<br />

L’optimisation de l’élimination du magnésium de l’acide phosphorique a été réalisée selon la méthodologie<br />

des surfaces de réponse en utilisant les matrices composites. Nous avons déterminé, par l’application de cette<br />

méthodologie, les paramètres de l’optimum correspondant à un rendement maximal d’élimination du magnésium<br />

dans l’acide phosphorique. Les valeurs des paramètres de l’optimum obtenues, par cette méthode, sont : T°=80°C,<br />

rapport Al/Mg=1 et F/Mg= 16.<br />

Mots clefs : Acide phosphorique, impuretés, magnésium, optimisation, Plans d’expériences ;<br />

69


70<br />

FLUOROSILICIC ACID RECOVERY FROM PHOSPHORIC ACID PRODUCTION<br />

Donal S. Tunks,<br />

Jacobs Engineering S.A.,<br />

Casablanca, MOROCCO<br />

Because of environmental or economic factors, Fluorosilicic Acid (FSA) can be produced as a by-product of<br />

Phosphoric Acid manufacture. FSA is present in wet process phosphoric acid, which is volatized when heated under<br />

a reduced atmosphere as per the following reaction:<br />

H2SiF6(l) → SiF4(g) + 2HF(g)<br />

Some areas in the Phosphoric Acid Plant where FSA is volatized include the Reactor Flash Cooler and the Phosphoric<br />

Acid Evaporator. This volatized FSA can be recovered with a small circulating spray in concentrations ranging from<br />

13-26.5% H2SiF6 which can be sent for neutralization, sale, or for use as a raw material in the manufacture of value<br />

added products.<br />

This paper/presentation focuses on the scientific basis for FSA manufacture, various design approaches taken in the<br />

past for such units, and options for FSA post-processing for the manufacture of value added products. From this<br />

paper/presentation one would be given the tools to determine if FSA recovery is a viable option for their facility.<br />

Iltifat Hussain,<br />

Pakarab Fertilizers Limited,<br />

Multan/PAKISTAN<br />

PH-O-25<br />

OPERATIONAL EXPERIENCE OF NITRO PHOSPHATE PLANT<br />

PH-O-26<br />

Pakarab Fertilizers Ltd. Multan, Pakistan came in existence in 1978 and this is the only company in Pakistan<br />

producing Nitro Phosphate and Calcium Ammonium Nitrate till 2010. Plant is also producing Urea Fertilizer but in<br />

small quantity. Total production volume is 0.8 Million Ton / Annum.<br />

The company has special focus on environment that is the reason that CDM projects implemented on Nitric Acid<br />

plant and Co. generation plant.<br />

With reference to NP plant, Pakarab made a number of improvements in the original design of M/s Stamicarbon.<br />

This project could not get through the guarantee tests even after the crystallization and refrigeration unit were<br />

reinforced with additional equipments.<br />

Rock Phosphate is the main raw material for NP production. Plant was designed on Jordan rock and later we have<br />

tested rocks from Morocco, Egypt and Algeria. We have optimized the rock blending for smooth operation of plant.<br />

Inert removing system was not smooth and frequent break down was common feature. PFL team changed the unit<br />

with gravity settling tank battery and increased the on stream days.<br />

The other bottle neck was CN separation centrifuges. Failure of this equipment kept the plant operation on low rate<br />

hence these were replaced with Filter drums a slow moving unit. This helped to improved production quality and<br />

service period.<br />

Release of Ammonia from Neutralizers vent was environmental hazard. Installation of agitator improved the<br />

situation.


To improve environment, NOx abatement Urea solution is added to Dissolving reactor.<br />

Two new reactors added to system to control reaction rate and anti foaming consumption was reduced drastically<br />

and it also helps in increasing production capacity of plant.<br />

Additional exhaust blowers added in system to keep environment workable and help in reducing fumes with in<br />

NEQS limits.<br />

Another NP plant of 1200 MeT/day is in commissioning phase and is expected to be started in June, <strong>2011</strong>. We have<br />

also suggested modifications based on current operational experience of NP plant.<br />

71


VII - ENVIRONMENT &<br />

SUSTAINABLE DEVELOPMENT<br />

73


74<br />

PHOSPHOGYPSUM DISPOSAL---PROS AND CONS OF WET VS. DRY STACKING<br />

Dr. Nadim F. Fuleihan,<br />

Sc.D., P.E, Ardaman & Associates, Inc., A Tetra Tech Company,<br />

Orlando, Florida, USA<br />

EN-O-01<br />

There are a number of factors that an operator should consider before pursuing wet or dry stacking of the<br />

phosphogypsum by-product from a phosphoric acid plant. In addition to process considerations, important factors<br />

include the climatologic regime, water balance considerations, hydrogeology, topography, capital cost, operating<br />

cost (and maintenance), closure costs (and handling of pore water), availability (or scarcity) of a fresh water source,<br />

distance from the plant to the disposal site (and viability of dry versus wet transport methods), P2O5 recovery,<br />

impacts on the environment (from leakage, dusting, accidental spills, etc.) and applicable regulations.<br />

A review of dry/wet transport methods and dry/wet disposal methods is presented using illustrative examples<br />

from various countries worldwide, with particular emphasis on the advantages and disadvantages of wet and dry<br />

stacking in the various environments.<br />

The author wishes to acknowledge the invaluable contributions of his former colleague and mentor, the late Dr.<br />

Anwar E. Z. Wissa, who contributed since the early seventies to improving our understanding of this important<br />

topic.<br />

SYSTEM RESEARCHES OF PHOSPHATE INDUSTRY WASTE UTILIZATION<br />

EN-O-02<br />

Bessarabov Arkadiy,<br />

The State Scientific-Research Institute of Chemical Reagents and High Purity<br />

Chemical Substances (IREA) , Moscow/RUSSIA<br />

Kvasyuk Aleksey,<br />

The State Scientific-Research Institute of Chemical Reagents and High Purity<br />

Chemicaf Substances (IREA), Moscow/RUSSIA<br />

Koltsova Eleonora,<br />

Mendeleev University of Chemicaf Technology of Russie (MUCTR),<br />

Moscow/RUSSIA<br />

Phosphates industry is one of the most important branches of chemical complex for many countries. According to the EC<br />

ECOPHOS project NQ INCO-CT-2005-013359 there were works dealing with analysis of phosphate production in Russia, Ukraine,<br />

Kazakhstan and Greece. It was shown that, that phosphate industry waste is in the center of environment problem at plantsproducers<br />

[1 ]. According to the grant of EC project we carried out the development of innovative strategy for phosphates<br />

industry enterprises waste utilization. Analysis was carried out for 2 leading enterprises of Kazakhstan - “Shymkentphcsphor”<br />

(Chimkent), “Kazphosphat” (Dzhambul) and for ail of 15 enterprises of phosphates industry of Russia [2]. Total capacily of<br />

Russian enterprises was - 2,3 million tons of phosphoric fertllizers in 2009. Il is shown that the main volume of production (more<br />

than 80%) is focused at the nex! 4 enterprises: “Arnrnophos” (Cherepovets), “Balakovskie minerai fertilizers”, “Voskresenskie<br />

minerai fertilizers”, “Phosphorite” (Kingisepp).<br />

At the next stage system analysis of main indicators of innovative development of phosphates industry leading enterprises was<br />

carried out. For solution of this task innovative work of enterprises was parsed for 1995-2008, and level of innovative activity<br />

was determined [3].<br />

The main results of innovative activity for 2000-2009 were represented as 4-point scale: 3 - the highest degree of indicator


infiuence, 2 - average, 1 - less essential, 0 - no influence. Il is shown, that întroducing of innovations made the mast significant<br />

influence on the output qualily improvement and assortment expansion (rating is 2.7 points and more). Compliance with<br />

standards and improvement of the labour conditions infiuenced the development of phosphates enterprises in a lesser degree<br />

(from 1.2 to 2.3 points). However, influence of innovations on reduction of environmental pollution was estimated by the<br />

companies’ CEOs as inessential (from 0.4 to 1.0 point). This neglect of the environmental problems resulted in large volumes of<br />

accumulated waste of the phosphates industry.<br />

But the problems of processing of phosphates industry wastes are complicated by the requirement that final products of<br />

utilization should be in demand at the market. This research considers key parameters of the market: volumes, priees, forecasts as<br />

weil as detailed aspects of applied technologies of existing waste processing. The main components of activity and development<br />

were analyzed for the markets in Russia, Kazakhstan, etc. [2, 4].<br />

We developed the methodology of the system analysis for phosphates industry waste utilization. Structure scheme inciudes<br />

the following three top level categories: “Analysis of the raw materials and processing market”; “Analysis of waste processing<br />

technologies”; “Analysis of markets for utilization waste products’ [4].<br />

ln the first category, “Analysis of the raw materials and processing market”, for each of the countrtes considered (Russia,<br />

Kazakhstan, Ukraine and Greece) the following four main subcategories were included to our information system [3]: producers<br />

of substances containing phosphorus; total waste accumulated within a particular country; existing govemment support<br />

for compan ies manufacturing pho sphorus -conta ining products ; cooperation with other countries.<br />

For the category “Analysis of waste processing technologies” the data on technologies applied for phosphoric sludge,<br />

phosphogypsum and phosphoric slag processing are included. Subcategory “Phosphoric sludge processing” contains four<br />

types of utilization: burial, combustion, secondary processing and outsourcing (inciudes a Iist of service companies in the<br />

area of utilization). For each technology of utilization the information contains: characteristics of technology; advantages and<br />

disadvantages; cost and environmental aspects.<br />

Information about the products of utilization is brought to the third category of research «Analysis of markets for utilization<br />

waste products». Waste utilization products (phosphoric sludge, phosphogypsum and phosphoric slag) along with possible<br />

applications of utilization products were included into il. For example, when recycling the phosphoric sludge, the following<br />

products can be obtained: sodium hypophosphite, used as a component for an anticorrosive and decorative coating which<br />

makes it a target commodity product highly demanded in the market; sodium phosphite, reducer in inorganic synthesis and<br />

the reagent for synthesis of the dibasic lead phosphate in galvanic processes; the initial reagent for phosphorous acid obtaining;<br />

dibasic lead phosphate - an excellent thermostabilizer, performing at high temperatures; phosphorous acid, the dibasic acid of<br />

medium strength applied as the reducer in chemical reactions [5].<br />

For obtaining of these products we developed the fiexible three-product technology for utilization of phosphoric sludge [6].<br />

There were included 4 flexible units of switching, which allow switching technological flow (depending on order or demand for<br />

the final product) for production of either sodium phosphite or hypophosphite, or dibasic lead phosphite. This technology gives<br />

opportunities for reducing of production time and size of production facilities because of combining for many technological<br />

units.<br />

References<br />

1.Bessarabov A., Bulatov 1., Kvasyuk A , Kochetygov A Utilization of waste for large<br />

capacity productions of phosphorus-containing products based on the system analysis methods 1/ Clean<br />

Technologies and Environmental Policy. 2010. Vol. 12, Issue 6. P. 601- 61 1.<br />

2.Bessarabov A., Klemes J., Zhekeyev M., Kvasyuk A., Kochetygov A. Computer analysis of waste utilization at<br />

the leading enterprises of phosphoric industry of Russia and Kazakhstan 1/Chemical Engineering Transactions.<br />

2010. Vol. 21. P. 805-810<br />

3. Bessarabov A M., Kvasyuk A V ., Kochetygov A L System Analysis of Innovation Activities by Leading<br />

Companies of the Chemical Industry (1995 to 2007) 1/ Theoretical Foundations of Chemical Engineering. 2009.<br />

Vol. 43, No. 4. P. 444-452.<br />

4.Bessarabov A., Zakolodina T., Alyakin A, Zaikov G. The system analysis of marketing researches of phosphoric<br />

industry waste utilization based on CALS concept 1/ Chemistry & Chemical Technology. 2009. Vol. 3, No. 3. P.<br />

241-246.<br />

5.Bessarabov A , Puigjaner L., Koltsova E., Ogorodnikova T. The system analysis of multiassortmental<br />

manufacturings of phosphorus-containing products based on CALS- technologies 1/ 6th European Congress of<br />

Chemical Engineering, ECCE-6, 16-21 September 2007, Copenhagen, Denmark. Volume 1, pp. 445-446.<br />

6. Bessarabov AM. , Kvasyuk A V., Zaikov G E Synthesis of flexible manufacturings for phosphoric industry waste<br />

utilization based on the CALS-concept Il Journai of the Balkan Tribological Association. 2009. Vol. 15, No 4. P.<br />

599-610.<br />

75


DUST SUPPRESSION OF PHOSPHATE ROCK:<br />

STORAGE, CONVEYANCE AND SHIPPING<br />

EN-O-03<br />

Joseph Chan, Jeffrey Cooke, Ph.D., Tibor Horvath, M.Sc. and Sarah Aziz,<br />

B.Sc., IPAC Chemicals, Vancouver, BC<br />

During the processing of phosphate ores one is continually faced with the potential of dust generation. Without<br />

proper treatment and precautions, dust generation can cause health (air quality) issues, pollution/contamination<br />

issues, loss of product, and fire and explosion hazards.<br />

A series of dust control additives were evaluated for their efficacy on phosphate ores using the following criteria:<br />

76<br />

1) Conveyance and transloading/shipping simulation: Dust generated using a free-fall/impact conveyance<br />

transfer simulator was quantified, before and after treatment with test dust control additives.<br />

2) Storage simulation: The effect of wind on ore storage piles was modeled using a wind tunnel test apparatus.<br />

Candidate dust suppressants were evaluated according to their ability to prevent loss of product from a pile<br />

under various wind conditions.<br />

3) Wetting ability: Dust suppressants must provide rapid, thorough wetting and penetration of the substrate.<br />

Rates of wetting for candidate products were determined.<br />

4) Persistence: To optimize economic considerations, dust control performance should be maintained as long<br />

as possible. Dust control additives were evaluated for their retention of efficacy.<br />

This paper will discuss not only the results of the above testing, but also provide insight on how to use these<br />

laboratory results to provide efficient, effective dust control in real-world applications.<br />

JORF LASFAR SEA WATER MAIN PUMPING STATION EXPERIMENTAL STUDY<br />

Robert LABORDE<br />

Director CERG<br />

Rue Lavoisier - 38800 Pont de Claix / FRANCE<br />

EN-O-04<br />

This paper deals with pumping station experimental modeling and especially on the OCP Jorf Lasfar main sea water<br />

pumping station example. The station takes sea water from the Atlantic ocean by the mean of an inlet channel<br />

located at the water sea level and delivers a high flow of filtered water to the industrial users located on a shelf<br />

about 60 meters above. At the beginning of this study, the total capacity of this station was about 156 000 m3/h<br />

by the mean of twelve pumps and four downstream ducts (2 500 mm diameter and near 2 km long). The pumping<br />

station is built in such a way that it is possible to set up 6 more pumps with two additive downstream pipes.<br />

Since the industrial users needs in water capacity are increasing the pumping station has to be modified. In<br />

reference with CERG experience in this hydraulics investigation field, OCP has asked CERG for a study that would<br />

define how to increase the pumping station capacity by increasing the available pumps and running pipes numbers<br />

as well as modifying the pumps, filters and various devices characteristics. For this study, both calculations and<br />

experimental ways have been used.<br />

The study concerns the total course followed by the water from the intake channel at the ocean until the


downstream weir at the end of the pipes it includes the channel equipments (seawall channel, tidal barrier,<br />

decantation basin, etc), the pumping station itself (stoplogs, bar screens, travelling filters, pumping chambers) as<br />

well as the downstream circuit (collectors, valves, chimneys, weirs , etc).<br />

Head losses are calculated allowing to define, in any running conditions concerning sea water levels, channel<br />

clogging, actual pumped flow and filter losses, the water level at the pumping station entry and the conditions at<br />

pumps outlet, allowing to define their running points. These calculations allow defining the best set of pumps that<br />

will match with the new capacity objective.<br />

On the other hand, an experimental study has been performed in order to define to what extent the pumping<br />

station capacity could be increased with the following acceptable hydraulic conditions: no vortices, no swirls at<br />

pump inlet, no entrained air in the pumps. For that purpose, a reduced scale pumping station model (at scale 1/10)<br />

has been constructed and an experimental analysis of a large set of hydraulic conditions has been performed by the<br />

mean of pressure and velocity measurements and of visualizations by photos or videos.<br />

The paper presents both the numerical and physical works that have been performed during the study. The<br />

experimental approach is more particularly developed based on the description of the methodology used in<br />

such reduced scale physical model tests that are generally applied to pumping stations of large power, nuclear<br />

or chemical plants : similarity laws, choice of scale, hydraulic criteria, required instrumentation. This approach is<br />

presently the only reliable method ensuring that a pumping project would run as previously designed and in safe<br />

conditions.<br />

A picture of the reduced scale model is shown here after<br />

A picture of the reduced scale model is shown here after<br />

The Jorf Lasfar sea water main pumping station experimental model<br />

in CERG laboratory<br />

Views of the Jorf Lasfar pumping station<br />

77


UTILISATION OF PHOSPHOGYPSUM FOR THE PRODUCTION<br />

OF BUILDING MATERIALS<br />

EN-O-05<br />

Yongbo Zhou<br />

Chief Engineer of Wengfu Phosphate Industry Development Co.,<br />

Wengfu (Group) Co., Ltd., Guiyang City, CHINA<br />

After several years of research and operation, Wengfu (Group) Co., Ltd. has come up with a technology for controlling<br />

and processing the impurities contained in phosphogypsum and has gone into cooperation with building material<br />

companies in China to produce safe phosphogypsum based building materials. The developed products which have<br />

been put into production includes gypsum blocks, gypsum board with paper surface, gypsum binder, gypsum paint,<br />

cement retardant, land plaster, and etc.<br />

78<br />

Dr Houcyne El Idrysy,<br />

SRK Consulting (UK) Ltd, UK<br />

WATER - THE OTHER RESOURCE A MINE NEEDS TO ESTIMATE<br />

EN-O-06<br />

The presentation focuses on the water management aspects of mining projects, from the mine exploration phase,<br />

through mine development, to closure and rehabilitation. Based on SRK’s water management experience in many<br />

mine projects across the globe, we believe that water resources and their management are often not considered<br />

early enough in the development of such projects. This often results in risks that could be mitigated easily at the start<br />

of the project becoming issues, particularly during the mine’s operational phase. The presentation summarises the<br />

critical water aspects that can present significant risk to the development of a mine and highlights the advantages<br />

of considering these water management aspects early in the project. It also presents SRK’s approach to assessing<br />

mine water resources more accurately and how to prepare an effective water management plan to mitigate the<br />

risks that can otherwise adversely affect the mine’s operational development, safety and productivity.


Pascale Compain<br />

Bertin Technologies/FRANCE<br />

SOLAR ENERGY FOR WATER DESALINISATION<br />

EN-O-07<br />

It is now commonly acknowledged that countries with poor resource in freshwater also have a great solar irradiation<br />

available. Therefore, innovative idea is to use solar energy to provide fresh water.<br />

Application of solar energy for desalinisation has been developed in the last decade.<br />

A review of the different solar technologies for water desalinisation (Solar membrane Distillation, Multi Effect<br />

distillation, …) will be presented and a case study will be developed with both economic and technological data.<br />

Among all available technologies, the chosen one needs to be technically simple, to operate with a high level of<br />

reliability in hard environmental conditions (dust, salty atmosphere,…) and low maintenance costs.<br />

Il est admis que les pays manquant de ressources en eau, ont une ressource solaire importante. L’idée a donc fait son<br />

chemin d’utiliser la ressource solaire pour traiter les eaux saumâtres et salines.<br />

Différentes technologies ont donc été développées dans les dernières décennies.<br />

Nous présenterons ici les dernières évolutions de ces technologies et étudierons un cas d’application sur le plan<br />

technique et économique, en prenant en compte la simplicité de la technologie, la fiabilité et la maintenance qui se<br />

doit d’être la plus simple et la plus économique possible.<br />

SOLUTIONS ADAPTED TO NEEDS IN SEAWATER DESALINATION:<br />

LARGES EXPERIENCES AROUND THE WORLD<br />

Miguel Angel SANZ,<br />

Degrémont, Director of Development and Innovation;<br />

Ibarrekolanda, 19- 48015Bilbao- SPAIN<br />

EN-O-08<br />

Seawater Desalination is becoming today one the most common practices to get sweet water in arid and coastal<br />

countries.<br />

Today over 17,000 plants are built in the World, having a cumulate production of 60,000,000 m3/day; more than<br />

60% are fed by seawater. Thermal Desalination is becoming only restricted to some Middle East, and oil producers,<br />

countries. In the majority of cases the solution chosen is Reverse Osmosis.<br />

Reverse Osmosis Membranes are the perfect filter, only few molecules of dissolved salts pass through the 0.2<br />

micrometers of polyamide barrier, so it is necessary to prepare the seawater to be introduced into the modules to<br />

avoid the membrane clogging. That’s the role of the Pretreatment: to remove, as much as possible, those things can<br />

damage or clog the surface of the membranes (suspended solids, algae, colloids, particles, organic matter, etc). The<br />

R.O. Pretreatment is the key point to assure a membrane long life and high plant availability.<br />

The selection of pretreatment depends of raw water quality and pollutants, so it is very important where and how<br />

the water is taken. The seawater Intake is also another key point in a reverse osmosis plant; it can determine the<br />

pretreatment type.<br />

The R.O. Membrane selection and design (passes and stages) is related with the raw water and demanded quality<br />

in final use of water: human consumption, industry or irrigation. Post-treatment is also related with this final use<br />

and it must be selected carefully to ensure the quality.<br />

Due to the high pressure used to pass the water trough the membranes the Energy Recovery system is critical to<br />

determine the water tariff because the energy is usually two thirds of the operational cost.<br />

79


To these five important concepts to take into account in the design of a Seawater Reverse Osmosis Plant it is<br />

necessary considering and solving all of Environment aspects.<br />

All of them determine the final investment as well as the water operational cost and feasibility of Desalination<br />

Plant; the quality of all of them will give their availability.<br />

Every problem and every plant have a different solution to be implemented to solve these problems at the optimum<br />

cost.<br />

Four Different Desalination cases, builds in the last 5 years, are presented as examples of diverse solutions to solve<br />

different requirements, in 4 continents and from 4 different seas:<br />

1- Coloso R.O. Plant in Antofagasta, Chile, where a desalination plant produces 45,000 m3/day of water to be<br />

used in the second largest copper mine in the world (Minera Escondida Ltda.). The desalination plant is located<br />

in the coast and the produced water is sent at 180 km away at 3000 m height. The water to be treated is one of<br />

the most difficult to treat: water of the Pacific Ocean<br />

2- Al Dur, Power and Desalination plant, in Bahrain. It is the second desalination plant linked to a Power plant<br />

who produces desalted water 100% only by Reverse Osmosis. The Gulf area is well known by the bad quality,<br />

high salinity and temperature. Production is 218,000 m3/day<br />

3- Barcelona-Llobregat Desalination Plant, in Spain, is the largest SWRO in Europe to produce potable water;<br />

200,000 m3/day from the Mediterranean Sea. It is used like a reservoir, for drought periods and designed to<br />

work in the worse conditions with a strong pretreatment. An special solution is taken for the brine discharge<br />

and it has a large photovoltaic park.<br />

4- Perth Desalination Plant, in Western Australia, was the first large plant in this country and the largest in<br />

the Southern hemisphere. It produces 143,700 m3/day of fresh water coming from the South Indian Ocean.<br />

This plant is one the friendliest with the Environment, being the first R.O plant to be fed by energy produced<br />

by a Wind Farm. The brine discharge is followed carefully to avoid any damage to the Bay where is disposed.<br />

All these examples show how different can be a desalination plant to another, having always a solution for every<br />

problem or requirement.<br />

1- Coloso Plant in Chile (Minera Escondida Ltda.)<br />

3- Barcelona Desalination Plant in Spain 4 - Perth Desalination Plant, in Western Australia.<br />

80<br />

2- Al Dur, Power and desalination Plant, in Bahrein


WATER MANAGEMENT IN PHOSPHORIC ACID PLANTS<br />

Paul S. Waters,<br />

P.E., Manager of Process & Technology, Jacobs Engineering S.A. (JESA)<br />

EN-O-09<br />

Water management in a phosphoric acid plant focuses on the large quantity of cooling water required in the process.<br />

JESA has developed a water management system using circulated contact cooling water through barometric<br />

condensers and a non-contact fresh water cooling tower with heat exchangers to cool the circulating contact<br />

cooling water. This system avoids using once through seawater in contact condensers and eliminates fluoride<br />

emissions associated with contact cooling water towers, allowing compliance with both MIGA and EPA regulations.<br />

This paper examines the technical choices involved in designing this environmentally advanced cooling water<br />

management system.<br />

Olivier RIETJENS,<br />

VEOLIA Environnement et Dalkia International/MAROC<br />

MINE WATER AND ENERGY ISSUES<br />

EN-O-10<br />

Water and energy are essential components of every mining project in the world<br />

Through a worldwide network of business units, Veolia Environnement is present in all major mining countries<br />

(Morocco, Canada, Australia, South Africa, USA, Chile, Poland, Czech republic, Argentina...) and, thanks to the strong<br />

links between our business units, Veolia is able to resolve all water and energy issues that industrial customers must<br />

cope with.<br />

Problems Facing Mining Customers<br />

As the market for mining is cyclical and volatile, the industry needs to optimize the management of its resources.<br />

This is why, to ensure an efficient operation of facilities and not to disturb the manufacturing process, manufacturers<br />

aim to maintain a quantity and/or quality of water and energy resources while at the same time controlling<br />

the environmental impact of their activities. Indeed, regardless of the country, the environmental regulatory<br />

requirements will become more and more stringent.<br />

Our understanding of the unique requirements of mine operations and associated processes enables Veolia to<br />

provide specialised water and specific energy solutions based on water and energy conservation and<br />

environmental efficiency.<br />

Veolia offers tailor-made and cost-effective water and energy management solutions. Focusing on technical<br />

performance, compliance with process and environmental requirements and long term cost effectiveness, the aim<br />

is to fit reliability, safety and quality standards of the mining industry.<br />

Without water the mining process is not possible<br />

So the purpose is to provide and develop customized solutions in order to:<br />

• Improve productivity by treating available water for specific production process requirements, to optimise<br />

81


82<br />

mineral production efficiency<br />

• Manage environmental risks by treating contaminated pond and underground mine water to remove<br />

heavy metals, arsenic and other contaminants for safe discharge into sensitive environment (for instance,<br />

treating Acid Mine Drainage for the mining of ores containing sulphate minerals)<br />

• Treat contaminated water for reuse to optimise water balance<br />

• Add value to the bottom line by treating sludge streams, to recover suspended & dissolved constituents<br />

• Secure high quality drinking water, even on remote mining sites<br />

• Have a robust and reliable equipment requiring no unplanned maintenance<br />

Energy efficiency and development of energy clean technologies are main issues for the mining and<br />

chemical industries<br />

We develop tailor made solutions focused on:<br />

• Energy efficiency solutions based on performance services contracts and energy savings commitments<br />

• Improvement of reliability of energy production<br />

• High efficiency energy solutions, as cogeneration or trigeneration systems<br />

• Recovery of energy coming from industrial process (even low value heat can be used)<br />

• Renewable energies solutions as biomass CHP plants, solar energy systems, which combines energy and<br />

A. Henrard, T. Wisniewski, K. Lavigne,<br />

EFC NV, Lummen/BELGIQUE<br />

Serge Vigneron,<br />

LESNI A/S, Billund/DANEMARK<br />

INNOVATIONS DANS L’ÉLIMINATION DES VÉSICULES<br />

ET PANACHES DE FUMÉES<br />

EN-O-11<br />

L’élimination et la réduction des intensités des panaches hors des cheminées sont une problématique de la<br />

pollution atmosphérique. En effet, la vue d’un panache de fumées est souvent associée à la présence de composés<br />

toxiques pour l’homme et pour son environnement. Cette association est partiellement vraie : un panache peut<br />

être constitué de simples vésicules de vapeur d’eau mais en milieu industriel, des polluants y sont la plupart du<br />

temps associés.<br />

Lorsqu’il s’agit de procédés de production d’acides – sulfurique et phosphorique – les dévésiculeurs sont nécessaires<br />

au sein même du procédé, en particulier les étages de séchage d’absorption finale après le convertisseur.<br />

Le dévésiculeur absolu est la bougie en fibres de verre de type ATEPHOS qui permet de capter les gouttelettes<br />

microniques ; ce média est cependant onéreux à l’investissement et en coûts opératoires. On présente ici le produit<br />

du développement avec la société CECO de solutions intermédiaires qui répondent au besoin de la plupart des<br />

applications en traitement de fumées issues du traitement des phosphates. Ce sont les dévésiculeurs à lits de fibre<br />

progressifs (Graded Bed Fibres) et les doubles couches (Twin Pack).


Suppression of plumes at the exhaust of stacks is a specific problematic of the air pollution. Indeed the view of<br />

a plume is most of the time associated to the presence of toxics compounds as well as for humans than for the<br />

environment. This association is partially true: a plume could be constituted by simple water droplets as well as by<br />

droplets of pollutants, mainly in the industrial activities.<br />

Mist eliminators are also useful when applied in industrial process: the production of acids (sulphuric or phosphoric)<br />

are the best examples. In the sulphuric acid process, mist eliminators are operated at the drying stage as well as at<br />

the final absorption tower.<br />

Absolute mist eliminator is using browning effects in order to remove micronic droplets and is typically the ATEPHOS<br />

glass fibres candles. EFC and CECO are trying together to push intermediate solutions hoping to reduce investment<br />

and operating costs. That are the Graded Bed Fibre and the Twin Pack concepts and products.<br />

CONTENU<br />

a) le double couche<br />

Il s’agit ici d’une version améliorée de la bougie à fibres de verre de type ATEPHOS.<br />

Le concept est quasiment celui d’une une bougie à l’intérieur d’une autre bougie ; il s’agit d’optimiser le<br />

volume disponible des bougies classiques en emboîtant une seconde dans la première. Ainsi la surface<br />

filtrante est augmentée de 60 % par élément ! Pour les nouvelles installations, ceci permet de réduire<br />

d’autant les dimensions et donc de réduire nettement les investissements, principalement lorsqu’il s’agit<br />

d’unités prévues en matériaux à haute valeur ajoutée. Dans le cas d’une augmentation de capacité, le<br />

débit traité peut également être facilement adapté à une dimension existante.<br />

b) le deux couches<br />

Fig. 1 - Dévésiculeur à<br />

double étage<br />

(Twin Pack®)<br />

Fig. 2 – Principe d’un lit<br />

gradué (Graded Bed)<br />

CECO et EFC ont développé un filtre avec une graduation progressive de ses couches qui consiste en un media filtrant<br />

possédant plusieurs étages de différentes qualités. CECO utilise entre de 2 à 3 types de media par lit de fitration. La<br />

première couche est ici un media qui va permettre d’uniformiser le flux à travers le filtre et permettre de retenir la<br />

majorité des particules solides présentes. Ensuite un média tissé de plus haute densité peut être appliqué.<br />

83


84<br />

Felix Ripollés,<br />

IPROMA (SPAIN)<br />

INTRODUCTION<br />

INDUSTRIAL WASTEWATER CONTROL EXPERIENCE IN EUROPE AND SPAIN<br />

In this presentation about Industrial wastewater control, we want to share the IPROMA´s water control experience<br />

held in the last 20 years, working for industry and for national, regional and local administration.<br />

IPROMA is one of the water control company leaders in Spain, with more than 200 technicians working in 6<br />

laboratories and 2 offices spreads throughout Spain (Castellon, Madrid, Barcelona, Seville, Zaragoza, Pontevedra,<br />

Valencia and Malaga). Nowadays IPROMA has one of the largest scope of accreditation according with ISO 17025 for<br />

environmental analysis and ISO 17020 for water inspection.<br />

INDUSTRIAL WASTEWATER CONTROL<br />

The industrial wastewater control could be run by the industry itself, to meet the legal requirements contained in<br />

its environmental authorization, or by the environmental Administration, to control the discharge of wastewater to<br />

the receiving environment (river, sea, sewerage system, etc.).<br />

Depending on the wastewater discharging point, there could be different competent authorities and different<br />

discharging limits for similar activities. As example, the competent authorities in Spain, depending of the receiving<br />

environment are:<br />

- Continental waters: Authority of the River Basin District<br />

- Sea Waters: Regional Environmental Authority<br />

- Collecting systems: Local or Regional Water Administration<br />

About the discharges to collecting systems, the discharge limits are usually higher than in continental or sea waters<br />

discharges, because there must be a wastewater treatment plant, which can assume part of the pollution in its<br />

treatment. However the urban water treatment plants works with biological processes, sensible to some pollutants<br />

(metals, cyanides, phenols, pesticides, etc.) which, depending on the concentration in the wastewater, can affect to<br />

the treatment process. This is taken in account in the limits of the discharge authorization.<br />

The analytical control in the wastewater discharges are usually general parameters of pollution control (pH,<br />

Conductivity, Suspended Solids, BOD5, COD, Nitrogen, Phosphorous, Chloride, Detergent, etc.) and specific<br />

parameters related with the activity of the inspected company (Sulphates, Metals, VOCs, Hydrocarbons, etc.).<br />

OTHER INDUSTRIAL WATER CONTROLS IN THE INDUSTRY<br />

EN-O-12<br />

It is not only necessary to control and analyse the wastewaters for discharge authorization control, but there are<br />

also others controls to manage in relation with industrial water systems.<br />

One of these wastewater controls is related with the European Pollutant Release and Transfer Register (E-PRTR),<br />

which is an European register in which each industry or facility must provide, every year, the amounts of pollutant<br />

releases to air, water and land as well as off-site transfers of waste and of pollutants in waste water, from a list of 91


key pollutants including heavy metals, pesticides, PAHs, VOCs and other inorganic and organic pollutants.<br />

In some countries or regions there is a sanitation fee, in which is described that the amount payable is based on the<br />

pollutant characterization on each company, so that the more polluter pays the higher sanitation fees.<br />

Other Industrial Water Controls are done for monitoring the water supply (potable water, industrial waters,<br />

refrigeration waters, etc.) or to control Legionella in risk installations, such as cooling towers, showers, etc.<br />

INSPECTION AND ANALYSIS ACTIVITIES<br />

To manage wastewater control works in Spain it is mandatory to have the Title of “Collaborating Entity of Water<br />

Administration” issued by the Ministry of Environment that assumes that the company holds the ISO 17020<br />

accreditation for inspection activities and ISO 17025 accreditation for laboratory assays activities.<br />

The sampling and inspection activities are so important as assays activities, because with an inspection improperly<br />

done, the analysis results of the wastewater control are not valid. The same happens with an analysis run out<br />

without quality control or inappropriate technology to analyze samples.<br />

To design a water inspection program it is important to know the discharge authorization data or details or the<br />

legislation applied (parameters, limits, sampling type, frequency, etc.), the sampling point and the company<br />

characteristics (activity, timetable, wastewater treatment, etc.).<br />

NEW POLLUTANTS<br />

In addition of the traditional wastewater monitoring, which involves physical-chemical and microbiological<br />

parameters, in Europe new Regulations and Directives are appearing with environmental quality standards for<br />

priority substances and other pollutants with the aim of achieving good surface water chemical status (Directive<br />

2008/105/CE) or for the European Pollutant Release and Transfer Register (E-PRTR) (Regulation Nº 166/2006).<br />

These Regulations and Directives include substances like Tributyltin, Chloro-alkanes C10-C13, Octylphenols and<br />

Octylphenols, Di-(2-ethyl hexyl) phthalate (DEHP), Brominated diphenylethers, Metals, Pesticides, VOCs, PAHs, etc.<br />

These analyses require high specialized laboratories in water control.<br />

LES DÉFIS DE L’INNOVATION EN MATIÈRE DE GESTION ET<br />

DE VALORISATION DES REJETS FINS DES LAVERIES DE PHOSPHATE EN ZONES<br />

ARIDES ET SEMI-ARIDES<br />

EN-O-13<br />

Abdellah CHIK et Khalid ZAHOUILY,<br />

Photon&Polymers, Mulhouse/FRANCE<br />

L’Afrique du nord et le moyen Orient renferment près de 86% des réserves en minerais de phosphates du globe,<br />

estimées à environs 65 milliards de tonnes, dont 76,9 % sont concentrées au Maroc [1]. La majorité de ces gisements<br />

sédimentaires est située dans des zones semi-arides ou arides où la problématique de la rareté de l’eau se pose<br />

de façon accrue. L’exploitation optimale de ces ressources minières, nécessaire aux développements économique<br />

et social de ces pays, rend indispensable la valorisation de niveaux phosphatés de plus en plus pauvres, à fortes<br />

teneurs en argiles et en impuretés carbonatées et/ou siliceuses. Ces derniers nécessitent donc un enrichissement<br />

85


pour relever leur teneur en P2O5 et produire des concentrés de phosphate pouvant alimenter des procédés de<br />

fabrication d’acide phosphorique et d’engrais tout en répondant aux contraintes de plus en plus strictes du marché.<br />

Ce sont les procédés de lavage et flottation qui sont les plus viables, techniquement et économiquement, pour<br />

l’enrichissement de ces minerais [2], [3]. Ils tendent donc à se généraliser augmentant la pression sur les ressources<br />

en eau qu’elles soient de surface ou provenant de nappes souterraines [4]. Ces procédés génèrent d’importantes<br />

quantités de rejets fins sous forme de boues renfermant la grande partie des stériles (argiles, carbonates et silice)<br />

et contenant dans certains cas jusqu’à 50% de phosphate fin. Or plus le minerai est pauvre, plus le volume de<br />

ces boues est important et plus sont élevées les pertes en eau par infiltration, évaporation et rétention par les<br />

argiles gonflantes. Les exploitants de ces gisements de phosphate sont confrontés actuellement aux problèmes<br />

non seulement de gestion des boues de lavage et leur impact sur la consommation d’eau et la mobilisation de<br />

terrains de stockage [5] et [6], mais surtout à la perte de phosphate fin et ultra fin difficilement récupérable par les<br />

technologies existantes de traitement des minerais [7] à [9]. Le problème de récupération et/ou valorisation directe<br />

de ce phosphate fin ainsi que de l’eau contenus dans les boues de lavage est l’un des principaux défis de l’industrie<br />

minière des phosphates.<br />

Cette communication a pour objectif de faire le point sur cette problématique. Nous nous proposons d’abord<br />

de passer en revue les développements récents dans ce domaine, notamment les travaux réalisés dans le cadre<br />

du projet Elmaa [10] où l’on a étudié quelques solutions permettant d’améliorer la récupération d’eau à travers<br />

l’optimisation de la séparation solide/liquide. Ensuite, nous discuterons des défis à relever en matière d’innovations<br />

technologiques liés aux caractéristiques spécifiques des rejets fins des laveries de phosphate. Finalement, nous<br />

présenterons les perspectives de valorisation durable de ces rejets avec une récupération du phosphate fin qu’ils<br />

contiennent.<br />

Références Bibliographiques<br />

[1] U.S. Geological Survey, Mineral Commodity Summaries, Phosphate rock,p.118-119, January <strong>2011</strong> [2] H.<br />

El-Shall, P. Zhang, N. Abdel Khalek and S. El-Mofty, Beneficiation technology of phosphates: challenges and<br />

solutions, Minerals & Metallurgical Processing, Vol. 21, no.1 February 2004<br />

[3] H.Oumimoun, M. El Ouahhabi et A. Znibar, Expérience et nouvelles techniques développées en matière<br />

de traitement et d’enrichissement des phosphates, Journées Nationales de l’Industrie Minérale, Marrakech,<br />

23-25 Novembre 2005. [4] A. Segten et H. Frej, Le dessalement de l’eau de mer au cœur de la stratégie de<br />

développement du Groupe OCP, Revue HTE N°142 • Mars - Juin 2009<br />

[5] Salah Jéridi, Le projet de gestion des rejets fins des laveries de la CPG, Congrès Technique de l’AFA, Tunis,<br />

19-21Juin 2007 [6] US Trade and Development Agency, JPMC Eshidiya Slimes Disposal and Water Recovery<br />

Systems Feasibility Study- Final Report-July 2000<br />

[7] P. Zhang and M. Bogan, Recovery of phosphate from Florida beneficiation slimes, part I. Re-identifying the<br />

problem, Minerals Engineering, Vol. 8, No. 4/5, pp. 523-534, 1995 [8] P. Somasundaran, V. Runkana, Selective<br />

flocculation of fines, Trans. Nonferrous Met. Soc. China, Vol. 10 Special Issue, Jun. 2000<br />

[9] T. C. Westerfield, Thesis, Virginia Polytechnic Institute and State University,Master of Science, Mining &<br />

Minerals Engineering, Beneficiation of Ultra-Fine Phosphate Streams [10] A. Chik and R. M’hamdi, Optimization<br />

of the water consumption and use of alternative water resources: case study of the Khouribga mine in Morocco,<br />

The Elmaa Project workshop, Marrakech-Morocco,19th march 2009<br />

86<br />

V


VIII - INDUSTRIAL MANAGEMENT<br />

87


88<br />

Robert Hall,<br />

UBC CANADA<br />

REDUCING COSTS THROUGH BETTER ASSET MANAGEMENT<br />

The field of Asset Management is critical for mining companies if they wish to improve their bottom line. A key<br />

component of asset management is maintenance, which can represent from 25 to 45 percent of the operating cost<br />

of an open pit mine. Companies’ have expended varying amounts of effort to reduce these costs, using current<br />

trends such as Reliability Centred Maintenance, Total Quality Maintenance and Lean Maintenance to name a few.<br />

However, to date in the Mining Industry the results have been mixed.<br />

This presentation will give an overview of current trends and practices for maintenance management and execution.<br />

These will be examined with respect to their potential for success based on experience with and examples from<br />

several mining operations. The presentation will end with a discussion of a proposed path forward for companies<br />

to reduce their maintenance cost using a combination of basic and advanced tools.<br />

Frank S. Hicks,<br />

Technical Services Manager, Jacobs Engineering S.A. (JESA)<br />

IM-O-01<br />

AVOIDING PITFALLS IN FEASIBILITY STUDIES<br />

IM-O-02<br />

This paper will discuss the key elements in planning and executing a feasibility study. The paper will contain some<br />

examples of actual projects where a step was omitted or not performed properly - resulting in later problems with<br />

the project that could have been prevented.<br />

The focus of this paper will be on minerals and chemical projects that have been performed by Jacobs over the last<br />

20 years.


BELGHITI ALAOUI Mohamed<br />

OCP, MOROCCO<br />

KEYS TO SUCCESSFOR FERTILIZER PLANT PROJECTS<br />

OCP EXPERIENCE<br />

IM-O-03<br />

Fertilizer and phosphoric acid projects are usually major projects with high stakes. Success in such projects is real<br />

challenge. In order to meet this challenge it is necessary to have both the know-how related to the phosphate<br />

industries and the experience in the management of major projects. The success depends on three main objectives:<br />

• To reach the technical performances;<br />

• To carry out the project within the limits of budget;<br />

• To carry out the project according the planned schedule.<br />

OCP has a rich experience in the phosphate industry accumulated during more than 90 years.. OCP is currently<br />

doing many large-scale industrial projects in phosphate industries: Beneficiation, phosphate transport by pipeline,<br />

Fertilizer plant, Sea water desalination, Infrastructure….<br />

The purpose of this paper is to share this experience of managing major projects in the phosphate industry.<br />

DESIGN TECHNOLOGIES AND ENGINEERING CONSTRUCTION<br />

Kebir RATNANI,<br />

Eng, Directeur Général, SNC-LAVALIN INTERNATIONAL / MAROC<br />

IM-O-04<br />

Innovations to the production of sulphuric acid are not confined only to new converter designs and higher activity<br />

catalyst. So too have the tools used to engineer these plants advanced to the degree that they are changing the<br />

way these are built and operated. Three dimensional mechanical vessel CAD software directly load into finite<br />

element analysis systems. The vessels are, in turn, loaded into a data base management system that integrates<br />

layout, piping, instrumentation and electrical designs into a single package used to optimize the engineering,<br />

construction, and operation of today’s modern acid plant.<br />

This paper describes the tools used by SNC Lavalin Fenco to engineer and construct a state of the art sulphuric acid<br />

plant. Specifically, we will focus on the integration of 3D vessel and layout packages with data base management<br />

tools for structural, piping, electrical, and instrumentation designs and material take-offs. The construction site<br />

application via material tracking and installation scheduling is also discussed. Finally, we will illustrate the use of<br />

the completed 3D engineering package for simulation and training purposes.<br />

89


90<br />

« COMMENT OBTENIR UN ÉCHANTILLON REPRÉSENTATIF ?...<br />

… UNE BRÈVE INTRODUCTION AU MONDE DE L’ÉCHANTILLONNAGE»<br />

Philippe DAVIN,<br />

ITECA SOCADEI, Aix en Provence - FRANCE<br />

IM-O-05<br />

“Je dois analyser 200 grammes de produit…mais j’ai un bateau de 50 000 tonnes… comment dois-je procéder ?<br />

Cette question est un bon point de départ pour expliquer à quoi correspond l’échantillonnage et est surtout<br />

essentielle pour 2 raisons majeures: elle démontre la difficulté pour obtenir un échantillon représentatif issu<br />

soit du process soit d’une grande quantité de produit (d’un bateau, train etc…) mais également l’importance<br />

de l’échantillonnage pour la qualification du produit (optimisation de la production, de la mine, vérification de la<br />

qualité du produit).<br />

Mais en fait pourquoi échantillonner ? S’il s’agit de ne récupérer que quelques grammes pour l’analyse, un simple<br />

système de diverteur, vanne, by-pass ou autre devrait suffire.<br />

La principale problématique réside dans l’énorme disproportion entre la taille de l’échantillon et la taille du lot de<br />

matière. Quelques centaines voire dizaines de grammes de matière vont « qualifier » la totalité du lot de matière<br />

qui est parfois de plusieurs centaines voire milliers de tonnes.<br />

Il faut garder à l’esprit que les échantillons obtenus permettent de réaliser des analyses et en fonction de ces<br />

analyses dépendra la conduite de l’usine, l’optimisation de la mine, la qualification du produit, etc. Les enjeux<br />

peuvent donc être considérables en termes techniques mais également commerciaux.<br />

Lors de cette présentation nous verrons les difficultés rencontrées pour obtenir un échantillon représentatif et<br />

donnera les solutions techniques à employer.<br />

Nous aborderons également les solutions de préparation des échantillons automatiques ou semi-automatiques<br />

(broyage pastillage) ainsi que des solutions d’analyse en ligne.


IX - MATERIALS &<br />

NEW PRODUCTS<br />

91


92<br />

UTILISATION DES ACIERS INOXYDABLES DANS L’INDUSTRIE :<br />

RECENTS ET FUTURS DEVELOPPEMENTS<br />

Jérôme PEULTIER & Pauline BOILLOT,<br />

Industeel, ArcelorMittal Global R&D,<br />

Le Creusot/FRANCE<br />

Dans une première partie, cet article présente les raisons qui ont conduit, durant ces quinze dernières années,<br />

l’industrie à faire évoluer la sélection des matériaux vers des solutions plus sures techniquement ou simplement<br />

plus économiques. Seront ainsi abordés l’utilisation:<br />

- des aciers inoxydables duplex UR2205 pour le transport de l’acide sulfurique ou de l’acide phosphorique,<br />

- des aciers inoxydables superduplex UR2507Cu (UR52N + ) et super austénitiques UR904L (URB6), UR28 et<br />

UR31 dans la fabrication de l’acide phosphorique,<br />

- ou encore de la famille duplex (UR2304, UR2205 et UR2507) pour la production d’eau potable à partir d’eau<br />

de mer.<br />

Dans une seconde partie, les propriétés mécaniques et de résistance à la corrosion des nuances duplex économiques,<br />

c’est à dire sans addition de molybdène, comme l’UR2202, seront détaillées et commentées. Ces nuances ont été<br />

récemment développées afin de proposer une alternative aux nuances de la série 300 (typiquement 304 ou 304L<br />

et dans certains cas 316L), moins sensibles aux fluctuations du cours des éléments d’alliage nickel et molybdène.<br />

Parmi les domaines d’application de ces nouveaux matériaux, nous citerons le transport ou le stockage de produits<br />

peu corrosifs comme les eaux potables ou industrielles ou encore la construction de passerelles piétonnières, ponts<br />

et autres édifices.<br />

M. CHERFAOUI Mohammed<br />

Responsable du pôle Equipements Sous Pression<br />

Cetim – 52, avenue Félix Louat – 60300 Senlis – FRANCE<br />

AP-O-01<br />

LES TECHNIQUES INNOVANTES EN ESSAIS NON DESTRUCTIFS ET<br />

APPLICATIONS INDUSTRIELLES SUR LES ÉQUIPEMENTS SOUS PRESSION<br />

AP-O-02<br />

L’âge moyen des appareils à pression en service dans le monde augmente d’année en année. Une préoccupation<br />

majeure des industriels exploitants est d’assurer la sécurité de leurs installations et des personnes, tout en<br />

prolongeant la durée de vie de leur parc d’appareils à pression. Dans ce contexte, il est nécessaire de maîtriser<br />

l’état de santé de ce type de structure, et également être capable d’évaluer la durée de vie résiduelle d’un appareil.<br />

Au travers d’un cas réel, l’étude présentée dans cet article illustre toutes les étapes de mise en œuvre d’un processus<br />

ayant permis dans un premier temps d’effectuer un diagnostic précis de l’état de santé d’une sphère de stockage<br />

et ainsi évaluer sa durée de vie, puis, dans un second temps, assurer les opérations de remise en conformité pour<br />

assurer une remise en service de cette structure.<br />

Ce processus, entièrement assuré par le CETIM, a impliqué les opérations suivantes :<br />

• Une épreuve hydraulique avec suivi par émission acoustique,<br />

• Des contrôles non destructifs (CND) complémentaires pertinents (TOFD, ultrasons, Magnétoscopie …),<br />

• Des contrôles métallographiques par la méthode de répliques et / ou prélèvements,<br />

• Une étude de durée de vie, estimée par calculs, basée sur les CND et les études métallurgiques,<br />

• La rédaction d’une procédure de recommandations de réparation par soudage des défauts critiques,


• La supervision des réparations et le contrôle après réparations<br />

Cette approche développait par Le Cetim est basée sur les techniques innovantes en Essais non destructifs. Un<br />

panorama de ces techniques sera réalisé.<br />

ABSTRACT<br />

The average age of pressure vessels in service worldwide is increasing from year to year. A major concern of<br />

industrial operators is to ensure the security of their facilities and people, while extending the life of their fleet of<br />

pressure vessels. In this context, it is necessary to control the health of this type of structure, and also be able to<br />

assess the residual life of a device.<br />

Through a real case, the study presented in this article shows all the stages of implementation of a process that<br />

allowed initially to make an accurate diagnosis of the condition of a sphere of storage and to evaluate its lifetime,<br />

then in a second time, to ensure the operations back into compliance to ensure a reactivation of this structure.<br />

This process is fully insured by the CETIM, involved the following:<br />

• A hydraulic test with acoustic emission monitoring,<br />

• Testing additional relevant Non Destructive testing (NDT) (TOFD, Ultrasonic, Magnetic...)<br />

• Checks by the method of metallographic replicas and / or levies,<br />

• A study of life, estimated by calculations based on NDT and metallurgical studies,<br />

• Writing a procedure recommendations repair by welding of critical defects,<br />

• The supervision during repairs and the testing after repairs.<br />

This approach is developed by Cetim based on Innovative Non destructive testing.<br />

ECHANGEURS MÉTALLIQUES EN ALLIAGE HASTELLOY® G-35®<br />

POUR LES UNITÉS DE CONCENTRATION D’ACIDE PHOSPHORIQUE :<br />

UTILISATION, INTÉRÊT<br />

AP-O-03<br />

Patrice HOULLE, Moumen CHAGRAOUI,<br />

Haynes International, Bormes les Mimosas/FRANCE<br />

L’alliage HASTELLOY® G-35® a été spécialement conçu pour offrir une solution de tenue à la corrosion par<br />

l’acide phosphorique dans les conditions les plus difficiles de la fabrication de ce produit. Sa tenue initialement<br />

caractérisée au laboratoire a été confirmée par les applications industrielles en particulier comme le matériau<br />

principal de construction d’échangeurs de chaleur utilisés sur les boucles de concentration. Ce type d’échangeurs est<br />

actuellement très répandu particulièrement aux USA. Leurs performances technico-économiques surpassent celles<br />

des échangeurs en graphite, de plus, ils apportent une meilleure fiabilité et une sécurité accrue. Le remplacement<br />

d’un échangeur blocs ou tubes en graphite par un échangeur en HASTELLOY G-35 peut se faire sans aucune<br />

modification du reste de l’unité, les deux équipements ayant des performances thermiques très similaires. Le retour<br />

sur investissement est de l’ordre de quelques mois grâce aux gains de productivité permettant une augmentation<br />

de capacité globale et grâce aux économies sur les coûts d’exploitation et de maintenance des échangeurs existants<br />

en graphite.<br />

93


94<br />

METALLIC HEAT EXCHANGERS ARE TODAY A PROVEN SOLUTION IN<br />

PHOSPHORIC ACID PRODUCTION<br />

Daniel HERON & Jonas Höwing,<br />

Sandvik Materials Technology, SE-811 11 Sandviken SWEDEN<br />

In phosphoric acid plants it has been common to use heat exchangers with graphite tubing in the concentration<br />

loop. The main reason for using graphite is the excellent corrosion resistance of the material, but the brittleness<br />

tends to results in premature failures during operation or cleaning. Graphite tubing can be plugged to extend the<br />

service life, but eventually too much heat transfer is lost and replacement will be necessary to restore the production<br />

capacity. The tube failures will result in lower productivity and higher costs. Service life can be as short as 3-6 years.<br />

Today metallic heat exchangers are a better alternative. Sandvik Materials Technology has supplied Sandvik Sanicro<br />

28 with good success in more than 75 heat exchangers in phosphoric acid plants. Some plants have even achieved<br />

more than 16 years of service life. With a good heat exchanger design and proper cleaning a service life over ten<br />

years can be expected for Sanicro 28.<br />

Recently SMT developed the hyper duplex stainless steel Sandvik SAF 2707 HD®, which is optimized for difficult<br />

chloride environments and excels in seawater applications. Sandvik SAF 2707 HD® has also shown excellent results<br />

in phosphoric acid, both in laboratory tests and test installations. These results will be presented and discussed in<br />

this report.<br />

Harris Jack,<br />

President, VIP International, Inc.USA<br />

AP-O-04<br />

BRICK LINED VS. ALLOY TOWERS IN SULFURIC ACID PLANTS<br />

AP-O-05<br />

Weather building a new plant or replacing aged equipment in an existing plant, the advantages and disadvantages<br />

between brick lined towers or alloy towers must be considered.<br />

Specializing in the maintenance of sulfuric acid towers since 1981, VIP International has inspected and maintained<br />

hundreds of towers around the world.<br />

This presentation utilizing actual video footage will compare the strengths and weaknesses of each of these designs.


FLUORINE RECOVERY TECHNOLOGY (INTRODUCTION OF THE PRODUCTION<br />

OF ANHYDROUS HYDROGEN FLUORIDE (AHF) FROM FLUOROSILICIC ACID)<br />

Songlin Liu,<br />

CEO of Guizhou Tianfu Chemicals Co., Ltd., Wengfu (Group) Co., Ltd.,<br />

Guiyang City, CHINA<br />

AP-O-06<br />

With the rapid development of the fluorine chemical industry, the demand for raw materials is growing and there<br />

is a rapid decline in the reserve of fluorite resources and a great threat to the sustainable development of the<br />

fluorine chemical industry. In the wet process of phosphoric acid production, the associated fluorine and silicon are<br />

recovered in the form of fluorosilicic acid which is low in concentration and contains more impurities and can only<br />

be used to produce low fluorosilicic salts and fluoride salts or discharged after neutralization. Wengfu (Group) Co.,<br />

Ltd. applies a new technology which utilises the by-product, fluorosilicic acid, from phosphate fertilizer production<br />

to produce Anhydrous Hydrogen Fluoride (AHF) and Reactive Silica (White carbon Black); which will not only help<br />

to control fluoride pollution but also ensure the effective use of fluorine and silicon resources. 90% of fluorine in the<br />

world can be found in phosphate resources, which proves that the recovery of associated fluorine from phosphate<br />

will be the main source of fluorine industry in the future.<br />

CATHODE MATERIALS FOR HIGH-PERFORMANCE LI-ION BATTERIES<br />

A NEW OPPORTUNITY FOR THE PHOSPHATE INDUSTRY<br />

Fabrice Renard,<br />

PRAYON SA/BELGIQUE ,Vice President Innovation<br />

AP-O-07<br />

To achieve mass production success, car makers need new battery technologies combining high performance,<br />

low cost, safety and long cycle life. Lithium iron phosphate is the most promising cathode material, provided its<br />

performance level can be improved to at least 140 kWh/kg and its manufacturing cost kept below $15/kg. Prayon is<br />

working with CEA (France) to jointly scale up production of the world’s best available material – lithium iron boron<br />

phosphate – in a fast, continuous process. Global competition, the worldwide market and the next generation of<br />

phosphate-based cathode materials will also be briefly presented.<br />

About Prayon (Engis, Belgium)<br />

Prayon, jointly owned by OCP (Morocco) and SRIW (Belgium), is a world leader in speciality phosphates, with<br />

forecast sales of €800 million in <strong>2011</strong>. The company employs more than 1400 people around the world with four<br />

fully owned plants in Europe and the United States. Its core business covers industrial applications (including<br />

detergents, metal treatment, refractories and water) and food applications (meat, baked goods, seafood, processed<br />

cheese and more)<br />

95


AP-O-08<br />

Marc Sonveaux,<br />

EcoPhos S.A., Centre Monnet, Av jean Monnet 1, B1348 Louvain-la-Neuve,<br />

BELGIUM<br />

Animal feed phosphate is the second most important field of use of phosphate in terms of production volume, after<br />

fertilizer. Two animal feed phosphate products are mainly used: DCP (CaHPO 4 .2H 2 O) and MCP (Ca(H 2 PO 4 ) 2 .H 2 O).<br />

The large majority of the producers of animal feed phosphate produce it by neutralization of purified/defluorated<br />

phosphoric acid. Most of the producers are not integrated from the mine to the final product. Therefore they have<br />

to buy phosphoric acid externally.<br />

Starting from rock, the conventional production process consists of 6 main steps:<br />

1. Rock digestion<br />

2. Liquid solid separation to remove phosphogypsum<br />

3. Phosphoric acid concentration<br />

4. Post treatment: fluoride removal, As removal, Cd removal, SO4 reduction<br />

5. DCP precipitation with CaCO3 or Ca(OH)2<br />

6. Final product filtration and drying<br />

The simplified reactions for DCP animal feed production are:<br />

Digestion:<br />

Ca 3 (PO 4 ) 2 + 3 H 2 SO 4 + 2 H 2 O à 2 H 3 PO 4 + 3 CaSO 4 .2H 2 O<br />

DCP precipitation:<br />

H 3 PO 4 + CaCO 3 + H2O à CaHPO 4 .2H 2 O + CO 2<br />

Since 1996, EcoPhos, a Belgian company has developed an alternative method to produce animal feed phosphate<br />

that reduces significantly the investment cost as well as the production cost of animal feed production plant. This<br />

process consists of the following steps:<br />

1. Soft rock digestion with dilute HCl: heavy metals and radioactive elements remains insoluble<br />

2. Liquid solid separation and removal of the heavy metals and radioactive elements as solid cake<br />

3. DCP precipitation with CaCO3 or Ca(OH)2<br />

4. Final product filtration and drying<br />

5. HCl recycling using H2SO4 and generating pure and not radioactive gypsum<br />

This new process allows also to reduce residence time for rock digestion to 45min and then reducing significantly<br />

the investment cost.<br />

Digestion: two reactions occurs<br />

Ca 3 (PO 4 ) 2 (s) + 4 HCl (l) à Ca(H 2 PO 4 ) 2 (l) + 2 CaCl 2 (l)<br />

Ca 3 (PO 4 ) 2 (s) + 6 HCl (l) à 2 H 3 PO 4 (l) + 3 CaCl 2 (l)<br />

DCP precipitation: two reactions occurs<br />

Ca(H 2 PO 4 ) 2 (l) + CaCO 3 (s) + 3 H 2 O à 2 CaHPO 4 .2H 2 O (s) + CO 2 (g)<br />

H 3 PO 4 + CaCO 3 + H 2 O à CaHPO 4 .2H 2 O + CO 2<br />

96<br />

NEW PROCESS TO CONVERT PHOSPHATE ROCK INTO ANIMAL FEED PHOSPHATE


HCl regeneration<br />

CaCl 2 + H 2 SO 4 à 2 HCl + CaSO 4<br />

The main advantages of this new technology are:<br />

• Reduced investment cost thanks to very short residence time and no evaporation needed:<br />

40% lower investment compared to conventional process<br />

• Reduced energy consumption as no evaporation is needed:<br />

90% less energy consumption compared to conventional process<br />

• No need of purification step : the impurities remains insoluble and are eliminated at the beginning of<br />

the process<br />

• Production of pure and non radioactive gypsum as the heavy metals and radioactive element are not<br />

mixed with the gypsum<br />

• Safe process : no use of volatile solvent, low temperature, soft digestion conditions at atmospheric pressure<br />

• HCl fully recycled, same specific consumption as the conventional process<br />

• No scaling<br />

This patented new technology presents major differences compared to the known HCl route for phosphate<br />

production:<br />

• hanks to optimized process parameters, the residence times are much lower.<br />

• No decantation step is needed: all the liquid solid separation steps are done by filtration. The filtrations are<br />

very efficient and the size of the filters limited. This allows to reduce the size of the plant and decrease the<br />

investment cost significantly<br />

• The process allows to recycle HCl, improving the economics of the plant and avoiding any dependence from<br />

HCl availability<br />

The EcoPhos technology is used industrially in Bulgaria (Decaphos, Devnya) since 2008 and a new plant has been<br />

built in Syria (UCCI, in Homs).<br />

The UCCI plant produces 60Kt/y animal feed DCP, using the local Syrian rock. The plant consists of 3 modules, one<br />

for rock digestion, one for DCP precipitation, separation and drying and one for HCl regeneration. The startup of<br />

this plant was done in December 2010.<br />

Additional general information about the process will be provided at the conference.<br />

97


98<br />

FABRICATION DE PHOSPHATES ALIMENTAIRES DCP ET MCP À<br />

MAROC PHOSPHORE SAFI, GROUPE OCP.<br />

AP-O-09<br />

M. ZEMMARI,<br />

Direction Maroc Phosphore Safi /Groupe OCP /MAROC<br />

Leader mondial sur le marché des phosphates et des produits dérivés, et première entreprise du Royaume du<br />

Maroc, le Groupe OCP opère sur les cinq continents et écoule actuellement près de 95% de sa production en<br />

dehors des frontières nationales.<br />

Le Groupe OCP, spécialisé dans l’extraction, la valorisation et la commercialisation de phosphates et des produits<br />

dérivés, a tracé une stratégie ambitieuse visant l’amélioration des performances, la réduction des couts, la<br />

sauvegarde de l’environnement, et le développement de produit dérivant du phosphate, et à forte valeur<br />

ajoutée.<br />

C’est dans le cadre de cette stratégie que le pro jet de fabrication de phosphate alimentaire DCP et MCP,<br />

pour alimentation du bétail, a été retenu par le Groupe OCP, est lancé à la Direction Maroc Phosphore SAFI.<br />

Ce travail synthétise la finalité des phosphates alimentaires (feed phosphate), leurs rôles dans l’alimentation<br />

animale, et les processus de leur fabrication à la direction Maroc Phosphore SAFI<br />

NOUVEAUX RETARDATEURS DE FLAMME POLYMÈRES PHOSPHONÉS<br />

AP-O-10<br />

Claire Negrell-Guirao*, Ghislain David*, Bernard Boutevin*, Rodolphe Sonnier<br />

*Institut Charles Gerhardt de Montpellier-Equipe Ingénierie et Architectures<br />

Macromoléculaires UMR5253 ENSCM 8, rue de l’école normale, 34296<br />

MONTPELLIER Cedex 5 FRANCE<br />

Centre des Matériaux de Grande Diffusion Ecole de Mines d’Alès 6 avenue<br />

Claviéres, 30319 ALES, FRANCE<br />

Depuis Juillet 2008, l’union européenne bannit une grande partie des retardateurs de flamme halogénés<br />

actuellement sur le marché pour des problèmes environnementaux. Les produits phosphorés s’avèrent une<br />

alternative prometteuse. Cette présentation décrira la synthèse de monomères phosphonés cycliques, leur<br />

télomérisation, polymérisation et copolymérisation en solution par voie radicalaire mais aussi les essais de résistance<br />

au feu effectués. Les monomères allyliques phosphonés cycliques sont synthétisés par transestérification entre<br />

un glycol possédant une double liaison et un hydrogénophosphonate. L’homopolymérisation radicalaire<br />

du dioxaphosphorinane hydrogéné faite en présence d’α, (’-azoisobutyronitrile (AIBN) comme amorceur<br />

nous a permis d’obtenir des polymères avec 2 distributions chromatographiques composées d’oligomères et<br />

de polymères de haute masse moléculaire respectivement1. Cette deuxième espèce présente une structure<br />

hyperbranchée avec des solubilités faibles qui nuisent aux futures applications. Des solutions alternatives ont été


proposées comme la télomérisation de ce même monomère avec l’hydrogénophosphonate de diméthyle<br />

comme agent de transfert donnant une seule population d’oligomères (Figure 1A). Le remplacement de<br />

l’hydrogène lié au phosphore par un groupement alkyle ou aryle simplifient le mécanisme de polymérisation<br />

pour former des chaînes macromoléculaires où les groupements phosphonés seraient situés dans les chaînes<br />

latérales2. Une dernière solution permettant d’améliorer les propriétés ignifugeantes a été envisagée : la<br />

copolymérisation Accepteur/Donneur pour produire des copolymères alternés (Figure 1B) avec la possibilité<br />

d’introduire des groupements différents (acide, ester, imide…)3. Les caractérisations thermogravimétriques<br />

et microcalorimètriques ont montré une bonne thermostabilité des télomères comme des copolymères et<br />

une chaleur dégagée équivalente à un produit commercial de référence. Les essais feu sur textile au cône<br />

calorimètre montrent des résultats encourageants sur les télomères et copolymères accepteur-donneur<br />

synthétisés. COOR'<br />

MeO<br />

O<br />

H<br />

P n<br />

OMe<br />

O<br />

A<br />

COOR'<br />

O<br />

O<br />

O<br />

P O<br />

O<br />

R<br />

O P O<br />

R<br />

Figure 1 : Structures proposées comme retardateurs de flamme:<br />

A-Télomère du Dioxaphosphorinane / B-Copolymère Accepteur/<br />

Donneur (Maléate-Allyl Ether Dioxaphosphorinane)<br />

1 Negrell-Guirao, C., Boutevin, B. Macromolecules, 2009, 42(7), 2446-2454.<br />

2 Negrell-Guirao, C., Boutevin, B., David, G., Fruchie r,A., Sonnier, R., Lopez-Cuesta, J. M. Polymer<br />

Chemistry, <strong>2011</strong>, 2, 236-243.<br />

3 Negrell-Guirao, C. Synthèse de monomères, télomères et (co)polymères allyliques phosphonés et leurs<br />

applications en ignifugation. 2010, Thèse de l’Université de Montpellier II.<br />

IODINE RECOVERY TECHNOLOGY (INTRODUCTION OF THE RECOVERY OF<br />

IODINE FROM PHOSPHATE)<br />

AP-O-11<br />

Xuelin Lei<br />

Deputy Manager of Weng fu Iodine Recovery Plant Wengfu (Group) Co., Ltd.<br />

Guiyang City, CHINA<br />

Iodine is the basic raw material in the manufacture of inorganic and organic iodine compounds which have a<br />

wide range of usage in the industries of medicine, agriculture, metallurgy, synthetic rubber, and cutting-edge<br />

technology. The iodine recovery plant of Wengfu group is the very first plant that successfully extracts iodine from<br />

phosphate processes. This is achieved during the production of phosphoric acid in which crude iodine is produced<br />

after enrichment by a short process, while refined iodine is produced by a refining process. The overall process of<br />

extracting iodine will do no harm to the usage of phosphoric acid in the downstream and no waste water, gas, or<br />

residue is discharged during the production process.<br />

n<br />

99


100<br />

MANUFACTURE OF HIGH-BULK DENSITY ALUMINIUM FLUORIDE FROM<br />

FLUOSILICIC ACID<br />

Alain Dreveton,<br />

AD Process Strategies Sarl, Rue Chaponnière 9, CH-1201<br />

Geneva / SWITZERLAND<br />

AP-O-12<br />

Fuosilicic acid finds its main application in the manufacture of aluminium fluoride being a large volume chemical<br />

mostly produced from fluorspar as high bulk density (HBD) aluminium fluoride and as well from fluosilicic acid<br />

as low bulk density (LBD) aluminium fluoride. Hereby is disclosed new processes for manufacturing anhydrous<br />

hydrofluoric acid (AHF) from fluosilicic acid (FSA) from which (HBD) aluminium fluoride can be produced. Aluminium<br />

fluoride is essentially used as a flux for smelting aluminium by adding it volumetrically to the cells of aluminium<br />

smelters in order to regenerate the cryolite bath. HBD aluminium fluoride is the preferred material and it is fully<br />

produced from fluorspar; none of this material being currently produced from FSA through AHF which process<br />

technology often referred to as the Dry/FSA Process is available, feasible and proven at this time. An opportunity<br />

to invest in profitable projects is really existing. Additionally the manufacture of other downstream products of HF:<br />

refrigerants, fluoropolymers, etc and downstream products of FSA: silicon metal, silicon tetrafluoride, silicas may<br />

offer extra opportunities.<br />

The first process known for manufacturing (LBD) aluminium fluoride from fluosilicic acid was patented by Chemie-<br />

Linz, Austria and many plants were built based on this technology or similar technologies. This process uses the<br />

direct neutralization of the fluosilicic acid with alumina hydroxide in a stirred reactor. It is often referred to as<br />

the Wet/FSA Process. Although this technology tends to be abandoned due to the low density and low fluidity<br />

(flowability) of the product, the high capital cost of the plant and environmental issues resolved partially only<br />

as neutralization of mother liquors may still be required, further developments of this process would refresh this<br />

technology being still accepted by very few players only.<br />

A process to produce AHF / HF from fluosilicic acid was disclosed first by Tennessee Corp., USA and<br />

further by Wellmann-Lord, etc and more lately by Flemmert (Sweden), and Lubon Works, Poland who operated a<br />

small pilot plant. More recently Wengfu, China built a first commercial plant with the technology of Buss Chemtech<br />

AG, Switzerland based on know-how from Lubon Works. The process is based on the mixing of strong fluosilicic<br />

acid with strong sulphuric in a stirred reactor and separating silicon tetrafluoride and extracting the anhydrous<br />

hydrofluoric acid using separation columns. Presently AD Process Strategies Sarl proposes a similar type of<br />

process with major improvements completed to suit the water balance of the phosphoric acid plant; sulphuric<br />

acid containing water that is generated from this HF plant has to be recirculated to the phosphoric acid plant. The<br />

technology is proven, resolves environmental issues, is very profitable as raw material costs are low, capital cost is<br />

reasonable and it offers access to promising markets for HBD aluminium fluoride and anhydrous hydrofluoric acid,<br />

both being large volume chemicals.<br />

For situations described above when the diluted sulphuric acid stream is not returned to the phosphoric<br />

acid plant or can not be recirculated due to technically reasons or not, AD Process Strategies Sarl proposes a new<br />

technology for stand alone HF plants. The proposed process uses fluosilicate as intermediate raw material, which is<br />

transportable not like FSA and reaction of fluosilicate with sulphuric acid. The silicon tetrafluoride and hydrofluoric<br />

acid obtained is treated as per the state of art mentioned above. The diluted sulphuric acid stream from this process<br />

can be preconcentrated and recycled to the phosphoric acid plant or used in production of fertilizers, concentrated<br />

and recycled to the HF reaction or purified and sold.<br />

These technologies are offering high flexibility and can be implemented with confidence in a cost effective manner.<br />

They are real innovations for the fertilizer industry and surely they will be implemented progressively. More and<br />

more projects are under study and hopefully some projects may be executed in the near future….


PRODUCTION OF GRANULAR AMMONIUM SULFATE FROM PHOSPHOGYPSUM<br />

Bangjie Zhao<br />

Deputy Manager of Wengfu MAP Plant, Wengfu (Group) Co., Ltd.,<br />

Guiyang City, CHINA<br />

AP-O-13<br />

The Handling of phosphogypsum is a common problem in the phosphate industry worldwide. Most countries adopt<br />

the method of stacking, Wengfu (Group) Co., Ltd. has developed a technology and is now constructing a facility to<br />

use phosphogypsum, carbon dioxide from the production of synthetic ammonia, and ammonia as raw materials<br />

to produce granular ammonium sulfate and lime powder. This process helps to reduces environment pollution and<br />

ensure the optimum utilisation of phosphogypsum and carbon dioxide.<br />

101


102


X - POSTERS<br />

103


104<br />

John Sinden,<br />

JSA LTDA, Santos / BRAZIL<br />

PRODUCTION OF MICRO-GRANULAR DCP AND/OR MCP<br />

This will include a module by module presentation with a mixture of drawings and photographs :<br />

- Grinding of limestone<br />

- Limestone slurry<br />

- Reaction<br />

- Granulation<br />

- Drying<br />

- Classification<br />

- Cooling<br />

- Environmental controls<br />

- Specific consumptions<br />

- Product specifications<br />

E. FAIT1 , R. OUTAYAD1 , S. FAKHI1 , M. MOUFLIH2 , I. VOQUE ROMERO3 ,<br />

M. BEN MANSOUR4 & H.EL HADI5 ETUDE DES LITHOFACIES ASSOCIES AUX PHOSPHATES NATURELS :<br />

QUANTIFICATION, IMPLICATION GENETIQUE ET DISTRIBUTION DES<br />

RADIONUCLEIDES NATURELES<br />

P2<br />

(1) Unité de Radiochimie Université Hassan II Mohammedia-Casablanca, Faculté<br />

des Sciences Ben M’Sik, MAROC<br />

(2) Laboratoire des Géoressources Sédimentaires et Environnement, Université<br />

Hassan II Mohammedia-Casablanca, Faculté des Sciences Ben M’Sik, MAROC.<br />

(3) Département de Física Aplicada II, Escuela Técnica Superior de Arquitectura<br />

de Sevilla Universidad de Sevilla, Phone: +34 954 555979, Fax: +34 954 557892<br />

(4) Centre National de l’Energie, des Sciences et des Techniques Nucléaires<br />

(CNESTN - MAROC), CEN de MAAMOURA<br />

(5) Laboratoire de Géochimie, Géologie Appliquée et Environnement, Université<br />

Hassan II Mohammedia-Casablanca, Faculté des Sciences Ben M’Sik, Maroc.<br />

Reconnaissance : Appui de l’AECID A/026017/09<br />

Le présent travail entre dans le cadre global de l’étude du comportement des métaux stables et radioactifs à<br />

l’interface solide/eau et leurs applications potentielles aux systèmes : Argile/eau ; phosphates/eau ; Schiste/eau...<br />

La connaissance des processus physicochimiques mises en jeu, la détermination des paramètres d’échange des<br />

métaux entre les deux compartiments et l’identification des phases de leur piégeage dans le solide, permet de<br />

concevoir des matériaux anthropiés de piégeage de ces éléments et de développer des procédés de séparation et<br />

de récupération des métaux d’intérêt environnemental ou économique tels l’Uranium et les terres rares.<br />

Le présent travail, présente les résultats de l’étude du compartiment solide constitué de sédiments de phosphates.<br />

Il concerne les échantillons de la coupe dans la zone de Ghar Tajer gisement des oulad abdoun.<br />

P1


La série phosphatée étudiée s’étale du pliocène à l’Eocène moyen, dont le facies Danien et Thanétien formés par<br />

une succession des niveaux phosphatés intercalés avec des calcaires phosphatés, et se termine par un calcaire<br />

phosphaté coprolitique et l’Yprésien qui débute par un phosphate coprolithique, la phosphatogenèse y atteint son<br />

apogée marquée par une intercalation régulière de niveaux riches en phosphate ‘‘couche phosphaté’’ et d’autres<br />

plus pauvres dites stériles en terme minier ‘‘couche intercalaire : calcaire, marne, argile et silex’’. Les premiers<br />

analyse montre que :<br />

L’étude Pétrographique : Les faciès calcifiés du pliocène font apparaître deux types de<br />

microfaciès Pelcoprophospharénite de texture grainstone et packstone. L’étude pétrographique des roches<br />

phosphatées de l’Yprésien révèle principalement un microfaciès riche en grains phosphatés (80%), imprégnés de<br />

matière organique de type Nubéculaires, la phase de liaison est une microsparite recristallisée en micrite. Cette<br />

fabrication de la roche lui confère la texture packstone.<br />

- L’étude Granulométrique montre que les phosphates des faciès pliocène ont une granulométrie serrée,<br />

dominée par des particules fines. Les faciès phosphatés Eocène manifeste un classement de tailles des grains<br />

du côté des particules de diamètre 160µm, une fourchette granulométrique coprolithique très étalée dans<br />

l’intervalle 0,25 et 2mm.<br />

- La Calcimétrie des phosphates étudiée a permis de déterminer des teneurs en carbonates comprises entre<br />

26% et 3%. Elles ne dépassent pas le taux de 5,5% pour les termes phosphatés d’intérêt économique.<br />

- Les activités spécifiques des isotopes de U et de Th déterminées par spectrométrie alpha varient selon le<br />

facies et la profondeur de l’échantillon. les valeurs minimales sont observées pour les échantillons :<br />

- d’âge Danien facies calcaire de la couche 2 supérieur prélevé à une profondeur de 19,5 m avec une<br />

activité de (924 Bq/Kg).<br />

- d’âge yprésien marne argileux d’intercalaire couche1/2 (13 m de profondeur), (717 Bq/Kg).<br />

- d’âge yprisien facies calcaire phosphaté coprolithique d’intercalaire sillon A/couche0 (11,5m<br />

profondeur), (911 Bq/Kg).<br />

- d’âge yprisien facies marne siliceuse et calcaire marneux (10,5 m et 9,9 m profondeur), (359 et 963<br />

Bq/Kg).<br />

Alors que les valeurs maximales sont rencontrées dans les échantillons :<br />

- d’âge yprisien facies phosphate moyen friable à compact couche 1 supérieur (13,5m profondeur),<br />

(2362 Bq/Kg).<br />

- d’âge yprisien facies phosphate friable couche 0 (11,9 m profondeur), (1751Bq/Kg).<br />

- d’âge yprisien facies calcaire phosphaté coprolithique intercalaire sillon 1/couche 0 (11,3m<br />

profondeur), (2085Bq/Kg).<br />

Ces données sont en cours d’exploitation avant de passer aux étapes suivantes qui consistent à caractériser les<br />

structures des différents échantillons, à localiser et à caractériser les phases de sorption de ces isotopes. Une<br />

corrélation entre les rapports isotopiques et les différentes phases et la lixiviation des isotopes de U est en cours<br />

d’expérimentation.<br />

Mots clés : facies, interface phosphate/eau, Sorption des radionucléides naturels, spectrométrie<br />

alpha, Granulométrie, pétrographie.<br />

105


O. OUAKIBI 1 , R. HAKKOU1 et M. BENZAAZOUA1.2.3 TRAITEMENT PASSIF DES EFFLUENTS DE LA MINE KETTARA À L’AIDE DES<br />

CALCAIRES RÉSIDUELS DES EXPLOITATIONS MINIÈRES DES PHOSPHATES<br />

P3<br />

1 Chaire de recherche du CRDI (Canada) en gestion et stabilisation des rejets<br />

industriels et miniers, FSTG-Marrakech, Université Cadi Ayyad, Marrakech,<br />

BP549, 40000 Marrakech, MAROC<br />

2 UNIVERSITE EN ABITIBI TEMISCAMINGUE, Chaire de recherche du Canada en<br />

Gestion intégrée des rejets miniers, 445 Boul. de l’Université, Rouyn-Noranda,<br />

QC, CANADA J9X 5E4.<br />

3 INSA de Lyon, Laboratoire de Génie Civil et d’Ingénierie Environnementale,<br />

Bât. Sadi Carnot, 9, rue de la physique, 69621 Villeurbanne cedex, FRANCE<br />

Le site minier abandonné de Kettara (Jebilet centrales, Marrakech) comporte en plus d’infrastructure désuètes<br />

d’importante quantités de rejets entreposés sans aucune mesure de confinement. Les rejets sont qualifiés de<br />

générateurs d’un important drainage minier acide (DMA). En effet, les eaux de ruissellement se caractérisent par des<br />

très bas pH (2 à 3), des concentrations élevées en sulfates, en aluminium et en magnésium (respectivement 8 g/l,<br />

0,45 g/l et 1,2 g/l). Les concentrations en Cu, Zn et Mn atteignent 87 mg/l, 130 mg/l et 94,8 mg/l respectivement.<br />

Cette pollution risque de migrer dans les réseaux hydrographiques, et hydrogéologiques avec des impacts négatifs<br />

sur l’environnement (en particulier vis-à-vis de la population limitrophe du site).<br />

L’objet de ce papier vise principalement le traitement de ces eaux à l’aide d’un drain calcaire anoxique (DAC). Ce<br />

dernière est composé de stériles alcalins issus d’une mine avoisinante exploitant des phosphates située non loin<br />

de Kettara (environ 30 km). L’étude minéralogique des rejets calcaires phosphatés a été effectuée à l’aide des<br />

différentes techniques d’analyses DRX, MEB, et MET. Les résultats obtenus montrent que ces stériles sont riches<br />

en minéraux carbonatés notamment la calcite (CaCO3 ; 40 %), la dolomite (CaMg(CO3)2, 14,6 %) et leur teneur<br />

résiduelle en apatite ((PO4)Ca3) est de 28,4 %.<br />

Les résultats des essais préliminaires de traitement par la DAC utilisant des phosphates à une granulométrie de<br />

0,8 mm à 0,5 cm et un rapport L/S de 1, ont montré que l’acidité du milieu est neutralisée (pH=7 à 7,5) au bout<br />

de 25 h de temps et l’élimination des métaux est presque totale (99,9%). Ainsi le traitement par ce DAC, a permis<br />

d’atteindre des concentrations en cuivre, l’aluminium et en zinc respectivement de


A SIMULATION PACKAGE FOR THE PHOSPHATE INDUSTRY<br />

Messaoudi Brahim,<br />

Business & Technologies International,<br />

30, rue Oum Rabi. Res. Oum Rabi II. Apt. N_ 1. Agdal-Rabat, MOROCCO<br />

In view of the importance of simulation in improving the comprehension of various phenomenon, reducing costs,<br />

and efficiently managing process operations, among other advantages, it has been decided to develop a<br />

simulation package for the phosphate industry in order to ease the efficient follow up of its various complex<br />

production steps at the industrial level, through the use of the computer aided process management (CAPM)<br />

techniques.<br />

For this purpose, mathematical models related to each of the main operations involved in the phosphate<br />

industry have been established based on phenomenological considerations of the corresponding operations.<br />

These consisted of several partial differential equations obtained from mass and thermal balances through<br />

the systems involved in the process, together with some simplifying assumptions related to process<br />

hydrodynamics. The operations dealt with within the package consisted of drying, calcination, sulfuric acid<br />

production, phosphoric acid production, phosphoric acid concentration, and fertilizers production.<br />

Furthermore, for more convenience and in order to make it easier for future users, the design of an interactive<br />

interface has been considered as well, and is intended to deal with data exchange between the package modules.<br />

These include a chemical reaction models library, a phosphate industry related unit operations library, a<br />

physico-chemical properties database, a thermodynamical database together with a numerical-methods-for-nonlinear-programming<br />

library.<br />

So far, the validation of some of the models established has been assessed through the comparison of calculated<br />

and observed results on sites, and further work is required to validate the total modules of this package.<br />

ADAPTATION DES QUALITÉS D’ACIDE PHOSPHORIQUE OCP<br />

AU BESOIN DU MARCHÉ<br />

P5<br />

K.Samrane,<br />

Direction R&D/Groupe OCP Maroc<br />

Phosphore III&IV, El Jadida/MAROC<br />

A. Safi,<br />

Direction Maroc Phosphore Safi / OCP - MAROC<br />

Les perspectives de croissance de la demande mondiale de phosphates et dérivés attirent sur le marché une<br />

offre accrue. Pour les besoins du marché en acide phosphorique qualités spéciales pour application en industries<br />

alimentaire et détergence, le groupe OCP a initié déjà depuis le début des années 90 une politique visant<br />

l’adaptation des qualités d’acide phosphorique pour satisfaire les besoins spécifiques des clients traditionnels<br />

ou potentiels, le but étant de se positionner sur tous les maillons de la chaîne de valeur, d’une large gamme de<br />

P4<br />

107


minerais aux différents engrais en passant par l’acide phosphorique, multipliant ainsi ses possibilités d’arbitrage.<br />

Cette politique basée sur la synergie entre les différentes compétences du groupe OCP en matière de R&D, de<br />

production et de Marketing, a été couronnée par la mise en œuvre progressive de nouvelles qualités spéciales<br />

d’acide phosphorique par l’adaptation des procédés de production existants, et par la certification des processus<br />

de production de nouvelles qualités ainsi que leurs traçabilités en collaboration avec les clients, et d’autre part par<br />

la mise en place de feuille de route opérationnelle concernant l’innovation et la création de nouvelles qualités.<br />

Ce travail synthétise le background OCP dans le domaine de fabrication de qualités spéciales, et présente le scope<br />

des processus d’adaptation des qualités d’acide phosphorique intégrant un ensemble d’opérations de traitement<br />

parmi elles, les opérations classiques à savoir, la désursaturation, la décantation, la désulfatation, la défluoration,<br />

la désarseniation ainsi que des opérations typiques pour l’élimination de certaines impuretés.<br />

108<br />

MICRO GRANULATION DES PHOSPHATES DOWN STREAM<br />

A. HAKAM, M. KHOULOUD, Y. ZEROUAL<br />

Direction Recherche & Développement du Pôle Industriel de l’OCP - MAROC<br />

Le grand projet de développement du Groupe OCP ; relatif au transport du minerai sous forme de pulpe de<br />

phosphate via pipeline ; permettra l’arrêt de l’opération du séchage sur les sites de Khouribga et Youssoufia.<br />

La substitution du transport du minerai par train en faveur des pipelines, reliant Khouribga à Jorf Lasfar et Ben<br />

guérir à Safi ; permettra au Groupe OCP de réduire ses coûts de transport à hauteur de 80%.<br />

L’acheminement de toute la production en phosphates de Khouribga vers Jorf Lasfar par pipeline ; permettra à l’OCP<br />

de transférer toutes les opérations d’export du phosphate au port de jorf.<br />

La pulpe de phosphate destinée à l’export subira des opérations de filtration, de séchage, et de micro granulation<br />

des ultrafines générées lors du séchage ; et ce, dans le but d’éviter l’envolement de ces ultrafines lors du transport.<br />

Les ultrafines micro granulées ainsi que le produit séché seront mélangés pour constituer le dit produit phosphaté<br />

qui sera destiné à l’export.<br />

Le présent travail regroupe les résultats obtenus des essais de micro granulation des ultrafines générées lors du<br />

séchage des pulpes des phosphates émanant des qualités de Khouribga, lesquelles ayant subi avant cette micro<br />

granulation, des opérations de filtration, de séchage, et ce, dans le but d’éviter l’envolement de ces ultrafines lors<br />

du transport.<br />

Cette étude examine les possibilités de granuler ces ultrafines moyennant l’ajout d’un liant de granulation. Les<br />

phosphates granulés sont soumis aux tests physiques en vu d’évaluer, d’une part la pertinence de la granulation, et<br />

d’autre part, l’efficacité du liant de granulation testé.<br />

Ainsi, les propriétés physiques des produits granulés sont déterminées en mesurant leur résistance à l’abrasion ou<br />

friabilité, et leur granulométrie.<br />

P6


FABRICATION DES SUPERPHOSPHATES SSP&TSP A PARTIR DES PHOSPHATES<br />

DOWN STREAM<br />

A. HAKAM, M. KHOULOUD, Y. ZEROUAL<br />

Direction Recherche & Développement du Pôle Industriel de l’OCP - MAROC<br />

Les superphosphates Simple et triple sont des engrais simples qui renferment un seul élément fertilisant qui est le<br />

phosphore. C’est une excellente source de phosphore pour l’alimentation des plantes, la plus grande partie du P2O5<br />

qu’il contient étant soluble dans l’eau, car son constituant principal est le phosphate mono calcique monohydrate.<br />

Dans le cadre des investigations menées sur le projet « Down Stream », nous avons entrepris des essais de<br />

fabrication des engrais TSP et SSP à l’échelle laboratoire à partir des qualités Down Stream A et B en comparaison<br />

avec les qualités standard A et B.<br />

La présente étude a pour objet d’établir une comparaison des performances lors de la fabrication des engrais TSP<br />

et SSP à partir des phosphates précités. Les essais de fabrication du TSP et du SSP avec les différentes qualités de<br />

phosphate précitées, ont été réalisés en test discontinu à des taux d’acidulation théoriques pour le cas du TSP, et à<br />

des mouillages théoriques pour le cas du SSP calculés à partir des formules empiriques correspondantes, basées sur<br />

la composition chimique des phosphates étudiés.<br />

Les essais de fabrication des engrais TSP& SSP à partir de ces phosphates ont été mis à profit pour examiner en<br />

particulier :<br />

• La détermination de la réactivité de ces phosphates<br />

• Les paramètres de fabrication du TSP et SSP avec les différentes qualités de phosphate étudiées.<br />

• La qualité physico-chimique des engrais TSP& SSP au cours du mûrissement.<br />

• Le bilan matière et les consommations spécifiques prévisionnelles.<br />

• Le taux de dégagement du Fluor pendant le mûrissement des SSP.<br />

TRAITEMENT D’ACIDE PHOSPHORIQUE : DÉCADMIATION PAR ADDITIF<br />

Naoual MAKHOUKHI,<br />

OCP - MAROC<br />

Ce projet a pour objectif de réaliser la décadmiation de l’acide phosphorique par ajout du réactif à base de<br />

dithiophosphinate, tout en étudiant l’influence du réactif au niveau de la concentration d’acide phosphorique. Il a<br />

été initié pour répondre à plusieurs besoins dont les suivants :<br />

- conformité aux besoins des clients ;<br />

- spécification concernant la production du DCP ;<br />

- évolution de la réglementation concernant le Cd.<br />

Après des essais laboratoires et in situ, nous avons mené des essais industriels qui ont duré 8 jours. Une ligne de<br />

production d’acide phosphorique était sujette des essais de décadmiation et une mobilisation de tout un circuit<br />

arrivant à l’acide final (prêt à l’export) a été déployée afin de pouvoir s’assurer de l’efficacité du réactif et du non-<br />

P7<br />

P8<br />

109


elargage du Cd dans l’acide phosphorique final. L’injection du réactif a nécessité la confection d’un dispositif<br />

permettant l’injection du produit au niveau de la conduite de bouillie tout en assurant sa bonne diffusion et<br />

homogénéisation avec le milieu.<br />

Plusieurs concentrations ont été étudiées (2, 4 et 6 kg/t de P 2 O 5 ). Les résultats obtenus ont montré une réduction<br />

des teneurs du cadmium de l’ordre de 82% pour l’acide 30% en P 2 O 5 . L’installation n’a montré aucun signe de<br />

détérioration suite à l’injection du réactif. Aucun entraînement n’a été observé, ceci a été vérifié par le contrôle des<br />

analyses du P 2 O 5 dans les gardes hydrauliques. L’acide décadmié a ainsi, après concentration, montré des teneurs<br />

en cadmium de 3.6 ppm à la sortie CAP.<br />

BOUMAGGARD1 , E. H. JOURANI2 CONTEXTE PALÉO-OCÉANOGRAPHIQUE DES ACCUMULATIONS PHOSPHATÉES<br />

AU NIVEAU DU BASSIN D’ESSAOUIRA<br />

(KHEMIS MESKALA - MAROC)<br />

P9<br />

, E.<br />

1 Laboratoire Géoresources, FST-Marrakech, BP:549, Université Cadi Ayyad<br />

2 Groupe Office Chérifien des Phosphates (OCP), 2-4, Rue Al Abtal Hay Erraha BP<br />

5196 , Casablanca, MAROC<br />

L’étude a pour objectif de préciser le contexte hydrodynamique ayant commandé la mise en place des accumulations<br />

phosphatées au niveau du bassin d’Essaouira. Elle est basée sur une analyse sédimentologique et géochimique.<br />

Les résultats obtenus montrent que le signal granulométrique met en évidence des épisodes d’accélérations<br />

de paléocourants, séparées par des épisodes de décélérations qui coïncident d’une manière générale avec un<br />

maximum d’accumulation de particules phosphatées. La matière organique se concentre dans le sédiment au<br />

début et à la fin des épisodes d’accélération qui interviennent grosso modo aux mêmes périodes aussi bien à l’Est<br />

qu’à l’Ouest du bassin. Ces épisodes se traduisent généralement par la mise en place de concentrations élevées en<br />

particules grossières (silts grossiers à des sables fins). Ceci est en liaison étroite avec l’augmentation de l’intensité<br />

des circulations océaniques sur la paléo-plate-forme et les processus d’advection. Ces accélérations de courant,<br />

sont en corrélation avec les variations eustatiques; pendant les périodes de haut niveau marin, les apports en<br />

particules grossières augmentent et sont généralement advectées par des processus gravitaire type Débris Flow<br />

ou par simple gravitation provoquée par une instabilité d’origine tectonique. Pendant les périodes de bas niveau<br />

marin, les particules fines sont advectées dans des conditions hydrodynamiques très turbulentes, sous la forme de<br />

panaches turbidités d’une façon similaire à ce que l’on observe actuellement au niveau de la marge des provinces<br />

sud marocaines et sur l’ensemble de la marge NW africaine (Boumggard, 2002).<br />

L’étude des minéraux argileux traduit une évolution d’un pole chimique peu confiné (’illite, kaolinite et<br />

interstratifiées) à un pole plus confiné. (Palygorskites, smectite) Cette même évolution a été observée dans la<br />

série phosphatée de Bouabout (Jourani, 1988) et dans le bassin des Gantours (Belfkira, 1983) ainsi que dans les<br />

phosphates de la bordure orientale de l’île de Kasserine en Tunisie (Sassi, 1984).<br />

La comparaison des échantillons analysés ne montre aucune variation latérale, et c’est exactement le même cas<br />

que dans le bassin des Gantours où ces minéraux ont été reconnus par Belfkira (1983) mais sans aucune variation<br />

latérale.<br />

Mots clefs : Hydrodynamisme, Signal granulométrique, Paléo-circulations<br />

110


LA SILICIFICATION DES PHOSPHATES MAROCAINS :<br />

TYPOLOGIE GENETIQUE ET CONSEQUENCES INDUSTRIELLES<br />

Hamid EL HADDI 1 , Abdelmajid BENBOUZIANE 1 , Es-said JOURANI 2 , Mbarek<br />

AMAGHZAZ 2 & Mustapha MOUFLIH 1 ,<br />

Laboratoire des Géoressources Sédimentaires et Environnement, Université<br />

Hassan II Mohammedia-Casablanca, Faculté des Sciences Ben M’Sik, Maroc,<br />

Direction Géologie et d’Hydrogéologie, Pôle Industriel, Groupe OCP SA,<br />

Casablanca/MAROC<br />

P10<br />

L’exploitation des richesses minières a contribué, de tous temps, au développement de l’Homme. Ce dernier a<br />

toujours cherché à tirer profit, dès leurs découvertes et a déployé tous les moyens pour maximiser ce profit. Dans la<br />

manière d’exploitation des gisements miniers. Tel est le cas de l’exploitation minière des phosphates au Maroc, qui<br />

ont connu une hiérarchisation, au fil des temps, des priorités liées à l’extraction, l’enrichissement puis la valorisation<br />

des phosphates.<br />

La série phosphatée marocaine d’âge fini-Crétacée - Paléogène est considérée parmi les séries les plus riches<br />

du monde en P2O5. En effet, le Maroc possède presque les 75% des réserves mondiales des phosphates, qui se<br />

localisent principalement dans les bassins Oulad Abdoun, Gantour, Meskala et Oued Eddahab(Boucraa). Cette<br />

minéralisation inestimable s’associe à des niveaux siliceux, des niveaux calcaires plus ou moins dolomitiques, des<br />

niveaux argileux et marneux dans lesquels la montmorillonite et d’autres minéraux argileux magnésiens sont<br />

fréquents. D’autres associations sont possibles (sables, grès, gypses...), leur éventail s’élargit lorsque la teneur des<br />

niveaux phosphatés s’abaisse (Cas des séries phosphatées du Haut et Moyen Atlas).<br />

Les phosphates marocains se caractérisent également par leur extrême richesse en phénomènes syn-sédimentaires<br />

à post-diagénétiques. En effet ils constituent des gisements de référence pour les études géologiques d’une période<br />

clé de l’histoire de la terre. A titre d’exemple la silicification avec toutes ses formes peut être considérée comme :<br />

• un processus diagénétique précoce contrôlé par la granulométrie des particules sédimentaires. Les plus<br />

fort taux de silicification sont souvent encaissés dans des faciès fins.<br />

• un processus diagénétique précoce lié à la topographie et la bathymétrie qui engendre une quartzification,<br />

opalisation, puis calcédonisation des faciès marneux et calcaires.<br />

• un processus diagénétique plus tardif (Mésogenèse) en rapport avec le taux d’enfouissement et les<br />

fluides dolomitisant.<br />

• un processus indifférents au milieu. La calcédoine caractérise les silicifications en milieu calcaire, tandis<br />

que l’opale, au moins originellement affectionne les roches argileuses, et la quartzification s’installe dans<br />

les faciès sableux et gréseux.<br />

Ce phénomène influence plus au moins la qualité des phosphates naturels qui contiennent des éléments qui<br />

peuvent être valorisés en tant que sous-produits ou qu’il convient d’éliminer parce qu’ils constituent un danger<br />

pour l’environnement par suite de l’utilisation des engrais phosphatés. Ces éléments affectent par la suite la<br />

couleur, la densité et la viscosité de l’acide phosphorique. Par exemple les impuretés organiques sont généralement<br />

présentées sous forme de suspensions colloïdales. Ainsi, l’acide phosphorique contenant ces matières organiques<br />

111


est noir ou brun, et celui n’en contenant pas est vert.<br />

À l’heure actuelle, si les sources de silice et les conditions de sa solubilité sont bien connues, les mécanismes de<br />

fixation par les organismes et de précipitation en fonction du milieu, du substrat, du paysage et du climat, puis la<br />

diagenèse qui en résulte, ouvrent encore un large domaine d’investigation et d’expérimentation.<br />

Mots clés : Phosphates Marocains, Silice, Diagenèse, Acide phosphorique, Valorisation des phosphorites.<br />

Travaux réalisés dans le cadre du projet de coopération scientifique entre l’OCP et le Département de Géologie<br />

de la FSBM. Nous remercions vivement les responsables OCP pour leurs soutiens.<br />

ABIA1 F. Z., LAADRAOUI1 M., BOUMAGGARD1 E. H., JOURANI2 SEDIMENTARY ENVIRONMENTS AND THEIR SPATIAL EVOLUTION INTO THE<br />

BOUCRAA PHOSPHATE DEPOSIT (MOROCCO) DURING THE<br />

UPER CRETACEOUS AND LOWER TERTAIRY STAGES.<br />

P11<br />

E.<br />

(1) Dept of Geology, FSTM, Cadi Ayyad. University, BP. 459, Marrakech, MAROC<br />

(2) Office Chérifien des Phosphates (OCP), Angle Rte d’El Jadida- Casablanca<br />

The Boucraa phosphatic deposit is a component of the Laayoune basin witch is situated on the North-West<br />

continental margin of Africa and is bounded on the east North-East trending isoclinals Hercynian (late Paleozoic)<br />

rocks. The basin is terminated on the North by the Anti Atlas range of Morocco and on the south by the Erguibat<br />

Precambrian uplift. The basin is made up of Jurassic to Eocene sedimentary rocks. The upper Cretaceous rocks are<br />

continental on the southern part of the basin and marine in the north, where they are also slightly phosphatic.<br />

Paleocene and Eocene marine sedimentary rocks occur at the top of sequence. complete sedimentary sequence has<br />

deposited on the passive north-western margin of the African craton, formed by the Triassic rifting of North America<br />

and Africa, followed by seafloor spreading in the Jurassic and later periods.<br />

A minor episode of phosphatogenesis occurred in Maastrichtian time. In the southern part of the basin the<br />

Maastrichtian sediments are composed of thick neritic and continental sandstone, but in the northern part of the<br />

basin a marine dolomitic shale was deposited, which at places is slightly phosphatic.<br />

In Paleocene and Eocene time, weakly transgressive sediments were deposited over the Late Cretaceous neritic<br />

sediments and were followed by a further deepening of the basin and a final shallowing. Therefore, a major change<br />

in sedimentation occurred in the northern part of the basin with the deposition of shale, dolomitic marl and<br />

siliceous and phosphatic sediments. Detrital sedimentation was greatly reduced, and a thin lagoonal facies was<br />

developed on the platform.<br />

A sedimentologic study basing on the facies analysis shows that a Boucraa deposit which is located on the east<br />

border of the Paleocene basin, near the present erosional limit of the Paleocene rocks, corresponds approximately<br />

to the ancient shoreline. However, a bore holes correlation shows that the upper cretaceous and lower Tertiary<br />

rocks are thin in the south-eastern part of the basin and abruptly thicken towards the Atlantic Ocean with several<br />

petrographic changes. This result is in agreement with the regional structural setting of the Boucraa deposit as like<br />

a simple homocline dipping at a rate of 10-20 m/km towards the west.<br />

Post-sedimentation tectonics of the Mesozoic and lower Tertiary rocks has been weak. Mild flexure caused by the<br />

movement of a zone of deep blocks, whose eastern limit is situated at about the location of the Boucraa deposit,<br />

has modified slightly the general slope of the terrain.<br />

Key-words: Paleocene, sedimentary environments, phosphatic deposit, Boucraa, Laayoune basin,<br />

Morocco.<br />

112


ANALYSIS OF THE LIKELY SUPPLY SIDE CHANGES IN THE INTERNATIONAL<br />

PHOSPHATES MARKET<br />

P12<br />

Mike Nash,<br />

Senior Editor Manager , ICIS pricing/ICIS news/The Market, UNITED KINGDOM<br />

A forward looking analysis of the likely supply side changes in the international phosphates market, particularly<br />

the challenges to the dominant US producers in terms of competition from major Middle East suppliers, most<br />

notably Ma’aden and the impact of the substantial capacity additions taking place at OCP and its own strategy<br />

going forward. US challenges also come in the form of increased restrictions to production in the US in terms of<br />

environmental constraints and the dwindling supply of rock. China would also be a major focus, looking at export<br />

tax policy and China’s potential role in making or breaking the market. A major focus would be on India and how it<br />

operates in the phosphates market and how we believe demand and subsidy policy may look going forward. There<br />

would also be an analysis of how trade flows may change with the start up of new producers worldwide.<br />

Nora Elassel1 , Azzouz Kchikach1 , Teresa Teixidó2 , José Antonio Peña2 ,<br />

Es-said Jourani3 DÉTECTION DE DÉRANGEMENTS PAR LE GÉORADAR GPR À BASSE<br />

FRÉQUENCE DANS LE BASSIN PHOSPHATÉ DE SIDI CHENNANE<br />

(KHOURIBGA, MAROC)<br />

P13<br />

1 Laboratoire Géoressources, Faculté des Sciences et Techniques, Université Cadi<br />

Ayyad, Marrakech, Maroc<br />

2 Instituto Andaluz de Geofísica, Area de Geofísica Aplicada, Universidad de<br />

Granada, Spain<br />

3 Groupe Office Chérifien des Phosphates (OCP), Maroc.<br />

Plusieurs prospections géophysiques ont été réalisées dans les dépôts phosphatés de Sidi Chennane (Maroc), en<br />

utilisant des méthodes électromagnétiques telles que les sondages électromagnétiques dans le domaine temporel<br />

(TDEM) et les sondages électriques verticaux (VES). L’objectif de ces méthodes de localiser les dérangements qui<br />

sont masqués par les niveaux de phosphate qui interrompre le rythme des travaux d’extraction. Le TDEM et VES<br />

sont des méthodes valables pour la cartographie de ces corps stériles, mais la vitesse d’obtention des données de<br />

terrain est très lente par rapport aux exigences de la production d’exploitation. Dans cette étude, nous présentons<br />

une autre méthode de prospection géophysique, qui est le géoradar (GPR). Cette méthode est également une<br />

méthode électromagnétique, elle est caractérisée par la rapidité de la collecte des données sur le terrain. Dans<br />

cette étude, nous démontrons que la prospection GPR apparait comme méthode rapide et capable de détecter les<br />

dérangements.<br />

Mots-clés: Prospection géophysique, méthodes GPR, dérangements (corps stériles), séries phosphatées.<br />

113


114<br />

Es-Said JOURANI & Youssef DAAFI<br />

OCP - MAROC<br />

INFORMATISATION DE L’ACTIVITÉ GÉOLOGIQUE À L’OCP<br />

La base de données géologique de l’OCP est formée par les log stratigraphiques de plus de 24 000 ouvrages<br />

(puits et sondages) réalisés depuis les années 20 à aujourd’hui à travers les bassins des Oulad Abdoun, Gantour,<br />

Meskala et Oued Eddahab. Le traitement de ces données, dans le cadre des études géologiques de caractérisation<br />

et d’estimation des ressources et réserves selon diverses contraintes, constitue une tâche lourde et fastidieuse en<br />

l’absence d’un outil informatique.<br />

L’acquisition d’une solution informatique en 2007 a permis d’améliorer la qualité et les délais de réalisation des<br />

études géologiques. Cette solution prend en charge :<br />

• Le stockage de l’information géologique dans une application développée sous ORACLE avec une interface Access<br />

• Le traitement des données géologiques sous GDM (Gelogical Data Management) qui offre la possibilité de la<br />

modélisation des gisements par la méthode géostatistique<br />

• La présentation et l’intégration des données dans un SIG (Système d’Information Géographique) pour :<br />

• Une analyse multicritère des données<br />

• Une présentation des données<br />

• Une estimation des ressources et des réserves selon les critères fixés<br />

Outre, la facilité d’accès à l’information géologique et son traitement, la solution acquise a permis de sécuriser les<br />

données des coupes géologiques archivées sous format papier.<br />

Mots clés : Ressources, Réserves, modélisation, base de données, GDM, géostatistique, SIG<br />

M. Nasraoui1& E. Bilal2 RARE-EARTH ELEMENTS CHARACTERIZATION IN NATURAL APATITE:<br />

MICROPROBE ANALYSES AND COUPLED SEM/CL SPECTROSCOPY.<br />

P15<br />

1Institut Polytechnique LaSalle Beauvais, 19 rue Pierre Waguet BP 30313, 60026<br />

BEAUVAIS Cedex, FRANCE.<br />

2 Ecole Nationale Supérieure des Mines de Saint-Etienne, 158, cours Fauriel<br />

F-42023 SAINT-ÉTIENNE cedex 2, FRANCE, CNRS - UMR 6524<br />

Natural apatite can show complex chemical compositions shifting the general formula Ca 5 (PO 4 ) 3 (F,Cl,OH) to different<br />

isomorphs. Substitution of the constituent ions Ca2+ , PO4 3- and F- by, e.g., OH- , Na + , REE3+ , Y3+ - - -<br />

, CO , SiO4 ,NaCO3<br />

3<br />

are common. Ca2+ is often substituted by REE3+ and charge compensation is done by intrinsic electron defects,<br />

depletion of the constituent ions or coupled substitution. Consequently, the complex analyses of REE incorporation<br />

in apatite could give information about the chemical and structural alteration of apatite.<br />

P14


Many REE are well known as luminescence activators, even at few ppm content, and apatite can display various luminescent<br />

emissions.<br />

The purpose of this work is to to use the combination of:<br />

* CL-microscopy<br />

* Microprobe quantitative REE analyses,<br />

* CL-spectroscopy coupled with Scanning Electron Microscopy for mapping the relative REE distribution, and identification<br />

of the luminescence activators.<br />

The rare-earth element (REE) composition of natural apatite, coming from a carbonatite ore deposite (Lueshe, RDC), was<br />

analysed.<br />

Apatite is enriched in LREE comparative to the chonrdite composition.<br />

SrO vs (La 2 O 3 +Ce 2 O 3 ) of Lueshe ore deposit apatites<br />

(microprobe analyses Strong inhomogenous REE-<br />

distribution, not detected by microprobe, was revealed by<br />

CL-mapping and shown as repetitive zonning.<br />

Mineralogical composition of Lueshe ore deposit<br />

115


Apatite zoning revealed by CL spectroscopy coupled with SEM imaging<br />

The luminescence activators were also identified<br />

Keywords: Apatite; Rare Earth Elements, Microprobe; CL-spectroscopy; CL-microscopy; Scanning<br />

Electron Microscopy.<br />

116<br />

Interpretation of the CL spetrum of<br />

Lueshe apatire


OPERATION OF SURFACE MINER:<br />

RETROSPECT OF A DECADE JOURNEY IN INDIA<br />

Kaushik Dey and Jayanta Bhattacharya,<br />

Department of Mining Engineering Indian Institute of Technology,<br />

Kharagpur, INDIA<br />

Surface miners made their debut in Indian surface mining industry in 1996. Initially, it was introduced for mining of<br />

limestone deposits. The application of surface miner was extended for coal mining in the year 1999. Presently, more<br />

than 100 surface miners are working in Indian surface mines owing to its higher productivity and environmentfriendliness.<br />

India is the largest user of surface miner in the world. Presently, surface miner is also experimented for<br />

excavation of different deposits, namely, bauxite, hematite, sandstone, shale etc.<br />

Initially, the surface miners were being deployed largely on trial and error basis and the investors are interested<br />

in-field experimental runs. Manufacturers evaluated the applicability of surface miners based on compressive<br />

strength of rock. Recently, a cuttability index has been developed to predict the applicability and performance of<br />

surface miners for different application condition. This enables the user to predict the productivity of the machine<br />

prior to invest on purchasing the same.<br />

The main reason for the popularity of surface miner is its environment-friendly excavation compared to the<br />

conventional drilling and blasting technique. It completely eliminates drilling blasting and primary crushing unit<br />

and thus reduces their associated environmental hazards. Apart from this, the sized excavated material increase the<br />

transport/conveying efficiency and thus save the energy requirement in transportation.<br />

Application of surface miner with proper planning yields better efficiency. The planning can be categorized into two<br />

parts, namely, short term and long term planning. Short term planning is within the control of field engineer and<br />

is carried out to achieve the steady production rate and quality control. For mining with surface miner, short term<br />

planning is carried out to select the operating mode, place of operation etc. Surface miner can allow a steep slope<br />

angle. As the blasting (short term stress) is eliminated the factor of safety for the pit slope can be kept low. This<br />

reduces the stripping ratio and increases the overall productivity of the mine. These are the essential consideration<br />

for long term planning with surface miner.<br />

This present paper would discuss the Indian experience of surface miner operation on the above issues. The benefits<br />

of the deployment and the challenges faced during operation have been discussed in this paper. The recent research<br />

and development carried out in this area is also highlighted.<br />

Key words: Surface miner, cuttability, mine planning, environmental impact<br />

P16<br />

117


INCREASING LAND AND COMMUNITY RELATED CONFLICTS IN MINERAL<br />

EXPLOITATION- CASE STUDIES FROM INDIA<br />

P17<br />

Jayanta Bhattacharya,<br />

Professor ,Department of Mining Engineering, Indian Institute of Technology,<br />

Kharagpur, INDIA,<br />

Honorary Advisor of Environmental and Social Performance, Tata Steel<br />

In the post independence India, the recent land and community conflicts are emerging as great challenges ahead<br />

of technology and project finance. Land and community related conflicts are on the rise in populous and land short<br />

emerging economies of India where rehabilitation and resettlement schemes by the government and the corporate<br />

in the mining areas are bringing in mixed results.<br />

Poor knowledge of mining and mineral engineers about the aspects of land holdings, politics and little knowledge<br />

of local culture of the settled and tribal communities are bringing in industrial hurdles and great economic loss.<br />

The paper describes the issues and case studies of similar events in India and the preparedness of the corporate to<br />

handle the crisis.<br />

118<br />

ENERGY MANAGEMENT IN THE PHOSPHATE INDUSTRY<br />

Messaoudi Brahim<br />

Business & Technologies International,<br />

30, rue Oum Rabi. Res. Oum Rabi II. Apt. N_ 1. Agdal-Rabat, MOROCCO<br />

P18<br />

Energy management in the phosphate industry is very important; especially in the sulfuric acid plant, as it is the<br />

main source of energy for the production of both intermediate and final products. In this context, and for the<br />

sake of rational and efficient usage of available energy sources, it has been decided to assess the impact of «Pinch<br />

Analysis» and «Process Integration» on a DAP production process, and deduce some useful conclusions with<br />

regard to its application to this kind of industry.<br />

Process integration includes a number of techniques that allow engineers to evaluate entire processes or<br />

sites, rather than focusing on individual unit operations. This includes hierarchical design methods, knowledgebased<br />

systems, numerical and graphical techniques and pinch analysis. However, in the area of energy efficiency,<br />

which is the primary focus of this work, pinch methods are dominant, but are often interchangeable with “process<br />

integration (PI)” in this field.<br />

The first phase of this analysis employed pinch targeting within an existing fertilizers plant, a methodology for<br />

identifying energy-cost reduction potential based on the thermodynamic characteristics of a process. The second<br />

phase consists of identifying potential solutions corresponding to opportunities identified during the assessment.<br />

This assessment involved mainly the production area of the plant related to sulfuric acid production. Several<br />

opportunities for energy use reduction were identified, and related annual savings resulting from any eventual<br />

energy conservation project have been evaluated.


Harris Jack,<br />

President, VIP International, Inc., USA<br />

AND YOU THOUGHT YOU HAD PROBLEMS !!<br />

Maintaining a sulfuric acid plant is without a doubt one of the most challenging and demanding endeavors in<br />

industry. Typically, by the time a problem has presented itself to the casual observer, the internal damage can be<br />

mind-boggling.<br />

Often times the maintenance engineer feels helpless and alone, wondering what transgression in his past has<br />

caused his fate of facing an unexpected disaster in his acid plant. The feeling of “ How could this happen to me?”<br />

sets in.<br />

Over the past 30 years VIP International has inspected and repaired hundreds of acid plant surprises from collapsed<br />

towers to totally fused catalyst beds. This presentation of actual video footage of some of these disasters will give<br />

comfort to the maintenance provider that no matter how bad you think your problem is, someone has it worse.<br />

REACTIVE TRANSPORT THROUGH UNSATURATED ZONE OF SOILS AND THE<br />

FATE OF POLLUTANTS: NUMERICAL MODELING OF THE MAIN PHYSICAL<br />

CHEMICAL AND GEOBIOCHEMICAL PROCESSES<br />

Mohamed Azaroual*, Marie Pettenati, Marc Parmentier, Nolwenn Croiset,<br />

Laurent André,<br />

BRGM, Water Division, 3 av. C. Guillemin, BP 36009,<br />

45060 Orléans, FRANCE<br />

The unsaturated zone acts as a natural reactive filter and can reduce or remove microbial and organic/inorganic<br />

contaminants through biogeochemical processes enhancing mass transfer between phases (soil – water –<br />

gases). The geochemical reactivity of soil minerals and the biodegradation of organic matter involving microbial<br />

mediated redox-reactions are the key reactions controlling mass and heat transfers within and through unsaturated<br />

zone, which is an important part of the critical zone, from the surface to the deep aquifers. Understanding the<br />

fundamental processes including the geochemical reactivity and dynamics of soil is a prerequisite to improve<br />

and/or maintain water quality while maintaining environment quality and protecting other resources (aquifers,<br />

agricultural production, soil, etc.).The reactive transport mechanisms induced by natural recharge of deep aquifers<br />

must allow (bio)geochemical reactions involving metals, metalloids and organic matter as pollutants.<br />

The reactive transport modelling is carried out in order to identify the relevant processes controlling the fate of<br />

pollutant transfers through soil. The performance of the UZ to purify the infiltrated water is based on chemical,<br />

geobiochemical and hydrodynamic coupled processes in a porous medium. Some results of BRGM on-going<br />

projects based on the understanding of reactive transport processes will be presented. The technologic challenges<br />

emerged from the environmental safety issues will be discussed.<br />

P19<br />

P20<br />

119


120<br />

INTRODUCTION OF DIVERSE APPLICATIONS WITH HYPERBARIC FILTRATION<br />

AFTER PIPELINE TRANSPORT<br />

R. Raberger, R. Prader<br />

Andritz AG, Graz/Austria<br />

Applying positive pressure in a disc filter provides low residual moisture in combination with the proven high<br />

throughputs (about 100 to 150 t dry solids phosphorite in one hour with one unit) that are normally associated<br />

with continuous filtration.<br />

The continuous filtration process within the pressure vessel ensures continuous feed and even power consumption.<br />

This eliminates the need for all the surge capacity equipment required in similar batch-type filtration systems.<br />

Dewatering of fine concentrates is generally an important unit operation in the commercial treatment of minerals.<br />

In pipeline transportation, a large amount of suspension has to be filtered at the end of the pipeline. Hyperbaric<br />

filtration (HBF) combines low residual moistures and high specific throughputs, offering a highly competitive<br />

solution for dewatering suspensions after pipeline transport. Hyperbaric filtration has proved successful in a<br />

number of plants operating worldwide (Europe, China, Brazil, Russia, USA, Australia, and Chile). Capital costs are<br />

moderate; however the operating and maintenance costs have turned out to be low due to ease of maintenance<br />

and a minimum of operator intervention [1], [2].<br />

Diverse materials like iron ore, bauxite, copper flotation concentrate and phophorite filtration will be introduced<br />

as an application for this technology after pipeline transport. Hyperbaric filtration offers a solution for filtering the<br />

large amount that is essentially necessary after pipeline transport [3].<br />

[1] R. Raberger: Approaches to Maintenance of Hyperbaric Filtration Plants in<br />

High Abrasion Applications; Proceedings MAPLA 2008 V Encuentro<br />

Internacional Mantenedores de Plantas Mineras, Santiago de Chile (2008);<br />

page 75-84.<br />

[2] R. Raberger, R. Prader: Hyperberic Filtration after Pipeline Transport of Phosphorite Suspension.<br />

Proceedings Covaphos III, Volume 5 (2009) page 59-67<br />

[3] M. Sant´ Ana, J. Morales, R. Prader, J. Kappel, M. Heinzle: Hyperbaric<br />

Bauxite Filtration: New Ways in Bauxite Transportation; Proceedings 8th<br />

International Alumina Quality Workshop; 7th - 12th September (2008)<br />

Darwin, Australia; page 292-294<br />

P21


D.Oussi<br />

OCP - MAROC<br />

PROJET DE RENOUVELLEMENT DU TUBE SÉCHEUR<br />

DE LA LIGNE ENGRAIS TSP<br />

P22<br />

Dans le cadre de la politique de fiabilisation de l’outil de production de la Direction Maroc phosphore safi, un projet<br />

d’envergure de révision de la ligne engrais TSP a été engagé au début de l’année <strong>2011</strong> et qui a touché, entres autre,<br />

la rénovation des équipements stratégiques de la section de séchage à savoir :<br />

- Renouvellement du tube sécheur (Longueur : 24 m, Largeur : 4 m, : Poids :100 T) ;<br />

- Renouvellement de la chambre de combustion (capacité 20 000 th/h)<br />

La réalisation du projet de renouvellement du tube sécheur par les méthodes conventionnelles (découpage,<br />

démontage de l’ancienne virole par tronçons et montages de la nouvelle virole par tronçons) nécessitera un arrêt<br />

de la ligne d’une durée de 50 jours du fait de l’emplacement du tube sécheur à l’intérieur de la ligne avec une unique<br />

zone d’accès, coté latéral, d’environ 3 mètres.<br />

Pour éviter un arrêt de longue durée dans un contexte de forte demande les équipes de maintenances ont fait<br />

recours à de nouvelles méthodes de manutention qui ont données des résultats exceptionnels en terme de<br />

réduction de délai de réalisation pour les opérations de changements des équipements lourds de grandes tailles.<br />

L’utilisation des méthodes précitées a permis de réaliser cette opération de changement de la virole du tube sécheur<br />

en 9 jours. Cette dernière a été montée à l’extérieur de la ligne avant la date de l’arrêt. La chronologie des étapes<br />

de cette réalisation à forte valeur ajoutée en terme d’augmentation de volume de production de TSP de l’année<br />

<strong>2011</strong> est comme :<br />

1. Démolition de la chambre de combustion pour libérer un accès frontal de largeur de 5 mètres.<br />

2. Installation des rails de manutention sur une longueur d’environ 50 m avec une hauteur de deux mètres.<br />

3. Ripage et évacuation de l’ancien tube sécheur en un seul élément vers l’extérieur de la ligne.<br />

4. Montage sur place des éléments de la grue 400 T (le transport à partir de Casablanca de ces éléments<br />

a nécessité trois camions)<br />

5. Positionnement du nouveau tube sécheur (longueur 24 m, poids 100 T) par la grue 400 T sur un porte<br />

char composé de deux parties,<br />

6. Démontage des contres poids de la grue et déplacement vers la ligne puis remontage des contres poids.<br />

7. Dépose par terre de l’ancien tube sécheur et positionnement sur les rails du nouveau tube sécheur<br />

acheminé vers la ligne par le porte char.<br />

121


122<br />

DUST CONTROL AND SOIL STABILIZATION FOR TRACKS<br />

AND MINING INSTALLATIONS<br />

P24<br />

Othman FILALI,<br />

CM2D – Groupe Stokvis North Africa, Casablanca, MOROCCO<br />

CM2D is the Sustainable Development Company of Morocco, the Stokvis North Africa subsidiary for green business.<br />

We specialize in the treatment of environmental and health related issues, such as water and air effluents. The<br />

solutions we propose for the neutralization of industrial dusts are known, effective, cost saving, but also ecofriendly.<br />

CM2D offers two distinct methods and techniques in order to remove and neutralize dust in the tracks of rolling<br />

truck yards and at mine sites:<br />

I. Dust Collection and Reduction, using a powerful high pressure misting system: the dust is sucked<br />

through the movement of droplets to evaporation, and deposited on the ground instead of being<br />

dispersed in the environment. The system is mobile and can cover up to a 11.000m² area.<br />

II. Dust Control and Soil stabilization, by the application of a product type of copolymer nature, as<br />

an emulsion, oil or powder, allowing the formation of a permanent crust that retains dust. Product<br />

concentration used in application is scientifically studied as a function of various parameters: dust and soil<br />

nature, atmosphere date, weight and traffic intensity, guaranteeing the perfect adaptation to the specific<br />

constraints of each track to be processed.


XI - WORKSHOPS<br />

123


124<br />

AN EFFICIENT AND EFFECTIVE PROCESS FOR DISPOSAL OF PHOSPHATIC<br />

CLAY SLURRIES<br />

B.K.Parekc and D.P.Tao<br />

University of Kentucky Lexington, KY 40511,USA<br />

Phosphatic clays suspension produced during the beneficiation of phosphate, is colloidal in nature, more than 90<br />

percent is finer than 0.044mm (44 microns). It takes several years for the waste slurries to thicken from about 3<br />

percent to 20 percent solids in the impoundments. The impoundments ties up a tremendous amount of water as<br />

well as land. Potential from the dam failure causes environmental as well as property damages. In this presentation,<br />

pilot-scale studies results obtained using the Deep Cone Thickener (DCT) will be presented. The study found that<br />

the phosphatic clays combined with the coarse sand refuse in the ratio of 2:1 produced a paste containing about<br />

35 percent solids. Addition of anionic and cationic flocculants additions in certain mode was necessary to produce<br />

thickened slurry. The overflow from the DCT thickener was clear with no solids present and could be recycled back<br />

in the plant. A preliminary cost estimate for the process will also be presented.<br />

Stephen Authier,<br />

Groupe ASDR, Malartic/CANADA<br />

WS1-1<br />

DÉSHYDRATATION DES BOUES DE LAVAGE POUR UNE MEILLEURE GESTION DE<br />

L’EAU ET DES RÉSIDUS MINIERS<br />

WS1-2<br />

Les groupes miniers sont constamment à la recherche de nouvelles solutions pour l’essorage des boues générées<br />

par leurs activités d’exploration et/ou de traitement de la roche brute. Les solutions recherchées ont pour but<br />

d’améliorer les performances actuelles d’essorage des boues afin de récupérer des quantités d’eau plus importantes<br />

qui pourront être recyclées, et de réduire les quantités de matières à disposer et l’espace alloué au stockage des<br />

résidus. Les méthodes actuellement utilisées dans le secteur des phosphates permettent de récupérer des quantités<br />

d’eau non négligeables, mais elles présentent quelques inconvénients :<br />

I - une importante occupation au sol,<br />

II - un coût d’investissement important pour la construction des nouvelles lagunes,<br />

III - et des pertes de quantités d’eau importantes liées à l’évaporation naturelle.<br />

Par conséquent, la solution recherchée pour l’amélioration du procédé d’essorage des boues de laveries, doit<br />

permettre :<br />

I - de traiter des volumes de boues journaliers importants,<br />

II - de récupérer la plus grande quantité d’eau réutilisable possible,<br />

III - d’avoir un coût d’investissement et de fonctionnement qui soient acceptables,<br />

IV - et enfin, d’allonger la durée de vie des bassins.


De par ses activités dans le secteur minier au Québec et en Ontario, ASDR dispose d’une large expérience et d’une<br />

grande expertise dans le domaine particulier du traitement des boues générées par les activités d’exploration et/<br />

ou de traitement de la roche brute. Lors de ces projets, ASDR a mis en œuvre différentes solutions d’essorage actives<br />

et passives, combinées ou non, de boues minières qui permettent d’atteindre des niveaux de siccité élevés et de<br />

récupérer une eau potentiellement réutilisable. Certaines de ces solutions pourraient être répliquées avec succès<br />

par les entreprises minières dans le secteur des phosphates. Au travers de cette communication orale, ASDR va<br />

tenter de donner un aperçu de ses expériences passées et des solutions envisagées.<br />

APPLICATION OF THE FLSMIDTH DEEP CONE THICKENING TECHNOLOGY<br />

TO THE PHOSPHATE AND FERTILIZER INDUSTRY<br />

Liam Macnamara – Minerals sales director EMEA – FLSmidth<br />

Mark Niederhauser – Sedimentation and Paste Technology Manager<br />

Lee Condrey – Southern USA Sales Manager - FLSmidth<br />

Jean Claude Serbon – Minerals Area Sales Manager - FLSmidth<br />

After reviewing the historical development and describing the general principles of the FLSmidth Deep Cone<br />

thickening technology, the authors mention various applications and more particularly applications around the<br />

Phosphate and fertilizer industry developed in the recent years.<br />

A specific case study regarding the Deep Cone installed at Pakistan Maroc Phosphore Fertilizer unit at Jorf Lasfar is<br />

surveyed and illustrates the benefice of this technology in the Fertilizer Process, with emphasis on water recovery.<br />

Dr. Nadim F. Fuleihan,<br />

Sc.D., P.E<br />

Ardaman & Associates, Inc., Orlando, Florida, USA<br />

A Tetra Tech Company<br />

WS1- 4<br />

PHOSPHOGYPSUM DISPOSAL---PROS AND CONS OF WET VS. DRY STACKING<br />

WS1- 6<br />

There are a number of factors that an operator should consider before pursuing wet or dry stacking of the<br />

phosphogypsum by-product from a phosphoric acid plant. In addition to process considerations, important factors<br />

include the climatologic regime, water balance considerations, hydrogeology, topography, capital cost, operating<br />

cost (and maintenance), closure costs (and handling of pore water), availability (or scarcity) of a fresh water source,<br />

distance from the plant to the disposal site (and viability of dry versus wet transport methods), P2O5 recovery,<br />

impacts on the environment (from leakage, dusting, accidental spills, etc.) and applicable regulations.<br />

A review of dry/wet transport methods and dry/wet disposal methods is presented using illustrative examples<br />

from various countries worldwide, with particular emphasis on the advantages and disadvantages of wet and dry<br />

stacking in the various environments.<br />

The author wishes to acknowledge the invaluable contributions of his former colleague and mentor, the late Dr.<br />

Anwar E. Z. Wissa, who contributed since the early seventies to improving our understanding of this important<br />

topic.<br />

125


BACKGROUND<br />

Granulation of phosphatic and complex NPK fertilizers, attempts to mechanically bind, blend and compact fine<br />

crystalline components into individual spherical granules.<br />

This process inherently, is inefficient due to the acicular nature of the crystalline materials and the mechanism<br />

of simultaneous crystallization and solidification of such materials, which occurs during the granulation process.<br />

These phenomena lead to poor product quality ( high porosity, low crush strength, non uniform shape ) and also<br />

lead to inefficiencies in process ( high quantity of fines & recycle, heavy dust generation.<br />

Filtra’s work on granulating aids NPTUFF, was aimed at developing a suitable chemical additive, which at low<br />

dosages could address the above physical and chemical phenomena that lead to difficulties in granulation, thereby<br />

improving product quality and increasing granulation efficiency. These improvements are applicable to various<br />

grades of NPK made from phosphatic fertilizers.<br />

METHODOLOGY<br />

Filtra’s R&D team evaluated various materials to alter the mechanism of crystallization of the N,P,K components, to<br />

aid uniform blending and binding of the components.<br />

Re-crystallization behavior of fertilizer components was studied under an optical microscope and a distinct change<br />

in crystal structure was observed on addition of the granulating aid. NPTUFF series of granulating aids is an<br />

outcome of such studies.<br />

NPTUFF was then tested in field trials at an 800 TPD, NPK production facility, producing granules by steam<br />

granulation. The granulating aid was dosed into the granulator through the fresh water feed line, at a rate of 0.6 –<br />

0.7 Kg per ton of final product. Observations were made on the following criteria :<br />

(1) Finished product quality : Crush Strength, Granule Size Distribution, Sphericity<br />

(2) Production parameters : Production rate, Recycle rate, Dust Generation<br />

OBSERVATIONS<br />

Re-Crystallization Study :<br />

The microscopic images of crystal growth taken with and without addition of the granulating aid show a distinct<br />

change in the nature of crystal growth.<br />

Raw materials used in NPK fertilizers are known to have a tendency to form acicular crystals. These are long needle<br />

shaped crystals which tend to grow linearly when unhindered. As a result a mass formed of such crystals tends to<br />

have crystal planes that have crystals which are directionally aligned. Such a structure is easily fractured under load.<br />

The crystal behavior with addition of granulating aid is markedly different. The crystals lose their linear growth<br />

tendency and the material appears more polycrystalline with smaller, more polygonal crystals. Such structures<br />

have considerably higher crush strength and tend to form more uniform surfaces.<br />

126<br />

USE OF GRANULATING AIDS FOR ENHANCED PRODUCTIVITY OF<br />

PHOSPHATE FERTILIZERS<br />

WS3 -1<br />

FILTRA CATALYSTS & CHEMICALS LTD.


Re-cyrstalllized structure of a crystalline fertilizer component, without addition of<br />

granulating aid. The mass shows several crystal planes unidirectionally alligned.<br />

Re-cyrstalllized structure of a crystalline fertilizer component, with addition of<br />

granulating aid. The mass shows a more polycrystalline structure with uniformly<br />

distributed and non alligned crystals.<br />

FIELD TESTS<br />

Finished product quality :<br />

Crush Strength of granules produced with addition of NPTUFF was found to be 30 – 40% higher than the strength of<br />

granules produced without granulating aid. The granules also visually appeared to be more spherical and the final<br />

product size distribution was found to be as per specifications<br />

Production Efficiency improvement :<br />

· Average ratio of Recycle to Production rate decreased from 5.7 without granulating aid to 4.02 during the<br />

course of the trial, indicating a productivity increase of over 25%<br />

· Recycle showed a declining trend with lower fluctuation during course of trial. ( ref graph )<br />

· Production showed a rising trend during course of trial. ( ref graph )<br />

· Visual presence of dust had decreased at granulator exit and dryer exit.<br />

· Solid content measured in scrubber water of de-dusting system was found to be lower by 8<br />

– 10% after extended period of operation using granulating aid<br />

127


INFERENCE<br />

The acicular crystals present in the NPK components, lead to granules that have lower crush strength and non<br />

uniform surfaces. This leads to granule breakage and dust formation during granulation / drying of the granules.<br />

Addition of granulating aid leads to a more polycrystalline mass. This increases the crush strength of granules (<br />

35 – 40% ), provides better packing efficiency and a more uniform surface. Such granules have a lower tendency<br />

to break and show lower dust formation ( 8 – 10 % ) in process. Polycrystalline NPK components also tend to blend<br />

uniformly and thus show improved binding.<br />

Due to reduced fines and dust in process and due to improved blending and binding of components in the<br />

granulator, the amount of fines and therefore the amount of recycle in process decreases. This leads to a better<br />

recycle to production operating ratio, resulting in an overall productivity improvement ( 25 – 30 % depending on<br />

formulation of NPK) in the granulation process.<br />

IN SUMMARY<br />

The use of granulating aids provides the following benefits : Higher productivity in the granulation process Higher<br />

crush strength, with uniform shape and size of granules Lower dust generation in plant<br />

An effective, non capital intensive solution for grades of fertilizer which are particularly difficult to granulate.<br />

Granulating aids like NPTUFF are effective at low dosages therefore providing high value addition at fairly<br />

economical costs.<br />

128<br />

Stephen Authier,<br />

Groupe ASDR, Malartic/CANADA<br />

1. INTRODUCTION<br />

APPLICATIONS ENGRAIS<br />

1.1 Qu’ est-ce que c’est que ‘un engrais ?<br />

Les engrais sont des aliments organiques ou minéraux pour plantes qui peuvent être sous forme liquide ou de<br />

granulé. Ils sont utilisés pour enrichir la qualité nutritive du sol et/ou pour améliorer la croissance des plantes.<br />

Engrais organiques :<br />

Les engrais pour le gazon, les engrais organiques et organo-minéraux<br />

Guano, les engrais spécialisés à certaines cultures des plantes, les engrais spéciaux de type minéral.<br />

WS3 -2<br />

Engrais inorganiques :<br />

Pour les particuliers<br />

- le chlorure et le sulfate de potassium, la potasse, les engrais contenant le magnésium, et les engrais liquides


Pour les professionnels :<br />

- les engrais spéciaux de type minéral, engrais à effet retardé<br />

- les sels solubles dans l’eau, des engrais liquides,<br />

- les engrais à action contrôlée, les engrais lents ·<br />

- les engrais complexes ou composés, des engrais azotés<br />

- le nitrate et le sulfate d’ammonium<br />

Pour des raisons de sécurité sanitaire (risque d’aspiration de particules fines) et environnementale (la propagation<br />

de la poussière), les fabricants d’engrais font granuler les poudres et les cristaux d’engrais. La granulation améliore<br />

la manutention et le transport des produits vers le lieu de leur mise en oeuvre et affecte nullement la structure<br />

moléculaire et l’efficacité nutritive du produit.<br />

1.2 Les procédés de fabrication<br />

1.2.1 Appuyé, écrasé et confidentiel (particules angulaires)<br />

Quand la granulométrie de la matière première est très fine (sous forme<br />

des poudres), les poudres sont laminés entre deux rouleaux cylindriques<br />

pour produire un film (‘un cake’) de 1-2 cm d’engrais endurci. Ce film est<br />

ensuite écrasé et les agglomérats produits sont criblés. Seulement 50 %-80<br />

% du produit final ont la bonne distribution granulométrique. Les particules<br />

trop fines doivent être recyclées et retravaillées, tandis que les trop grands<br />

agglomérats doivent de nouveau être écrasés.<br />

1.2.1 Granulés (particules rondes)<br />

Quand la matière première est sous forme cristalline, une granulation<br />

par rouleau produit des granulés plus grands que les particules d’origine.<br />

Quand les granulés ont atteint une certaine taille, ils sont prélevés du<br />

processus de granulation.<br />

= > un criblage n’est pas toujours ensuite nécessaire<br />

1.2.2 Enrobés (particules rondes)<br />

Quelques engrais granulés sont enrobés pour un meilleur traitement et<br />

une période efficace plus longue (le temps d’action).<br />

fig 3: CAMSIZER-image of good product<br />

fig 4 : Digital-image of agglomerates<br />

fig 1: pressed fertilizer<br />

fig 2 : CAMSIZER-image of granulated fertilizer<br />

129


Q3 [%]<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1.3 Assurance qualité<br />

Les fabricants d’engrais ont besoin de contrôler la qualité des matières primaires, de la production et des produits<br />

finis. Certaines entreprises utilisent des granulométres dans les laboratoires de contrôle, près de la ligne de<br />

production ou directement en ligne. Certaines entreprises de distribution mélangent des composants distincts afin<br />

d’obtenir un engrais aux exigences nutritives spécifiques.<br />

Une exigence (condition) de base pour la plupart des applications est que les granules d’engrais aient une<br />

distribution de taille de particule et une forme définies pour obtenir un dosage spécifique et une période d’action<br />

suffisamment longue.<br />

Pour des engrais en forme de perles enrobés, il est aussi nécessaire d’être capable de détecter les agglomérats.<br />

Pour quelques types de sel, une forme cubique est exigée pour améliorer le traitement (qui peut être réalisé par le<br />

dopage avec du bore).<br />

2. PROBLÈMES ET BESOINS DES FABRICANTS D’ENGRAIS<br />

·L’analyse de taille de particule est si importante qu’une fréquence minimale d’analyse de contrôle doit être assurée.<br />

Particulièrement pendant la nuit , il est difficile d’assurer un contrôle de qualité suffisant.<br />

Les sociétés d’engrais ont besoin de méthodes de mesure plus efficaces afin de réduire le personnel dans les<br />

laboratoires de qualité.<br />

Comme les engrais sont surtout calibrés en fonction des données de tamisage, les résultats d’un système de mesure<br />

alternatif doivent correspondre aux résultats des tamis.<br />

Les éléments individuels des engrais doivent avoir des tailles semblables (par exemple 3 mm) et présenter une<br />

distribution de taille étroite (par exemple 2-4mm), pour qu’ils puissent être mélangés sans ségrégation.<br />

Pour mesurer la forme cubique ou l’allongement de certains types de sel, un système de mesure de forme est<br />

nécessaire.<br />

3. AVANTAGES POUR L’UTILISATEUR DU CAMSIZER<br />

Certains granulés arrondis sont plus ou moins sphériques ou ovoïdes (voir les figures 2 et 3). Pour ces produits une<br />

comparaison entre l’analyse de tamisage et le CAMSIZER est très facile en mesurant le diamètre de la largeur des<br />

particules.<br />

130<br />

CAMSIZER<br />

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5<br />

Sieving<br />

fig 5 : Granulé rond – Résultat CAMSIZER avant corrélation par rapport<br />

au tamisage.<br />

x [mm]<br />

Graph of measurement results:<br />

C:\...Seminar-2004\RVS-Seminar-Ammorphous-4\Ammorphous-4-coloured_xc_min_002.rdf<br />

Task file: Ammorphous-4.afg<br />

Q3 [%]<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Sieving<br />

CAMSIZER<br />

1 2 3 4 5 6 7 8<br />

fig 6 : Granulé ovoïde – Résultat CAMSIZER avant correlation par rapport<br />

au tamisage.<br />

x [mm]


Pour des engrais de forme aplatie ou anguleuse, il faut utiliser une corrélation entre les tamis et le Camsizer. (à<br />

élaborer)<br />

Q3 [%]<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Tamisage<br />

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5<br />

CAMSIZER<br />

fig 5 : angular granulate – CAMSIZER result vs. sieving without fitting fig 5 : : angular granulate – CAMSIZER result vs. sieving with fitting<br />

AVANTAGES POUR L’UTILISATEUR :<br />

x [ m m]<br />

p3 [%]<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

• réduction du temps d’analyse type (par exemple substitution à 70 tamisages / jour)<br />

• des dépenses d’analyse et la charge de travail peuvent être réduites<br />

• plus d’information sur chaque échantillon (c’est-à-dire sphéricité, résolution plus haute etc)<br />

• meilleure résolution de la distribution de taille = > ajustement plus précis des paramètres du<br />

processus = > production plus haute 50 % = > 80 % (moins de recyclage)<br />

• des résultats sont disponibles plus fréquemment et plus rapidement – y compris la nuit = ><br />

moins de rejets et économie de temps<br />

• des résultats sauvegardés dans 1000 classes de taille, d’où la capacité de simuler n’importe quelle<br />

configuration de pile de tamis<br />

• le logiciel CAMSIZER permet l’exportation de fichiers EXCEL pour fournir les résultats de l’analyse<br />

de laboratoire au système de gestion des données du laboratoire. Un logiciel complémentaire (DIA)<br />

assure que les données sont transférées sans aucun risque au système<br />

• calibration plus fréquente et meilleure<br />

• résultats similaires sur diverses locations de production d’ un groupe<br />

Certaines sociétés d’engrais travaillent aussi avec des herbicides et/ou des pesticides aussi bien que des<br />

terreaux, des produits pour le soin des plantes, des produits industriels, des ingrédients actifs pharmaceutiques et<br />

le sel. Le CAMSIZER permet également l’analyse de tous ces produits.<br />

Camsizer avec un passeur d’échantillon.s<br />

Q3 [%]<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Tamisage<br />

1 2 3 4 5<br />

CAMSIZER<br />

x [ m m]<br />

p3 [%]<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

131<br />

5<br />

0


132<br />

Andrews DUNCAN,<br />

Lake International Technologies, UK<br />

Coatings have long been used by the fertiliser industry for a variety of purposes which can be broadly defined as<br />

follows.<br />

1. Coatings for anti-caking<br />

2. Coatings to prevent moisture uptake<br />

3. Coatings for anti-dusting<br />

4. Coatings to value add (i.e. colour, slow release)<br />

For the purpose of this paper, we will focus on the potential for Trace Element Attachment (or TEA) using polymer<br />

coatings. Up to 6% 50- 200 micron powder can be added in a controlled fashion and so attached to the surface of a<br />

fertiliser granule by using a polymer coating.<br />

TRACE ELEMENT ATTACHMENT<br />

Uncoated Fertiliser or carrier granule<br />

POLYMER COATINGS.<br />

WS3 - 3<br />

Trace Element, inoculants or yield boosting nutrients coated<br />

onto each and every granule in the correct ratio.<br />

TEA is extremely versatile and can be adopted by the agronomist in crop-led farming in applying E.g. zinc to onions<br />

or boron to sugar beet. It can thus be used to value-add fertiliser, increasing both farmer yield and manufacturer<br />

margin.<br />

By fixing nutrient to each and every granule, this method of Trace Element Attachment is immensely more efficient<br />

than simply blending in the required pellets, increasing the crops roots chance of finding the nutrient by twentyfold.<br />

Further, it is proactive as opposed to reactive versus foliar application (with the e.g. Manganese added before leaf<br />

decolourisation occurs) and it can also be used to achieve specific outcomes, such as to prevent volatilisation of<br />

Nitrogen in Urea.<br />

With 40% population growth projected by 2050, and less arable land and water available, there is pressure on<br />

the farmer to increase his yield on a scale similar to that achieved by the Green revolution. We at Lake see a trend<br />

towards ‘Intelligent Agriculture’ and believe that TEA will most certainly have a role to play.


Coatings<br />

The underlying principle of coating is straightforward, to cover the granule with a protective layer, seeing the<br />

interaction between the granules reduced via the additional barrier.<br />

Untreated Granules Coated Granules<br />

Whereas Polymerising coatings remain on the outside, traditional oil or mineral coatings have a tendency to migrate<br />

over time either drying off (visible via a colour change) or worse, working their way inwards so inadvertently<br />

weakening the granule and causing more dust.<br />

Polymerising Coatings<br />

Conventional Wax/oil coatings<br />

■ Brilliant at attaching powder<br />

■ Permanent<br />

■ Non migrating<br />

■ Non penetrating<br />

■ Does not weaken granule strength<br />

■ Initial powder never released<br />

■ Initially trap powder well<br />

■ Non permanent<br />

■ Continually migrating<br />

■ Continually penetrating<br />

■ Weakens granule strength<br />

■ Releases initial powder after short time<br />

133


Traditional coatings are composed from<br />

• Oil or paraffin<br />

• Waxes<br />

• And sometimes amines though due to their price, these are normally restricted to anti-caking<br />

The above are often used in combination with inert powders such as talc or china clay.<br />

Oils applied range from white oil to bunker oil. Both are powerfully hydrophobic but differ in their viscosity and<br />

solidification point. Heavy fuel oil (HFO or bunker oil) contains branched and cyclic alkanes but the quantity of<br />

polycyclic aromates is higher than 3% m/m (IP-346,DMSO extraction) and as a result they are classified as<br />

carcinogenic. This saw legislation introduced in Sweden and later Germany – ‘Dungemittelverordnung 2003’<br />

restricting the polycyclic aromate content (PCA) due to their mutagenic and carcinogenic properties.<br />

There seems to be some loyalty to<br />

HFO in the market, often because of<br />

the distinctive colour it lends to the<br />

host granule, but certainly from an<br />

agronomy perspective, its continued<br />

use is indefensible.<br />

134<br />

Heavy Fuel Oil (HFO) is brutal on bacteria,<br />

fungi and mycorrhizae and even when their<br />

volume was not significantly impacted, the<br />

colonies took appreciably longer to develop.<br />

In further studies by Lake, HFO had a marked<br />

impact on the volume of maize produced<br />

albeit the impact was not so pronounced on<br />

beans.<br />

POLYMERISING COATINGS - MANAGING EXPECTATIONS<br />

• For practical purposes 180um, considered fines which are very difficult to attach.<br />

• Polymerising coatings cannot at this stage, strengthen a weak granule.


HOW IS BINDING ACHIEVED?<br />

Trace Element Attachment is achieved by first adding the coating to wet the granules then adding the required<br />

powder via a powder feeder. The coating will dry on the surface trapping the powder, which due to its small size, is<br />

readily oxidised. Efficiency of the coating process can be enhanced by the following<br />

a) Product temperature – either via heating the coating or monitoring the granule temperature if<br />

adding post production. A gently heated coating (35 – 40 degrees C) spreads further and is more<br />

easily applied with less potential for blockages.<br />

b) Coating in a drum/belt. A drum undoubtedly gives better results but speed and internal contours<br />

should be checked to avoid violent throwing of granules and instead an even tumbling action is<br />

desired. This may require some drum adaptation.<br />

c) Use of a nozzle. Type, aperture, air atomising, flow jet etc.<br />

d) Number of nozzle outlets. A high dosage of coating can be spread over several nozzle outlets<br />

maximising coverage and so minimising product requirement.<br />

SELECTING YOUR POLYMERISING COATING<br />

When selecting a coating the following points should be considered<br />

• The effectiveness of the coating on attaching and retaining the required volume of powder<br />

• Cost effectiveness in terms of yield and result<br />

• Whether you require oil based or water soluble coatings<br />

• The method and equipment for application<br />

• Environmental aspects of the coating – is it soil beneficial and will it comply with European<br />

legislation?<br />

• Health and Safety considerations for the workforce including smell, toxicity and operating<br />

temperature. Whether the coating needs to be applied at 80 degree C - or is classified as a fire hazard<br />

for storage purposes.<br />

• Availability, stability and reputation of supplier<br />

135


LAKE TEST METHODS<br />

Moisture Analysis. Are done gravimetrically using a Precisa XM 10 SE Moisture Analyzer. A single layer of the<br />

fertilizer sample is place in a shallow 100 mm diameter metal sample dish (supplied with analyzer). Moisture loss<br />

is determined at 105°C and the end point is determined automatically as per the “ADAPTSTOP” settings on the<br />

instrument. Analyses are performed in quadruplicate with the average reported.<br />

Granule Breaking Strength A Mecmecin Compact Force Gauge (Digital), rated to 200 N (20 kg) is used to<br />

determined the fertilizer granule strength. The average breaking strength values of 20 granules are used to<br />

calculate the final breaking strength for the specific fertilizer sample received.<br />

Post coating residual powder analysis The free powder analysis is based on the standard IFDC S-122 method. A<br />

measured sample (250 g) is passed through the column five times to remove the maximum amount of powder. The<br />

amount of powder is expressed as a ppm value for the specific fertilizer sample.<br />

Coating Application Depending on sample size the Biofix coatings are either applied using a modified cement<br />

mixer or a 5 L rotating coating drum. Biofix sample are spayed onto the sample at room temperature (22 – 25°C),<br />

unless otherwise stated, using a handheld DIY spray-gun fitted to a nitrogen cylinder regulated to between 100<br />

and 200 kPa.<br />

Attrition. With Lake’s attrition test, the wear of fertilizer granules is simulated. Samples of approximately 150 g<br />

are sealed in a high strength plastic bag and placed in the handling simulator. The instrument rotates is run for 5<br />

minutes at 30 rpm after which the latent powder value of the tested fertilizer is determined using Lake’s standard<br />

powder analysis method.<br />

I - Assuming e.g. 5% addition<br />

II - IFS Proceeding 584 New Developments in Fertiliser Coatings EA Bijpost and JG Korver. 2006<br />

136


MODÉLISATION THERMOCINÉTIQUE DES PROCESSUS PHYSICO CHIMIQUES<br />

À L’ORIGINE DES PROBLÈMES DE L’ENCRASSEMENT DANS L’INDUSTRIE<br />

DES PHOSPHATES<br />

M. Mohamed AMALHAY, OCP, MAROC<br />

M. Mohamed AZAROUAL, BRGM, FRANCE<br />

M. M. EL GUENDOUZI, Département Chimie – FS Ben M’Sik, MAROC<br />

WS5 - 3<br />

De part le monde, Les procédés de valorisation et d’épuration de l’acide phosphorique (ACP) sont basés sur l’utilisation<br />

de l’acide sulfurique (H2SO4) pour l’attaque acide du phosphate. L’un des problèmes majeurs rencontrés<br />

dans ces procédés est lié à la formation de dépôts minéraux de façon non maîtrisée à des endroits sensibles des<br />

unités de production d’ACP. L’optimisation des conditions d’exploitation nécessite une meilleure compréhension<br />

des mécanismes de formation de ces minéraux pour éviter les nuisances qu’ils engendrent en termes de perte<br />

de produits, acide phosphorique, et d’encrassement dans les réacteurs d’attaque, les échangeurs de chaleur, les<br />

évaporateurs, etc.<br />

Conscient de ces problèmes, et dans le but de les cerner d’une manière précise, que ce soit sur le niveau théorique,<br />

expérimental ou pratique, le Groupe OCP (Maroc) a entamé depuis 2004, une étude, en intime collaboration avec le<br />

BRGM (France) et la Faculté des sciences et techniques de Ben M’Sik de Casablanca, en vue de développer un code<br />

de calcul thermocinétique dédié aux métiers de valorisation des phosphates minéraux.<br />

Actuellement, et dans sa version V, ce code de calcul appelé « Scale2000 », constitue un outil performant et innovant,<br />

offrant aux chercheurs et ingénieurs qui opèrent dans les domaines des industries de phosphates plusieurs<br />

volets, possibilités et outils pour :<br />

- Comprendre et déterminer les conditions de formations des dépôts solides dans les endroits sensibles<br />

des installations de productions d’acide phosphorique dans le but de leurs trouver des remèdes<br />

durables et optimales ;<br />

- Calcul de quelques propriétés thermodynamiques et physiques des systèmes riches en acide phosphorique<br />

(densité, activité de l’eau, pH, …) ;<br />

- Simuler la cinétique d’attaque des phosphates et les phénomènes qui l’accompagnent, notamment,<br />

le Scale-up et le Scale-dwon ;<br />

- Etablir plusieurs abaques et graphiques très utiles dans la conduite, l’optimisation et l’exploitation<br />

des procédés de transformation chimique des phosphates ;<br />

137


138<br />

- Optimiser la conduite des procédés de valorisation des phosphates par voie humide, notamment au<br />

niveau de la réaction, tout en introduisant un outil numérique fiable et performant pour le calcul des<br />

réacteurs de lixiviation des phosphates ;<br />

- Développer d’autres procédés de valorisation de phosphates minéraux beaucoup plus performants<br />

ou contribuer à l’amélioration des procédés existants. En effet, la compréhension des phénomènes<br />

mis en jeux lors de l’attaque des phosphates permet aux chercheurs et aux ingénieurs d’optimiser<br />

les paramètres opératoires ainsi que les conditions physicochimiques et donc les procédés dans leur<br />

globalité.<br />

NEW BOLT-ON TECHNOLOGIES FOR SCALE CONTROL AND METALS REMOVAL<br />

IN PHOSPHORIC ACID PRODUCTION<br />

WS5 - 4<br />

SA.Ravishankar & Ahmet TEOMAN, Bing Wang, John Carr and Rajesh Raitani<br />

Cytec Industries Inc., 1937 West Main Street, Stamford CT 06902 USA<br />

Strong demand in biofuels crop, food and feeds, the recovery in fertilizer use is likely to hit a new demand-driven<br />

cycle for phosphoric acid with an average of 4.5% increase in consumption in the next 4-5 years. However,<br />

increasing energy prices, regulatory pressures and growing environmental concerns, pose major constraints<br />

to capacity growth. The purpose of this paper is to discuss two technologies developed by Cytec recently on<br />

fluorosilicate scale control and metals removal in phosphoric acid production. In scale control, a new anti-scalant<br />

chemical additive has been developed and demonstrated at plant level for preventing scale formed as a result of<br />

cooling in long pipelines transporting 28% P2O5 phosphoric acid. And, with metals removal, several plant trials<br />

and lab results will be discussed with special reference to removing Cd and As metals from Phosphoric acid. One of<br />

the most salient features of these technologies is their “bolt-on” nature which substantially minimizes the capital<br />

investment with no downstream effects.


Garret Palmquist<br />

(MECS-DuPont), Senior Engineering Supervisor<br />

MECS has successfully designed Sulfur Burning Sulfuric Acid plants in excess of 4000 MTPD in capacity. The<br />

important considerations with respect to the design and specification of the critical equipment will be presented.<br />

Specific topics will include:<br />

• Use of Computational Fluid Dynamics (CFD) for modeling the mixing of gases and gas distribution<br />

into key vessels<br />

• Design of large HRS systems<br />

• Specification and testing of a large single main compressor<br />

• Specification and design of cylindrical superheater<br />

• MECS patented Swivel Expansion Joint for key ducts<br />

John MacDonald, Brimrock Group Inc., Calgary, Canada<br />

presenting author Mr. Les Lang<br />

Brimrock Group Inc., is based in Calgary, Canada. Founded in 2006, Brimrock has provided consulting services<br />

to international companies that either produce or consume sulphur. With over 100 years of collective technical<br />

and operational experience in sulphur forming and materials handling systems, Brimrock has brought<br />

new ideas to the traditional methods of how industry approaches the challenge of upgrading existing<br />

facilities or designing and building greenfield facilities.<br />

In 2009, Brimrock became a member of the Martin Group of Companies, a $2 billion a year enterprise based in<br />

Kilgore, Texas. Martin’s experience in the U.S. sulphur business ranges from logistics (truck, railcars, marine<br />

vessels, terminals), to trading operations, specialty fertilizer production, and sulphuric acid production<br />

and trading. Today, Brimrock has developed and is operating three newly updated sulphur processing<br />

technologies; a 1500 MTPD granulation unit, a 2000 MTPD wet prilling unit, and a 600 and 800 MTPD<br />

contaminated and solid sulphur remelting unit.<br />

The Traditional Approach to Sulphur Handling and Storage<br />

ULTRA LARGE SULFURIC ACID PLANTS<br />

WS7 - 1<br />

SULPHUR HANDLING AND STORAGE - NEW APPROACHES TO REDUCE<br />

CAPEX & OPEX COSTS<br />

WS7 - 2<br />

139


Sulphur producers and consumers typically store their sulphur inventories in one or a combination of<br />

three ways; blocked (or vatted), open stockpile, or under cover. Sulphur stored in blocks, as found in<br />

Canada, Central Asia, and other locations, is mainly a method used by producers to limit exports into the marketplace<br />

when either prices drop below the economics necessary to encourage shipping or at production<br />

locations too remote to ship sulphur at any price. This paper will not address the subject of sulphur blocking as<br />

it wishes to focus on those storage methodologies of active producers and consumers.<br />

Open storage is a viable method of holding live sulphur inventory while it awaits either waterborne or<br />

rail shipment. The principles of open storage systems include movement of the sulphur in and out of storage<br />

with stacker reclaimers, or conveyors and front end loaders, asphalt pads upon which the sulphur is<br />

stored, asphalt berms surrounding the stockpile to contain and direct water runoff, water treatment ponds<br />

to neutralize collected water runoff, and fire suppression systems.<br />

Open sulphur storage facilities are primarily used where airborne contamination (i.e. sand storms) is at a<br />

minimum or producers wish to reduce the visible impact of the stockpiles. Rainfall is not typically hazardous<br />

to open stockpiles if the water runoff and treatment systems are well designed and constructed, and the<br />

inventory is turned over in accordance with good industry practice. Sulphur producers will also use open storage<br />

facilities to reduce the capital costs associated with buildings.<br />

The third method of storing live inventory and one that is widely used throughout the world is covered storage.<br />

These systems range from the massive longitudinal covered building used at Ruwais in the UAE to the stainless<br />

steel structure used in Brake, Germany.<br />

When sulphur producers examine the capital costs of sulphur forming and handling systems they are often left<br />

with what is termed “sticker shock”. It is not the sulphur forming systems that skew the capital costs but the<br />

materials handling and storage systems. Sulphur storage systems have, in the past, been designed around longitudinal<br />

buildings. This is in part due to the use of stacker-reclaim equipment but also because the engineering<br />

companies who work on behalf of their clients see this storage model and, in order to follow the path of<br />

least resistance, replicate and recommend similar storage facilities to their clients.<br />

New Thinking to an Old Problem<br />

In the early years of Brimrock’s existence, the partners conducted many consulting studies for clients throughout<br />

the world examining ways and means of designing sulphur forming and materials handling systems<br />

that provided an array of choices for the client. Those choices were developed to provide the client with various<br />

capital cost options.<br />

The Brimrock partners brought over 50 years of operational and technical experience in sulphur forming<br />

and handling systems to its consulting studies. To some clients, capital costs for materials handling and storage<br />

systems was a concern but often times other factors had to be taken into account. What emerged from all the<br />

research over this time were new ideas of storing and recovering sulphur safely and economically.<br />

140


The ideas emerged from looking at how other commodities were handled and if those concepts could be<br />

transferred to the world of sulphur. Brimrock discovered that, in fact, these concepts and technologies could<br />

indeed be applied to sulphur handling.<br />

The use of the dome in storing commodities is a proven technology. What Brimrock found difficult was to<br />

marry up the recovery of the sulphur from the dome without damaging the product by running over<br />

it on a continuous basis, thus creating a dusty and unsafe work environment. The solution was a new<br />

technology called a moving hole feeder. Both the dome and the feeder were used with other commodities,<br />

but not sulphur.<br />

When Brimrock set about looking to marry the two concepts together the detailed capital and operating cost<br />

analysis (CAPEX and OPEX respectively) produced some surprising results. It soon became apparent that these<br />

two technologies could be recommended to clients as a means of keeping the sulphur under storage, keeping<br />

capital costs contained, and for the long term, keeping operating costs to a minimum.<br />

The purpose of this abstract is to outline, at a high level, what Brimrock has discovered through its research<br />

and present a new way of approaching the design of sulphur materials handling and storage facilities. It<br />

would be Brimrock’s intent to present the details of these concepts, including the economic models that it developed,<br />

to the Symphos Conference in order to allow the attendees to broaden their views on how sulphur can be<br />

handled safely and economically.<br />

Harris Jack<br />

President, VIP International, Inc.USA<br />

BASICS OF SULFURIC ACID CATALYST HANDLING<br />

WS7 - 4<br />

While catalyst screening is a routine part of most maintenance outages, many producers view this operation as<br />

a labor intence material handling project rather than a critical part of ongoing plant reliability that can extend<br />

production time between outages.<br />

Specializing in servicing sulfuric acid plant converters since 1977, VIP International has handled over 300 million<br />

liters of catalyst and is without a doubt the leader in sulfuric acid catalyst screening and loading technology.<br />

This presentation will inform attendees of proper catalyst handling techniques, equipment and priorities to maximize<br />

down time, reduce pressure drop and increase production. The live video footage taken in the field will allow<br />

the viewer to see first hand how these practices are executed thereby training the participants in what to expect<br />

from the service providers of their converter. Actual case study results will be shared to support the presentation.<br />

141


142<br />

Marie Vognsen<br />

Haldor Topsoe A/S, DENMARK<br />

For many sulphuric acid plants the bottleneck for prolonged operating time between plant shutdowns is the<br />

requirement for screening of bed 1 due to increased pressure drop caused by deposition of dust from the feed gas.<br />

An improved protection against pressure drop build-up can be obtained by the use of a dust protection catalyst in<br />

the top of bed 1. In 2007 Topsøe introduced a new dust protection catalyst in the shape of a 25 mm Daisy. Installation<br />

of a 15 cm top layer of this unique VK38 dust protection catalyst results in a doubling of the operating time<br />

between screenings compared to the 12 mm Daisy.<br />

Vincent Laboucheix<br />

Senior Manager Lean Manufacturing, Renault Consulting<br />

Inventés au Japon dans les années 70, les « Systèmes de Production » correspondent à une nouvelle logique<br />

d’industrialisation qui bouleverse l’approche traditionnelle de la production. Derrière les gains parfois<br />

spectaculaires liés à leur mise en œuvre (une qualité 5 à 10 fois meilleure, une productivité 2 fois meilleure, des<br />

délais 10 fois plus courts, dans des surfaces deux fois inférieures) se cache aussi une réalité moins bien connue.<br />

Celle d’organisations capables de pérenniser en permanence leurs meilleures pratiques dans des domaines aussi<br />

divers que :<br />

- le développement produit,<br />

- l’industrialisation,<br />

- la production,<br />

- le service,<br />

- la formation des hommes,<br />

PROLONG PRODUCTION CYCLES WITH DUST PROTECTION CATALYST<br />

- la formalisation du Système de Production…<br />

Une capitalisation étendue dans toute l’entreprise qui s’avère une arme d’autant plus redoutable, qu’elle<br />

correspond à la face cachée du Système.<br />

WS7 - 5<br />

COMMENT UN SYSTÈME DE PRODUCTION PERMET DE PÉRENNISER ET<br />

CAPITALISER LES MEILLEURES PRATIQUES INDUSTRIELLES.<br />

WS8 - 3


143


CP 1................................................................. 10<br />

CP 2 Mining ..................................................... 10<br />

CP 3 Environment & sustainable development... 11<br />

CP 4 Materials & new products.......................... 12<br />

CP 5 Phosacid & fertilizer.................................. 12<br />

CP 6 Agriculture & fertilization.......................... 13<br />

KN 1 Mining..................................................... 16<br />

KN 2 Mining..................................................... 16<br />

KN 3 Mining..................................................... 17<br />

KN 4 Environment & sustainable development .. 17<br />

KN 5 Environment & sustainable development .. 18<br />

KN 6 Environment & sustainable development .. 18<br />

KN 7 Materials & new products ......................... 19<br />

KN 8 Materials & new products ......................... 20<br />

KN 9 Materials & new products ......................... 20<br />

KN 10 Phosacid & fertilizer ............................... 22<br />

KN 11 Phosacid & fertilizer ............................... 22<br />

KN 12 Phosacid & fertilizer ............................... 23<br />

KN 13 Agriculture & fertilization....................... 26<br />

KN 14 Agriculture & fertilization....................... 26<br />

KN 15 Agriculture & fertilization....................... 27<br />

MN-O-01 ......................................................... 30<br />

MN-O-02 ......................................................... 30<br />

MN-O-03 ......................................................... 31<br />

MN-O-04 ......................................................... 31<br />

MN-O-05 ......................................................... 33<br />

MN-O-06 ......................................................... 33<br />

MN-O-07 ......................................................... 34<br />

MN-O-08 ......................................................... 45<br />

BN-O-01 .......................................................... 40<br />

BN-O-02 .......................................................... 41<br />

BN-O-03 .......................................................... 41<br />

BN-O-04 .......................................................... 42<br />

144<br />

INDEX<br />

BN-O-05 ..................................... 42<br />

BN-O-06 ..................................... 43<br />

BN-O-07 ..................................... 44<br />

BN-O-08 ..................................... 45<br />

SW-O-01 ..................................... 48<br />

SW-O-02 ..................................... 49<br />

SW-O-03 ..................................... 49<br />

SW-O-04 ..................................... 50<br />

SW-O-05 ..................................... 50<br />

PH-O-01 ..................................... 52<br />

PH-O-02 ..................................... 52<br />

PH-O-03 ..................................... 53<br />

PH-O-04 ..................................... 54<br />

PH-O-05 ..................................... 54<br />

PH-O-06 ..................................... 55<br />

PH-O-07 ..................................... 56<br />

PH-O-08 ..................................... 57<br />

PH-O-09 ..................................... 58<br />

PH-O-10 ..................................... 59<br />

PH-O-11 ..................................... 61<br />

PH-O-12 ..................................... 61<br />

PH-O-13 ..................................... 62<br />

PH-O-14 ..................................... 63<br />

PH-O-15 ..................................... 63<br />

PH-O-16 ..................................... 64<br />

PH-O-17 ..................................... 64<br />

PH-O-18 ..................................... 65<br />

PH-O-19 ..................................... 65<br />

PH-O-20 ..................................... 67<br />

PH-O-21 ..................................... 67<br />

PH-O-22 ..................................... 68<br />

PH-O-23 ..................................... 68<br />

PH-O-24 ..................................... 69


PH-O-25 ..................................... 70<br />

PH-O-26 ..................................... 70<br />

EN-O-01 ..................................... 74<br />

EN-O-02 ..................................... 74<br />

EN-O-03 ..................................... 76<br />

EN-O-04 ..................................... 76<br />

EN-O-05 ..................................... 78<br />

EN-O-06 ..................................... 78<br />

EN-O-07 ..................................... 79<br />

EN-O-08 ..................................... 79<br />

EN-O-09 ..................................... 81<br />

EN-O-10 ..................................... 81<br />

EN-O-11 ..................................... 82<br />

EN-O-12 ..................................... 84<br />

EN-O-13 ..................................... 85<br />

IM-O-01 ..................................... 88<br />

IM-O-02 ..................................... 88<br />

IM-O-03 ..................................... 89<br />

IM-O-04 ..................................... 89<br />

IM-O-05 ..................................... 90<br />

AP-O-01 ..................................... 92<br />

AP-O-02 ..................................... 92<br />

AP-O-03 ..................................... 93<br />

AP-O-04 ..................................... 94<br />

AP-O-05 ..................................... 94<br />

AP-O-06 ..................................... 95<br />

AP-O-07 ..................................... 95<br />

AP-O-08 ..................................... 96<br />

AP-O-09 ..................................... 98<br />

AP-O-10 ..................................... 98<br />

AP-O-11 ..................................... 99<br />

AP-O-12 ..................................... 100<br />

AP-O-13 ..................................... 101<br />

P1.............................................. 104<br />

P2.............................................. 104<br />

P3.............................................. 106<br />

P4.............................................. 107<br />

P5.............................................. 107<br />

P6.............................................. 108<br />

P7.............................................. 109<br />

P8.............................................. 109<br />

P9.............................................. 110<br />

P10............................................ 111<br />

P11............................................ 112<br />

P12............................................ 113<br />

P13............................................ 113<br />

P14............................................ 114<br />

P15............................................ 114<br />

P16............................................ 117<br />

P17............................................ 118<br />

P18............................................ 118<br />

P19............................................ 119<br />

P20............................................ 119<br />

P21............................................ 120<br />

P22............................................ 121<br />

P24............................................ 122<br />

WS1-1........................................ 124<br />

WS1-2........................................ 124<br />

WS1-4........................................ 125<br />

WS1-6........................................ 125<br />

WS3-1........................................ 126<br />

WS3-2........................................ 128<br />

WS3-3........................................ 132<br />

WS5-3........................................ 137<br />

WS5-4........................................ 138<br />

WS7-1........................................ 139<br />

WS7-2........................................ 139<br />

WS7-4........................................ 141<br />

WS7-5........................................ 142<br />

WS8-3........................................ 142<br />

145


146


147


148

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!