EP0667818B1 - Kapillar-schreibstoff-speichersystem - Google Patents

Kapillar-schreibstoff-speichersystem Download PDF

Info

Publication number
EP0667818B1
EP0667818B1 EP93922880A EP93922880A EP0667818B1 EP 0667818 B1 EP0667818 B1 EP 0667818B1 EP 93922880 A EP93922880 A EP 93922880A EP 93922880 A EP93922880 A EP 93922880A EP 0667818 B1 EP0667818 B1 EP 0667818B1
Authority
EP
European Patent Office
Prior art keywords
reservoir
writing
colorant
wick
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93922880A
Other languages
English (en)
French (fr)
Other versions
EP0667818A1 (de
Inventor
Luigi Barosso
Werner Lang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merz and Krell GmbH and Co KG
Original Assignee
Merz and Krell GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merz and Krell GmbH and Co KG filed Critical Merz and Krell GmbH and Co KG
Publication of EP0667818A1 publication Critical patent/EP0667818A1/de
Application granted granted Critical
Publication of EP0667818B1 publication Critical patent/EP0667818B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K5/00Pens with ink reservoirs in holders, e.g. fountain-pens
    • B43K5/02Ink reservoirs
    • B43K5/03Ink reservoirs specially adapted for concentrated ink, e.g. solid ink
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K8/00Pens with writing-points other than nibs or balls
    • B43K8/02Pens with writing-points other than nibs or balls with writing-points comprising fibres, felt, or similar porous or capillary material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K8/00Pens with writing-points other than nibs or balls
    • B43K8/02Pens with writing-points other than nibs or balls with writing-points comprising fibres, felt, or similar porous or capillary material
    • B43K8/04Arrangements for feeding ink to writing-points
    • B43K8/10Arrangements for feeding ink to writing-points including compartment for soluble solid material

Definitions

  • the inventions relate to a capillary-writing material storage system for writing utensils, such as fiber pens, liners, markers, which consists of several individual memories which contain fiber material (claim 1).
  • an inexpensive variant contains only one individual fiber material store (claim 2).
  • the invention also relates to a capillary dye store - as one of said individual stores - for use in the above-mentioned writing instruments (claim 3).
  • a method for producing said dye storage is also proposed (claim 7).
  • the writing material storage chamber can consist of a refillable storage container or exchangeable cartridges.
  • a capillary memory for example a tampon or a fiber pack, is provided in the writing instrument housing and contains a predetermined supply of finished writing material. This stock is assigned to it during manufacture and determines the life of the writing instrument (cf. US 3,481,677). If you use the cartridges mentioned, there are environmental problems because the waste - usually plastic cartridges - must be disposed of.
  • a built-in writing material storage is provided in writing instruments, which stores a predetermined amount of writing material, this amount is limited from the outset. After the previously stored amount of writing material has been dispensed, the writing instrument is empty and, like the cartridges, should be disposed of. In addition, there is the problem that the predetermined amount of writing material decreases due to aging, even when the writing instrument is not being used; in other words: when it is waiting for acceptance and sale on the shelves of retailers and wholesalers.
  • a refillable capillary-writing material storage system has become accessible to the professional world from WO 92/18339. It has the technical features (a) and (b) of claim 1, but not the feature group (c) and the proviso that the middle individual memory, which stores the color component, contains fiber material.
  • markers are described in US 3,993,409 (Hart). In two examples, markers are described there that have two individual memories. They are nested inside one another. One of the reservoirs is the writing tip (or "writing wick”), the other is the fluid reservoir. The latter is significantly larger than the former. At Hart, the individual storage tanks are in one another, not in a row; the size is also contrary to the teaching of claim 2. However, the writing wick at Hart also stores writing fluid and color pigment at the same time (cf. claim 2).
  • US 3,993,409 discloses the feature groups (a) and (c), but not the shell which is permeable to liquids and gases and which is also contained in feature group (a) of claim 7. Placing a cover around the Hart wick would be equivalent to the inoperability of the Hart markers, which are based on nested contact between the outside of the wick and the plug hole (hole) for their function.
  • the separation of the previously one memory into a plurality of fiber material stores is essential for the success according to the invention.
  • At least three stores are provided, a rear, a front and the individual store in between.
  • the latter stores the color content of the writing material in the fiber material in a dry form.
  • This type of storage is timeless.
  • a manufactured writing instrument can thus be stored for a long time without it drying out or without losing its predetermined writing capacity, because the dry color portion of the writing material cannot dry out further and a liquid portion which could evaporate or escape through walls does not exist.
  • the rear individual memory is then impregnated with a solution liquid from outside the writing instrument. It can be water or alcohol.
  • the filled solution liquid passes through the wick - connecting the individual stores - into the middle fiber material-dye store, where the color fraction enters the solution liquid by capillary forces in order to reach the front individual store as a (colored) writing material that is in contact with the writing tip.
  • the latter single memory - which can be smaller than the other memories - has the function of equalizing the writing material and always storing a certain but limited amount for immediate writing.
  • the capillary flow connection carries the concept according to the invention significantly, because a consumption of the writing material from the front individual storage leads to an automatic refilling of the front one due to the balancing forces from the extremely damp rear individual storage to the - mixing the color - middle individual storage to the emptying front individual storage Individual storage with writing material.
  • a plurality of memories can be simplified in terms of costs without leaving the idea of storing dye dry in a dye store.
  • the middle and lower individual storage can thus be combined into a coherent dye storage, which stores both the dry dye (the color pigments) and - after filling the pen - the liquid writing material.
  • Only one additional store (the rear single store) is required, but this is not filled with fiber material, but rather represents a cavity (claim 2).
  • the liquid is poured into this cavity, where it is briefly stored (buffered) and then slowly distributed in the color memory.
  • the writing material is formed, which can then be dispensed via the writing tip - it is connected to the dye storage. While the rear buffer store only stores the poured solution liquid briefly, especially until the dye store has completely absorbed it, the latter then stores the writing material in liquid form for a very long time.
  • a removable cap is provided for the pen, it is advisable to choose the volume of the pen as large as that of the buffer memory.
  • the dye storage is significantly larger than the buffer storage, not only is the production cheaper because of the smaller number of storage units, but the pen thus formed is also provided with a significantly higher writing capacity.
  • a wick is not required since a plurality of individual fiber material stores do not have to be connected.
  • Writing instruments with the described capillary-writing material storage system can therefore be stored indefinitely, do not dry out during this storage and a user can be sure that when the writing instrument is used for the first time, the full writing capacity - based on the color content in the dye storage - is available.
  • the last-mentioned dye storage has - according to the in Claim 3 circumscribed invention - an elongated storage body. This is made of fiber material. It is surrounded by a shell that is permeable to liquids and gases and that gives the storage body its shape - and maintains it.
  • the liquid writing material is produced by admixing the dye, which is stored in a dry form between the fibers of the storage body fiber material.
  • a one-part or multi-part wick protrudes from the storage body on both sides.
  • the success according to the invention is also borne here by the storage of the dye content in dry form.
  • the elongated design of the storage body allows a high storage capacity.
  • the cover gives it dimensional stability and simplifies the manufacture of the writing instruments in which the capillary dye stores are used. Both the high volume as well as the dry storage guarantee the long life initially postulated and allow long-term storage without loss of capacity.
  • the one-part or multi-part wick can also contribute to this, by means of which the solution liquid is supplied on the one hand and via which the solution-enriched with dye - the writing material - on the other hand is removed from the dye storage (claim 4, first alternative). One or more members of the wick is possible due to the capillary flow connection.
  • the wick is selected in one piece - that is, throughout - the solution liquid absorbs the dye from the storage as it passes through the wick. At the same time, the solution liquid also leaves the wick and arrives in the dye storage in order to be distributed along the fibers there and to emerge again through the wick at the opposite end. In the latter case, the wick can be divided into two, upper and lower partial wick.
  • the dye storage / writing material storage in the variant according to claim 2 is surrounded by the envelope which keeps it in shape.
  • the shell can consist of a porous film made of moisture-proof material. If one uses a moisture-proof and low water and gas permeability film - for example polypropylene - this can be perforated, which justifies the porosity (claim 5).
  • the advantage of porosity - due to the gas and moisture permeability or the holes provided for this - is ventilation to the outside when the dye stores are soaked.
  • the fiber material core of the dye storage can soak up and swell. For the swelling, the fibers find space in the holes provided in the film which fixes the outer dimension. If the filled-up dye storage is then dried, the evaporating gas of the solution liquid can easily escape through / through the porous film. The color pigments thus remain in the dye storage. Due to the porosity, almost complete drying of the dye storage is guaranteed.
  • the dry ink depot (the dye storage) receives its high capacity of dye or color pigments.
  • the capillary wick which can be inserted into the dye storage, can have rod or knitting needle thickness (claim 6, claim 1). It is stronger than the fiber material of the dye storage surrounded by the shell. Extruded material wicks that are commonly used for fiber tip pens can be used.
  • the capillary wick can be pointed on one or both sides. It can also consist of several parts. However, it is easy to manufacture a continuous wick that penetrates the dye storage over its entire length. A small part of the long capillary wick then protrudes from both end faces of the elongated dye reservoir. The protruding sections form the connection to the further stores arranged on both sides of the dye store (cf. claim 1).
  • an elongated capillary fiber body is covered with a gas and liquid permeable film. But it is liquid-proof.
  • the fiber body thus coated is impregnated with a color concentrate, which is done by inserting the fiber body into the concentrate or by introducing the concentrate into the fiber body. Then the impregnated fiber body is drained and dried.
  • the one-part or multi-part rod-shaped wick that can be inserted into the fiber body (cf. claim 1, not claim 2) has a length that is greater than the longitudinal dimension of the fiber body (claim 8).
  • the wick can be introduced into the fiber body after drying, but it can also be done after dripping - before drying - or it can be done before soaking.
  • the dye stores are produced in accordance with the described method, then they receive the required high storage capacity of dye while at the same time being inexpensive to manufacture in large series.
  • they can be stored in wire baskets, the containers being able to have a high capacity - that is to say containing a multiplicity of color depots.
  • a two-stage drying process can be provided (claim 11, 12).
  • the drained dye stores are first dried in the air, in order to then be subsequently or finally dried in an oven.
  • the oven can be dried under vacuum conditions, which accelerates the expulsion of all solvents.
  • the three individual memories 10, 20, 30 arranged one behind the other are stored in a housing 4, which forms the casing of the writing instrument 100.
  • the three individual stores mentioned are connected to one another in the longitudinal direction by a wick 1. It can be located centrally and in the central axis of the three stores, but it can also go diagonally through the dye store 20 and accordingly open into the individual stores 10, 30 arranged on both sides.
  • the jacket 4 is round, square or triangular in shape.
  • the individual memories 10, 20, 30 also adapt to this jacket shape, which can then also be round, square or triangular.
  • the round design is advantageous, so that all three individual stores 10, 20, 30 have a cylindrical shape.
  • different precautions can be taken depending on the writing capacity and the chosen dye. If a high color capacity is required, the central color memory 20 takes precedence and takes up a high percentage of the existing interior of the jacket 4.
  • the storage for the liquid in the liquid store 10 is less critical. It can be refilled as desired and thus does not have to have a high capacity.
  • the capacity of the writing material store 30 can also be low, since it is continuously supplied from the dye storage device 20 and the liquid storage device 10 above it
  • the filling can be any type of fiber material, cellulose acetate or polyester is advantageously used.
  • FIG. 2 deepens the illustration according to FIG. 1 by drawing out a perspective design of the possible cylindrical individual memories. All three stores 10, 20, 30 are connected to each other via the wick 1. Originally, the wick 1 was initially only inserted through the ink reservoir 20, so that 20 ends of the wick 1 protrude on both ends of the dye reservoir. These ends are then pushed into the other stores 10, 30. There is thus a capillary flow connection from the memory 10 to the writing material storage 30, at the end of which the fiber tip 3 discussed releases the writing material onto the paper of the user.
  • the fiber material 21 and 31 fills the memory 20 and 30, the same also applies to the filling of the memory 10.
  • the dye storage 20 is to be emphasized. It has a casing 22 - which is also shown in section in FIG. 3 - with which it retains its shape. A multiplicity of openings 23 are made in the casing, which allow liquid to get into the fibrous filling of the reservoir 20 - thus when the reservoir is soaked. At the same time, the perforation 23 of the sheath 22 allows fibers of the fiber material to escape during the impregnation - due to swelling. It then takes on a shape as shown schematically in FIG. 3, where fibers emerge from the holes 23 due to the swelling of the filling, but are simultaneously held as tufts in the openings. If the ink depot 20 is then dried - after soaking and draining - the holes 23 form an excellent, even outlet for the resulting gases of the solvent with which the color pigments entered the dye store.
  • porosity means that openings are provided if the film used for the cover 22 is gas and / or water impermeable. Porous also means that a gas- and water-permeable film can be used. Likewise, a combination can be selected from gas and moisture-permeable film, into which additional openings 23 be introduced.
  • the arrangement of the holes 23 can be symmetrical, but it is not absolutely necessary, and an arbitrary distribution on the surface of the storage body 20 is also possible.
  • FIG. 3 has already been mentioned.
  • a section through the storage body 20 is shown in it.
  • the wick 1 lies centrally in the fiber material 21, which forms the heart of the dye storage 20.
  • the emerging tufts of fiber material from the openings 23 were the result of the intensive impregnation process, the exited tufts of fibers no longer completely returning to the cylindrical shape of the dye storage 22 after drying.
  • wick 1 With regard to the wick 1, it should be noted that although this is shown as a continuous wick 1, an interrupted design can also be selected. Two parts of the wick are pushed into the color depot 20 on both end faces in order to create a connection to the adjacent stores 10.30. An internal connection running in the reservoir 20 is not absolutely necessary, because the fiber material also has a capillary action and directs the solution liquid from the individual reservoir 10 - enriched with color pigments - to the writing material reservoir 30 via the lower part of the wick.
  • the starting point is a concentrated color solution that is produced on a water or alcohol basis.
  • the solvents should be able to evaporate easily, which is why water or ethanol are particularly suitable. At the same time, however, they should have sufficient solubility to bind at least 10% of the dyes in the solution.
  • a suitable fiber for the cartridge 20 is cellulose acetate or polyester, but other fiber materials can also be used.
  • the cellulose acetate or polyester is roughly in Formed and then surrounded by a permeable and / or perforated shell. It allows the solution liquid with the color pigments to enter and allows easy exit with regard to the gas produced during drying.
  • the fibrous cartridges surrounded by the casing are saturated with the above-mentioned color solution. To do this, they are immersed in it. Then they can be removed from the color solution and drained. This can be accelerated under the action of mechanically induced forces.
  • the cartridges 20 are basically dried. This drying process can proceed in one or two stages; a two-stage process, in which an air drying process precedes and an oven drying process can follow, has proven particularly useful. Approximately one to two hours are sufficient to essentially complete the air drying. Then comes - depending on performance and temperature - the oven drying process, for which a vacuum oven has proven particularly useful, since this can shorten the time mentioned.
  • the drying process is followed by a separation process in which the dye stores 20 are shaken in order to separate from one another.
  • the application of this step also depends on how the dye stores 20 have been saturated, drained and dried; if they are stored in baskets which can accommodate a large number of dye stores during the above-mentioned procedures, the shaking process is necessary in order to separate the cartridges from one another. If, on the other hand, soaking, draining and drying are carried out in such a way that the cartridges already go through these process steps individually, the shaking process is no longer necessary.
  • the production of the dye cartridges 20 is completed in that a wick or rod 1 is inserted lengthwise through the memory 20 and protrudes from both end faces.
  • the wick 1 can be pointed on one or both sides and consist of extruded material, as can the Fiber tip 3 according to FIG. 1. With regard to its strength, it is only important that it must be larger than that of the fiber material 21 held together by the sheath 22, since the wick 1 must penetrate it mechanically.
  • the continuous wick 1 is shown as an example, which can be particularly easily pushed into the cartridge to complete it. With the same effect, however, a two-part rod can also be used, which is inserted into the cartridge 20 on both sides. The connection between the ends located in the cartridge then takes place along the fiber material, in which way the solution liquid also absorbs the dyes.
  • the opening 23 may be present in the film both before the elongated cylindrical shape has been completed, but it can also be subsequently introduced into the cylindrical storage element 20 after a hole-free smooth film has been applied. This can be done in a rolling process between two plates provided with thorns, between which at the same time a plurality of dye stores 20 are provided with openings 23 which are intended to accelerate the impregnation process and at the same time are intended to offer the gas an easy way to escape when the gas dries out.
  • FIG. 4 shows a marker 110. Its writing tip 3 is thicker than the writing tip 3 of the pen according to FIG. 1, which can be a liner or a fiber pen. It also has the jacket 4, which forms the grip sleeve of the pin. While the tip is located at the bottom of the writing end of the cylindrical pen, it is open at the top. This opening can be closed with the cap 2; the cap 2 is shown while it is filling solution liquid into the upper reservoir 40. The liquid introduced collects there temporarily - only briefly - in order to then penetrate into the enlarged dye storage 20a - with cellulose filling 21. There she solves them dry stored color pigments and forms the writing material for the writing tip 3 in liquid form.
  • the upper liquid reservoir 40 serves to buffer a certain amount of solution liquid predetermined by the cap 2, since this cannot be sucked into the dye reservoir 20a particularly quickly.
  • a plurality of cap fillings can also be used to complete or to refresh the liquid writing material in memory 20a.
  • the low-cost production was mentioned due to the omission of the wick, the related manufacturing steps and the simplified assembly.
  • the possible higher writing capacity should also be mentioned, since a longer color memory 20a can store a larger number of color pigments.
  • the writing material storage 20a can even be selected so large in dry form that the buffer storage 40 for the liquid is only very small. Then liquid must be poured in several times with the cap 2 to form the writing material.
  • Another advantage is that the writing performance can be refilled (refreshed) in a very metered manner, since only small amounts are added. If, on the other hand, a larger buffer store is used, there is a risk that excessive refreshing will occur and the writing material will be diluted too much.

Abstract

Die Erfindung(en) betreffen Schreibgeräte, dabei insbesondere Kapillar-Farbstoffspeicher in den vorgenannten Schreibgeräten. Vorgeschlagen wird auch ein Verfahren zur Herstellung des erwähnten Farbstoffspeichers. Problematisch bei solchen Farbstoffspeichern ist die Lagerzeit. Durch sie sinkt die Schreibkapazität von neuwertigen Schreibgeräten, da die Wandungen der Schreibgeräte für Lösungsmittel, wenn auch gering, durchlässig sind. Dadurch trocknet ein gelagertes Schreibgerät auf Dauer aus und es wird ein Großteil seiner ursprünglichen Schreibkapazität verlieren. Hierzu schlägt eine Erfindung vor, einen Farbstoffspeicher zur schaffen, der einen langgestreckten Speicherkörper (20) aus Fasermaterial (21) aufweist. Er ist mit einer Hülle (22) umgeben, die für Flüssigkeit und Gase durchlässig ist und die dem Speicherkörper (20) seine Form gibt. Der Farbstoffspeicher hat Farbstoff gespeichert zur Herstellung des (flüssigen) Schreibstoffs, wobei der Farbstoff zwischen den Fasern des Fasermaterials (21) des Speicherkörpers (20) in trockener Form vorliegt. Ein ein- oder mehrteiliger Docht (1) steht beidseitig aus dem Speicherkörper (20) hervor. Ein zur Schaffung des erwähnten Farbstoffspeichers führendes Verfahren wird ebenfalls vorgeschlagen; mit ihm wird der langgestreckte Kapillar-Faserkörper mit einer für Gase und Flüssigkeiten durchlässigen - jedoch flüssigkeitsfesten - Folie umhüllt und der so umhüllte Faserkörper in einem oder mit einem Farbkonzentrat getränkt. Der getränkte Faserkörper wird abgetropft und getrocknet. Danach wird in seiner Längsrichtung ein ein- oder mehrteiliger stabförmiger Docht (1) in ihn eingeführt. Der Docht (1) weist eine größere Länge auf, als der langgestreckte Faserkörper (20).

Description

  • Die Erfindungen betreffen ein Kapillar-Schreibstoff-Speichersystem für Schreibgeräte, wie Faserschreiber, Liner, Marker, das aus mehreren Einzelspeichern besteht, welche Fasermaterial enthalten (Anspruch 1). Eine kostengünstige Variante enthält gemäß einem weiteren Vorschlag nur einen Fasermaterial-Einzelspeicher (Anspruch 2). Die Erfindung betrifft auch einen Kapillar-Farbstoffspeicher - als einen der genannten Einzelspeicher - zur Verwendung in den erwähnten Schreibgeräten (Anspruch 3). Schließlich wird auch ein Verfahren zur Herstellung des genannten Farbstoffspeichers vorgeschlagen (Anspruch 7).
  • Schreibgeräte sind in vielfältiger Gestalt mit flüssigem Schreibstoff bekannt. Dabei kann die Schreibstoffvorratskammer aus einem nachfüllbaren Vorratsbehälter oder aus wechselbaren Patronen bestehen. Bei Faserschreibern ist im Schreibgerätegehäuse ein kapillarer Speicher, beispielsweise ein Tampon oder ein Faserstoffpaket vorgesehen, der einen vorbestimmten Vorrat an fertigem Schreibstoff enthält. Dieser Vorrat wird ihm bei der Fertigung zugeordnet und bestimmt die Lebensdauer des Schreibgerätes (vgl. US 3,481,677). Verwendet man die erwähnten Patronen, so bestehen Umweltschutzprobleme, da der Abfall - meist Kunststoffpatronen - entsorgt werden muß.
  • Ist in Schreibgeräten ein eingebauter Schreibstoffspeicher vorgesehen, der eine vorbestimmte Menge von Schreibstoff speichert, ist diese Menge von vornherein begrenzt. Nach Abgabe der vorher gespeicherten Schreibstoffmenge ist das Schreibgerät leer und müßte - wie die Patronen - entsorgt werden. Hinzu tritt das Problem, daß die vorbestimmte Schreibstoffmenge alterungsbedingt abnimmt, auch wenn das Schreibgerät nicht benutzt wird; sprich: wenn es in den Regalen der Einzelhändler und Großhändler auf Abnahme und Verkauf wartet.
  • Ein nachfüllbares Kapillar-Schreibstoff-Speichersystem ist aus WO 92/18339 der Fachwelt zugänglich geworden. Es weist die technischen Merkmale (a) und (b) des Anspruchs 1 auf, nicht jedoch die Merkmalsgruppe (c) und die Maßgabe, daß der mittlere Einzelspeicher, der den Farbanteil speichert, Fasermaterial enthält.
  • Ein marking or colouring pen ("Marker") ist in US 3,993,409 (Hart) beschrieben. In zwei Beispielen werden dort Marker beschrieben, die zwei Einzelspeicher aufweisen. Sie sind ineinandergeschachtelt. Einer der Speicher ist die Schreibspitze (oder der "Schreibdocht"), der andere ist der Flüssigkeitsspeicher. Letzterer ist deutlich größer als ersterer. Bei Hart sind die Einzelspeicher ineinander, nicht aneinander gereiht; auch ist die Größendimensionierung entgegen der Lehre des Anspruchs 2. Allerdings speichert der Schreibdocht bei Hart auch Schreibflüssigkeit und Farbpigment gleichzeitig (vgl. Anspruch 2).
  • In Bezug auf Anspruch 3 offenbart US 3,993,409 (Hart) die Merkmalsgruppen (a) und (c), nicht aber die für Flüssigkeit und Gase durchlässige Hülle, die auch in Merkmalsgruppe (a) des Anspruchs 7 enthalten ist. Eine Hülle um den Docht von Hart zu legen wäre gleichbedeutend mit der Funktionslosigkeit der Hart-Marker, die auf ineinandergeschachtelter Berührung von Dochtaußenseite und Propfen-Innenloch (Bohrung) für ihre Funktion basieren.
  • Es ist Aufgabe der Erfindung(en) den erwähnten Schreibgeräten eine höhere Lebensdauer und besonders eine höhere Lagerdauer zu geben und gleichwohl die Fertigung der Farbspeicher zu vereinfachen.
  • Diese Aufgabe wird durch die technischen Lehren der Ansprüche 1,2, 3 oder 7 gelöst.
  • Hinsichtlich des Kapillar-Schreibstoff -Speichersystems für die erwähnten Schreibgeräte (Anspruch 1) ist tragend für den erfindungsgemäßen Erfolg die Trennung des bislang einen Speichers in eine Mehrzahl von Fasermaterial-Speichern. Dabei sind zumindest drei Speicher vorgesehen, ein hinterer, ein vorderer und der dazwischenliegende Einzelspeicher. Letzterer speichert den Farbanteil des Schreibstoffs im Fasermaterial in trockener Form. Diese Art der Speicherung ist zeitlos. Damit kann ein gefertigtes Schreibgerät langzeitgelagert werden, ohne daß es austrocknet oder ohne daß es seine vorbestimmte Schreibkapazität verliert, denn der trockene Farbanteil des Schreibstoffes kann nicht weiter austrocknen und ein Flüssigkeitsanteil, der verdunsten oder durch Wandungen entweichen könnte, existiert nicht. Vor der Ingebrauchnahme des Schreibgerätes wird dann der hintere Einzelspeicher von außerhalb des Schreibgerätes mit einer Lösungsflüssigkeit getränkt. Sie kann Wasser oder Alkohol sein. Von dem hinteren Einzelspeicher gelangt die eingefüllte Lösungsflüssigkeit über den - die Einzelspeicher verbindenden - Docht in den mittleren Fasermaterial-Farbstoffspeicher, wo der Farbanteil durch kapillare Kräfte in die Lösungsflüssigkeit gelangt, um im Zuge des Dochtes als (gefärbter) Schreibstoff in den vorderen Einzelspeicher zu gelangen, der mit der Schreibspitze in Kontakt steht. Letzterem Einzelspeicher - der kleiner als die anderen Speicher sein kann - kommt dabei die Funktion zu, den Schreibstoff zu vergleichmäßigen und immer eine bestimmte, aber begrenzte Menge zum sofortigen Anschreiben zu speichern.
  • Die kapillare Strömungsverbindung trägt maßgeblich das erfindungsgemäße Konzept, denn ein Verbrauch des Schreibstoffes aus dem vorderen Einzelspeicher führt aufgrund der Ausgleichskräfte von dem stark feuchten hinteren Einzelspeicher zu dem - die Farbe zumischenden - mittleren Einzelspeicher bis hin zum sich entleerenden vorderen Einzelspeicher zu einer automatischen Nachfüllung des vorderen Einzelspeichers mit Schreibstoff.
  • Die erwähnte Trennung des bislang eines Speichers in eine Mehrzahl von Speichern kann - ohne den Gedanken des trockenen Speicherns von Farbstoff in einem Farbstoffspeicher zu verlassen - hinsichtlich der Kosten noch vereinfacht werden. So kann der mittlere und untere Einzelspeicher zusammengefasst werden zu einem zusammenhängenden Farbstoffspeicher, der sowohl den Trockenfarbstoff (die Farbpigmente) als auch - nach Auffüllen des Schreibstifts - den flüssigen Schreibstoff speichert. Dabei ist nur ein weiterer Speicher (der hintere Einzelspeicher) nötig, der aber nicht mit Fasermaterial gefüllt ist, sondern einen Hohlraum darstellt (Anspruch 2). In diesen Hohlraum wird die Flüssigkeit gegossen, wo sie kurzzeitig gespeichert (gepuffert) wird, um sich dann langsam in dem Farbspeicher zu verteilen. Dabei wird der Schreibstoff gebildet, der dann über die Schreibspitze - sie steht in Verbindung mit dem Farbstoffspeicher - abgegeben werden kann. Während der hintere Pufferspeicher die eingegossene Lösungsflüssigkeit nur kurz speichert, namentlich nur solange, bis der Farbstoffspeicher sie gänzlich aufgesogen hat, speichert letzterer den Schreibstoff dann in flüssiger Form sehr lange.
  • Wird eine abnehmbare Kappe für den Schreibstift vorgesehen, so empfiehlt sich, deren Volumeninhalt so groß zu wählen, wie den des Pufferspeichers. Nachdem der Farbstoffspeicher aber wesentlich größer ist, als der Pufferspeicher, ist nicht nur aufgrund der geringeren Anzahl von Speichern die Fertigung preiswerter sondern der so gebildete Schreibstift auch mit einer wesentlich höhere Schreibkapazität versehen. Ein Docht ist nicht erforderlich, da nicht eine Mehrzahl von Fasermaterial-Einzelspeichern verbunden werden muß.
  • Schreibgeräte mit dem beschriebenen Kapillar-Schreibstoff-Speichersystem sind daher unbegrenzt lagerfähig, trocknen nicht aus während dieser Lagerung und ein Benutzer kann sich darauf verlassen, daß mit erster Ingebrauchnahme des Schreibgerätes die volle Schreibkapazität - begründet durch den Farbanteil im Farbstoffspeicher - zur Verfügung steht.
  • Der zuletzt erwähnte Farbstoffspeicher weist - gemäß der in Anspruch 3 umschriebenen Erfindung - einen langgestreckten Speicherkörper auf. Dieser ist aus Fasermaterial gebildet. Es wird von einer Hülle umgeben, die für Flüssigkeit und Gase durchlässig ist und die dem Speicherkörper seine Form gibt - und erhält. Der flüssige Schreibstoff wird hergestellt durch Beimischung des Farbstoffes, der zwischen den Fasern des Speicherkörper-Fasermaterials in trockener Form gespeichert ist. Aus dem Speicherkörper ragt beidseitig ein ein- oder mehrteiliger Docht heraus.
  • Der erfindungsgemäße Erfolg wird auch hier getragen von der Speicherung des Farbstoffanteiles in trockener Form. Die langgestreckte Gestaltung des Speicherkörpers erlaubt eine hohe Speicherkapazität. Die Hülle gibt ihm Formstabilität und vereinfacht die Fertigung der Schreibgeräte in welche die kapillaren Farbstoffspeicher eingesetzt werden. Sowohl das hohe Volumen als auch die trockene Speicherung gewähren die eingangs postulierte lange Lebensdauer und erlauben eine langfristige Lagerung ohne Kapazitätsverlust. Hierzu kann auch der ein- oder mehrteilige Docht beitragen, mittels welchem die Lösungsflüssigkeit einerseits zugeführt wird und über welchen die mit Farbstoff angereicherte Lösungsflüssigkeit - der Schreibstoff - andererseits aus dem Farbstoffspeicher abgeführt wird (Anspruch 4, erste Alternative). Eine Ein- oder Mehrgliedrigkeit des Dochtes ist aufgrund der kapillaren Strömungsverbindung möglich. Wird der Docht einteilig gewählt - also durchgängig - so nimmt die Lösungsflüssigkeit auf dem Weg durch den Docht den Farbstoff aus dem Speicher auf. Gleichzeitig verläßt die Lösungsflüssigkeit auch den Docht und gelangt in den Farbstoffspeicher, um sich entlang der dortigen Fasern zu verteilen und am entgegengesetzten Ende wieder durch den Docht auszutreten. Für letzteren Fall ist eine Zweiteilung des Dochtes in oberen und unteren Teildocht möglich.
  • Nachdem eine Strömungsverbindung zwischen mehreren Speichern - Einzelspeichern - in der Variante gemäß Anspruch 2 nicht erforderlich ist, kann ein Docht dort entfallen. Dagegen ergibt sich vorteilhaft eine Vergrößerung des Farbstoffspeichers der gleichzeitig Schreibstoffspeicher wird, insbesondere auf das Doppelte des hinteren, auffüllbaren Einzelspeichers (Anspruch 4, zweite Alternative). Auch eine weitere Verlängerung des Farbstoffspeichers/ Schreibstoffspeichers ist denkbar, bis hin zu einem sehr kurzen hinteren Flüssigkeitspuffer.
  • Längs seiner gesamten Ausdehnung ist der Farbstoffspeicher/Schreibstoffspeicher in der Variante gemäß Anspruch 2 von der ihn in Form haltenden Hülle umgeben.
  • Die Hülle kann aus einer porösen Folie aus feuchtigkeitsfestem Werkstoff bestehen. Verwendet man eine feuchtigkeitsfeste und geringe Wasser- und Gasdurchlässigkeit aufweisende Folie - beispielsweise Polyproylen - so kann diese gelocht sein, womit die Porösität begründet wird (Anspruch 5). Vorteil der Porösität - durch die Gas- und Feuchtigkeitsdurchlässigkeit oder die dafür vorgesehenen Löcher - ist eine Entlüftung nach außen bei der Tränkung dieser Farbstoffspeicher. Bei dem Auftanken kann sich die Fasermaterial-Seele des Farbstoffspeichers vollsaugen und aufquellen. Für das Aufquellen finden die Fasern Raum in den vorgesehenen Löchern der die Außenabmessung festschreibenden Folie. Wird der aufgetankte Farbstoffspeicher dann getrocknet, so kann das verdampfende Gas der Lösungsflüssigkeit leicht über/durch die poröse Folie entweichen. Damit verbleiben die Farbpigmente in dem Farbstoffspeicher. Aufgrund der Porösität wird nahezu vollständige Trocknung des Farbstoffspeichers gewährleistet. Das trockene Farbdepot (der Farbstoffspeicher) erhält so seine hohe Kapazität an Farbstoff oder Farbpigmenten.
  • Der Kapillar-Docht, der in den Farbstoffspeicher eingeführt werden kann , kann Stäbchen- oder Stricknadeldicke aufweisen (Anspruch 6, Anspruch 1). Er ist von größerer Festigkeit, als das Fasermaterial des von der Hülle umgebenen Farbstoffspeichers. Verwendet werden können Dochte aus extrudiertem Material, die allgemein für Faserschreiberspitzen verwendet werden. Der Kapillar-Docht kann ein- oder beidseitig angespitzt sein. Er kann auch mehrteilig sein. Einfach herzustellen ist jedoch ein durchgängiger Docht, der über seine ganze Länge den Farbstoffspeicher durchdringt. An beiden Stirnflächen des langgestreckten Farbstoffspeichers ragt dann ein kleiner Teil des langen Kapillar-Dochtes heraus. Die herausragenden Abschnitte bilden die Verbindung zu den beidseitig des Farbstoffspeichers angeordneten weiteren Speichern (vgl. Anspruch 1).
  • Wesentlich ist schließlich noch ein Verfahren (Anspruch 7) zum Herstellen des beschriebenen Kapillaren-Farbstoff-Speichers (Anspruch 3) sowohl für das Speichersystem gemäß Anspruch 1, als auch für das Speichersystem gemäß Anspruch 2.
  • Gemäß den vier tragenden Verfahrensschritten wird ein langgestreckter Kapillar-Faserkörper mit einer gas- und flüssigkeitsdurchlässigen Folie umhüllt. Sie ist aber flüssigkeitsfest. Der so umhüllte Faserkörper wird getränkt, und zwar mit einem Farbkonzentrat, was durch Einlegen des Faserkörpers in das Konzentrat oder durch Einbringen des Konzentrates in den Faserkörper geschieht. Danach wird der getränkte Faserkörper abgetropft und getrocknet. Der ein- oder mehrteilige stabförmige Docht, der in den Faserkörper eingeführt werden kann (vgl. Anspruch 1, nicht bei Anspruch 2), weist eine Länge auf, die größer als die Längsabmessung des Faserkörpers ist (Anspruch 8). Das Einbringen des Dochtes in den Faserkörpers kann nach dem Trocknen erfolgen, es kann aber auch nach dem Abtropfen - vor dem Trocknen - vorgenommen werden oder es kann vor dem Tränken geschehen.
  • Werden die Farbstoffspeicher gemäß dem beschriebenen Verfahren hergestellt, so erhalten sie die geforderte hohe Speicherkapazität von Farbstoff bei gleichzeitiger kostengünstiger Fertigung in Großserie. Während der beschriebenen Verfahrensschritte können sie in Körbchen aus Draht aufbewahrt werden, wobei die Behälter ein hohes Fassungsvermögen aufweisen können - also eine Vielzahl von Farbdepots beinhalten.
  • Mehrmaliges Tränken erhöht die Konzentration des Farbstoffs im Farbstoffspeicher (Anspruch 9). Vorteilhaft ist dabei eine - aus Farbpigmenten und einem Lösungsmittel hergestellte - konzentrierte Farblösung, so beispielsweise auf Wasser- oder Alkoholbasis (Anspruch 10). Auch andere Lösungsmittel sind anwendbar. Je stärker der Trocknungsgrad des Trocken-Farbstoffspeichers, desto höher kann die Farbkonzentration sein und desto günstiger sind die Langzeit-Aufbewahrungsbedingungen.
  • Deshalb kann ein zweistufiges Trocknungsverfahren vorgesehen werden (Anspruch 11, 12). Gemäß diesem werden die abgetropften Farbstoffspeicher zunächst an der Luft getrocknet, um dann in einem Ofen nach- bzw. endgetrocknet zu werden. Die Ofentrockung kann unter Vakuumbedingungen geschehen, womit eine zeitlich beschleunigte Austreibung aller Lösungsmittel erreicht wird.
  • Das Verständnis der Erfindung wird anhand von Ausführungsbeispielen vertieft.
  • Figur 1
    zeigt schematisch einen Schnitt durch ein Schreibgerät mit drei Einzelspeichern 10,20,30.
    Figur 2
    zeigt - perspektivisch - die Hintereinander-Anordnung der drei Einzelspeicher 10,20,30, wobei der mittlere Einzelspeicher 20 - der Farbstofftrockenspeicher - hervorgehoben ist.
    Figur 3
    zeigt einen horizontalen Schnitt durch den erwähnten mittleren Farbstoffspeicher 20, in dem der Docht 1 ersichtlich ist.
    Figur 4
    zeigt einen Marker, der nur einen (vergrößerten) Farbstoffspeicher 20a aufweist
    Die Figur 1 bildet - im Schnitt - einen Faserschreiber ab. Am unteren Ende des Faserschreibers 100 ist eine Spitze 3 vorgesehen, die aus extrudiertem Material gefertigt sein kann. Am oberen Ende ist eine abschraubbare oder abnehmbare Kappe 2 angeordnet, über die dem darunterliegenden ersten Einzelspeicher 10 Lösungsflüssigkeit zugeführt werden kann. Darunter liegt der zentrale Farbstoffspeicher 20, der den Farbstoff in trockener Form speichert. An ihn schließt sich der Einzelspeicher 30 für den fertigen Schreibstoff an, in ihn ragt von der Spitze des Schreibgerätes 100 her die Schreibspitze 3 hinein.
  • Die drei hintereinander angeordneten Einzelspeicher 10,20,30 sind in einem Gehäuse 4 aufgehoben, das den Mantel des Schreibgerätes 100 bildet. In Längsrichtung sind die genannten drei Einzelspeicher durch einen Docht 1 miteinander verbunden. Er kann zentral und in der Mittelachse der drei Speicher liegen, er kann jedoch auch schräg durch den Farbstoffspeicher 20 gehen und entsprechend in die beiderseits angeordneten Einzelspeicher 10,30 münden.
  • Abhängig davon, welche Form das Schreibgerät 100 hat, ist der Mantel 4 rund, quadratisch oder dreieckig geformt. Dieser Mantelform passen sich auch die Einzelspeicher 10,20,30 an, die dann ebenso rund, quadratisch oder dreieckig ausgebildet sein können.
  • Vorteilhaft ist jedenfalls die runde Gestaltung, so daß alle drei Einzelspeicher 10,20,30 zylindrische Gestalt haben. Hinsichtlich der Länge der Einzelspeicher können entsprechend der Schreibkapazität und dem gewählten Farbstoff unterschiedliche Vorkehrungen getroffen werden. Wird eine hohe Farbkapazität gefordert, so hat der zentrale Farbspeicher 20 Vorrang und nimmt zu einem hohen Prozentsatz des vorhandenen Innenraums des Mantels 4 ein. Weniger kritisch ist die Speicherung für die Flüssigkeit in dem Flüssigkeitsspeicher 10. Er kann beliebig nachgefüllt werden und muß so keine hohe Kapazität aufweisen. Gering kann auch die Kapazität des Schreibstoffspeichers 30 sein, da er kontinuierlich aus dem Farbstoffspeicher 20 und dem darüberliegenden Flüssigkeitsspeicher 10 versorgt wird
  • Zum Aufbau der einzelnen Speicher sei hier lediglich auf die Fasermaterialien des Farbstoffspeichers 20 verwiesen, die mit 21 bezeichnet sind. Die Füllung kann jede Art von Fasermaterial sein, vorteilhaft wird Celluloseazetat oder Polyester verwendet.
  • Figur 2 vertieft die Darstellung gemäß Figur 1, indem eine perspektivische Gestaltung der möglichen zylindrischen Einzelspeicher herausgezeichnet ist. Alle drei Speicher 10,20,30 werden über den Docht 1 miteinander verbunden. Ursprünglich war der Docht 1 zunächst nur durch den Farbspeicher 20 hindurchgesteckt worden, so daß an beiden Stirnseiten des Farbstoffspeichers 20 Enden des Dochtes 1 hervorstehen. Diese Enden werden dann in die anderen Speicher 10,30 hineingestoßen. Damit besteht eine kapillare Strömungsverbindung vom dem Speicher 10 zu dem Schreibstoffspeicher 30, an dessen Ende die erörterte Faserspitze 3 den Schreibstoff auf das Papier des Benutzers abgibt.
  • Das Fasermaterial 21 und 31 füllt die Speicher 20 und 30, gleiches hat auch für die Füllung des Speichers 10 Geltung. Hervorgehoben werden soll der Farbstoffspeicher 20. Er weist eine Hülle 22 auf - die auch in Figur 3 im Schnitt dargestellt ist - mit welcher er seine Form bewahrt. In die Hülle sind eine Vielzahl von Öffnungen 23 eingebracht, die es erlauben, daß Flüssigkeit in die Faserstoff-Füllung des Speichers 20 gelangt - so beim Tränken des Speichers. Gleichzeitig erlaubt die Lochung 23 der Hülle 22 das Austreten von Fasern des Fasermaterials beim Tränken - aufgrund von Aufquellen. Er erhält dann eine Gestalt wie in Figur 3 schematisch dargestellt, wo Fasern aufgrund des Aufquellens der Füllung aus den Löchern 23 austreten, aber gleichzeitig als Büschel in den Öffnungen gehalten werden. Wird das Farbdepot 20 dann - nach Tränken und Abtropfen - getrocknet, so bilden die Löcher 23 eine hervorragende gleichmäßige Austrittsmöglichkeit für die entstehenden Gase des Lösungsmittels, mit welchem die Farbpigmente in den Farbstoffspeicher gelangten.
  • Voraussetzung für die Hülle 22 ist nur, daß sie flüssigkeitsfest ist, sie muß also beständig sein. Bei der Beständigkeit soll sie aber eine Porösität aufweisen, die den erwähnten Funktionen dient. Porösität bedeutet zum einen, daß Öffnungen vorgesehen werden, wenn die verwendete Folie für die Hülle 22 gas- und/oder wasserundurchlässig ist. Porös meint aber auch, daß eine gas- und wasserdurchlässige Folie Verwendung finden kann. Ebenso kann eine Kombination gewählt werden aus gas- und feuchtigkeitsdurchlässiger Folie, in welche zusätzlich Öffnungen 23 eingebracht werden.
  • Die Anordnung der Löcher 23 kann symmetrisch sein, es ist jedoch nicht zwingend erforderlich, auch eine willkürliche Verteilung auf der Oberfläche des Speicherkörpers 20 ist möglich.
  • Figur 3 ist bereits erwähnt worden. In ihr ist ein Schnitt durch den Speicherkörper 20 dargestellt. Zentral liegt der Docht 1 in dem Fasermaterial 21, welches das Herz des Farbstoffspeichers 20 bildet. Die austretenden Büschel von Fasermaterial aus den Öffnungen 23 waren die Folge des intensiven Tränkvorganges, wobei die ausgetretenen Faserbüschel nach Trocknen nicht mehr vollständig in die Zylinderform des Farbstoffspeichers 22 zurückkehren.
  • Hinsichtlich des Dochtes 1 sei angemerkt, daß dieser zwar als durchgehender Docht 1 dargestellt ist, jedoch auch eine unterbrochene Gestaltung gewählt werden kann. Dabei werden zwei Dochtteile an beiden Stirnseiten in das Farbdepot 20 eingestoßen, um Verbindung zu den angrenzenden Speichern 10,30 zu schaffen. Eine interne im Speicher 20 verlaufende Verbindung ist nicht zwingend erforderlich, denn auch das Fasermaterial hat Kapillarwirkung und leitet die Lösungsflüssigkeit aus dem Einzelspeicher 10 - unter Anreicherung mit Farbpigmenten - dem Schreibstoffspeicher 30 über den unteren Dochtteil zu.
  • Beschrieben werden soll - ohne Zeichnungen - ein Verfahren, mit dem die Farbstoffpatrone 20 hergestellt werden kann. Ausgegangen wird dabei von konzentrierter Farblösung, die auf Wasserbasis oder Alkoholbasis hergestellt wird. Die Lösungsmittel sollten sich leicht verflüchtigen können, deshalb eignen sich Waser oder Äthanol besonders gut. Gleichzeitig sollen sie aber genügend Lösungsfähigkeit aufweisen, um mindestens 10% der Farbstoffe in der Lösung zu binden.
  • Geeigneter Faserstoff für die Patrone 20 ist Celluloseazetat oder Polyester, jedoch können auch andere Fasermaterialien bemüht werden. Das Celluloseazetat oder Polyester wird grob in Form gebracht und dann von einer durchlässigen und/oder durchlöcherten Hülle umgeben. Sie erlaubt den Eintritt der Lösungsflüssigkeit mit den Farbpigmenten und gewährt leichten Austritt hinsichtlich des bei Trocknung entstehenden Gases.
  • Zunächst werden die mit der Hülle umgebenen Faserstoff-Patronen mit der genannten Farblösung gesättigt. Dazu werden sie darin eingetaucht. Anschließend können sie der Farblösung entnommen und abgetropft werden. Dies kann unter Einwirkung von mechanisch veranlaßten Kräften beschleunigt werden.
  • Nach Abtropfen werden die Patronen 20 grundsätzlich getrocknet. Dieser Trocknungsvorgang kann einstufig oder zweistufig verlaufen, besonders bewährt hat sich ein zweistufiger, bei dem zunächst ein Lufttrocknungsvorgang vorangeht und sich ein Ofentrocknungsvorgang anschließen kann. Circa ein bis zwei Stunden reichen aus, um die Lufttrocknung im wesentlichen abzuschließen. Danach kommt - je nach Leistung und Temperatur - der Ofentrocknungsvorgang, für den sich ein Vakuumofen besonders bewährt hat, da hierbei die erwähnte Zeit sich verkürzen läßt.
  • An den Trocknungsvorgang schließt sich ein Vereinzelungsvorgang an, bei dem die Farbstoffspeicher 20 geschüttelt werden, um sich voneinander zu lösen. Die Anwendung dieses Schrittes hängt auch davon ab, wie die Farbstoffspeicher 20 gesättigt, abgetropft und getrocknet wurden; werden sie während der genannten Prozeduren in Körbchen aufbewahrt, die eine Vielzahl von Farbstoffspeicher aufnehmen können, so ist der Schüttelvorgang erforderlich, um die Patronen voneinander zu trennen. Wird dagegen ein Tränken, ein Abtropfen und Trocknen so vorgenommen, daß die Patronen bereits einzeln diese Verfahrensschritte durchlaufen, so ist der Schüttelvorgang nicht mehr erforderlich.
  • Abgeschlossen wird die Fertigung der Farbstoffpatronen 20 dadurch, daß durch den Speicher 20 der Länge nach ein Docht oder Stäbchen 1 eingeführt wird, das aus beiden Stirnseiten hervorsteht. Der Docht 1 kann ein- oder beidseitig angespitzt sein und aus extrudiertem Material bestehen, wie auch die Faserspitze 3 gemäß Figur 1. Hinsichtlich seiner Festigkeit ist nur von Bedeutung, daß sie größer sein muß, als diejenige des von der Hülle 22 zusammengehaltenen Fasermaterials 21, da der Docht 1 diese mechanisch durchdringen muß.
  • In Figur 2 ist beispielhaft der durchgehende Docht 1 dargestellt, der zur Fertigstellung der Patrone besonders einfach in sie eingestoßen werden kann. Mit gleicher Wirkung ist aber auch ein zweiteiliges Stäbchen einsetzbar, das an beiden Seiten der Patrone 20 in sie eingeführt wird. Die Verbindung zwischen den in der Patrone befindlichen Enden geschieht dann entlang des Fasermaterials, auf welchem Weg die Lösungsflüssigkeit auch die Farbstoffe aufnimmt.
  • Ergänzt sei zu der Porösität der Hülle 22 des Farbstoffspeichers 20, daß die Öffnung 23 sowohl vor Fertigstellung der langgestreckten zylindrischen Formgebung in der Folie vorliegen können, sie können aber auch nach Anbringen einer lochlosen glatten Folie nachträglich in das zylindrische Speicherelement 20 eingebracht werden. Dies kann in einem Abrollvorgang zwischen zwei mit Dornen versehenen Platten geschehen, zwischen denen gleichzeitig eine Vielzahl von Farbstoffspeichern 20 mit Öffnungen 23 versehen werden, die den Tränkvorgang beschleunigen sollen und gleichzeitig beim Austrocknen dem Gas einen einfachen Weg zum Entweichen bieten sollen.
  • Figur 4 zeigt einen Marker 110. Seine Schreibspitze 3 ist dicker, als die Schreibspitze 3 des Stiftes gemäß Fig. 1, der ein Liner oder ein Faserschreiber sein kann. Auch er weist den Mantel 4 auf, der die Griffhülse des Stiftes bildet. Während die Spitze unten am Schreibende des zylindrischen Stiftes angeordnet ist, ist er oben offen. Diese Öffnung kann mit der Kappe 2 verschlossen werden; dargestellt ist die Kappe 2, während sie Lösungsflüssigkeit in den oberen Speicher 40 einfüllt. Dort sammelt sich die eingeführte Flüssigkeit temporär - nur kurzzeitig - um sodann in den vergrößerten Farbstoffspeicher 20a - mit Cellulosefüllung 21 - einzudringen. Dort löst sie die trocken gespeicherten Farbpigmente und bildet den Schreibstoff für die Schreibspitze 3 in flüssiger Form.
  • Diese Gestaltung hat besondere Kostenvorteile, da nunmehr nur ein einziger Schreibstoffspeicher/ Fargpigmentspeicher erforderlich ist. Der obere Flüssigkeitsspeicher 40 dient der Pufferung einer bestimmten durch die Kappe 2 vorgegebenen Lösungsflüssigkeitsmenge, da diese nicht besonders schnell in den Farbstoffspeicher 20a eingesaugt werden kann. Auch mehrere Kappenfüllungen können zur Vervollständigung oder zur Auffrischung des flüssigen Schreibstoffs in Speicher 20a verwendet werden.
  • Erwähnt war die kostengünstige Fertigung aufgrund des Wegfalles des Dochtes, der diesbezüglichen Herstellungsschritte und aufgrund des vereinfachten Montage. Erwähnt werden soll aber auch die mögliche höhere Schreibkapazität, da ein längerer Farbspeicher 20a eine größere Anzahl von Farbpigmenten speichern kann. Hier kann der Schreibstoffspeicher 20a in Trockenform sogar so groß gewählt werden, so daß der Pufferspeicher 40 für die Flüssigkeit nur sehr klein wird. Dann muß mehrfach mit der Kappe 2 Flüssigkeit eingegossen werden, um den Schreibstoff zu bilden.
  • Vorteil hierbei ist auch, daß ein Nachfüllen (Wiederauffrischen) der Schreibleistung sehr dosiert erfolgen kann, da nur geringe Mengen hinzugefügt werden. Wird dagegen ein größerer Pufferspeicher verwendet, so besteht die Gefahr, daß eine übermäßige Wiederauffrischung erfolgt und der Schreibstoff zu stark verdünnt wird.

Claims (12)

  1. Kapillar-Schreibstoff-Speichersystem für Schreibgeräte (100), wie Faserschreiber, Liner, Marker, bestehend aus - bezüglich des Schreibstoffes in Reihe angeordneten - Einzelspeichern (10,20,30), die Fasermaterial (21,31,11) enthalten und über einen Docht (1) miteinander verbunden sind; wobei
    (a) der hintere Einzelspeicher (10) von außerhalb des Schreibgerätes (100) mit einer Lösungsflüssigkeit (5) tränkbar ist, die er speichert;
    (b) der vordere Einzelspeicher (30) mit der Schreibspitze (3) des Schreibgerätes (100) in Kontakt steht, für die er Schreibstoff speichert;
    (c) der mittlere Einzelspeicher (20) den Farbanteil des Schreibstoffes in trockener Form speichert.
  2. Schreibstoff-Speichersystem für Schreibgeräte (100), bestehend aus aneinandergereihten Einzelspeichern (20a,40),
    (a) mit einem hinteren Einzelspeicher (40), der von außerhalb des Schreibgerätes (100) mit einer Lösungsflüssigkeit (5) auffüllbar ist, die er für eine begrenzte Zeit speichert;
    (b) mit einem vorderen Einzelspeicher (20a), der den Farbanteil des Schreibstoffes in trockener Form und den Schreibstoff in flüssiger Form speichert und der mit der Schreibspitze (3) des Schreibgerätes (100) in Kontakt steht, für die er den flüssigen Schreibstoff speichert;
    (c) wobei der flüssige Schreibstoff im vorderen Einzelspeicher (20a) dann gebildet wird, wenn die in den hinteren Einzelspeicher (40) gefüllte Lösungsflüssigkeit (5) während der kurzen Speicherzeit in den vorderen Einzelspeicher (20a) eintritt, und dann hier für Schreibzwecke lange gespeichert bleibt.
  3. Kapillarer Farbstoffspeicher für Schreibgeräte (100) mit einer Schreibspitze (3), insbesondere für Faserschreiber, Liner, Marker oder für die Speichersysteme gemäß Anspruch 1 oder 2, bestehend aus:
    (a) einem als langgestrecktem Speicherkörper (20,20a) ausgebildeten Einzelspeicher, der Fasermaterial (21) aufweist;
    (b) einer Hülle (22), die für Flüssigkeit und Gase durchlässig ist und die dem Speicherkörper (20,20a) seine Form gibt;
    (c) Farbstoff zur Herstellung des flüssigen Schreibstoffs, der zwischen den Fasern (21) des Fasermaterials des Speicherkörpers (20,20a) in trockener Form gespeichert ist.
  4. Farbstoffspeicher nach Anspruch 3 bei dem
    (a) der Speicherkörper (20) einen ein- oder mehrteiligen Docht (1) aufweist, der beidseitig aus ihm hervorsteht; oder
    (b) der Speicherkörper (20) deutlich länger - insbesondere etwa doppelt so lang - als der auffüllbare hintere Einzelspeicher (40) ist.
  5. Kapillar-Farbstoffspeicher nach Anspruch 3 oder 4, bei dem die Hülle (22) aus einer porösen - insbesondere gelochten - Folie aus feuchtigkeitsfestem Werkstoff, wie Papier, Stoff, Kunststoff, Metall, besteht.
  6. Kapillar-Farbstoffspeicher nach Anspruch 4 oder 5, der
    (a) einen Kapillar-Docht (1) in Stäbchen- oder Stricknadeldicke von größerer Festigkeit als das umhüllte Fasermaterial aufweist, der vorzugsweise beidseitig angespitzt ist;
    (b) von dem Kapillar-Docht (1) über seine ganze Länge - insbesondere entlang seiner Achse - durchdrungen ist, wobei der Docht (1) beidseitig an den Stirnflächen des Farbstoffspeichers (20) herausragt.
  7. Verfahren zum Herstellen eines kapillaren Farbstoffspeichers nach einem der Ansprüche 3 bis 6, bei dem
    (a) ein langgestreckter Kapillar-Faserkörper (20,20a) mit einer für Gas und Flüssigkeit durchlässigen - jedoch flüssigkeitsfesten - Folie (22) umhüllt wird;
    (b) der umhüllte Faserkörper (20,20a) in einem oder mit einem flüssigen Farbkonzentrat getränkt wird;
    (c) der getränkte Faserkörper abgetropft und getrocknet wird.
  8. Verfahren nach Anspruch 7, bei dem ein ein- oder mehrteiliger stabförmiger Docht (1) größerer Länge als der langgestreckte Faserkörper (20) in seiner Längsrichtung in ihn eingeführt wird.
  9. Verfahren nach Anspruch 7 oder 8, bei dem der Faserkörper (20,20a) in der Tränkphase durch ein- oder mehrmaliges Eintauchen mit Farbstofflüssigkeit und Farbstoff gesättigt wird.
  10. Verfahren nach einem der Ansprüche 7 bis 9, bei dem zum Tränken eine konzentrierte Farblösung auf Wasser- oder Alkoholbasis verwendet wird.
  11. Verfahren nach einem der Ansprüche 7 bis 10, bei dem das Trocknen der getränkten und abgetropften Farbstoffspeicher (20,20a) zweistufig ist.
  12. Verfahren nach Anspruch 11, bei dem
    (a) die getränkten, abgetropften Farbstoffspeicher (20,20a) ein bis zwei Stunden an der Luft getrocknet werden;
    (b) die luftgetrockneten Farbstoffspeicher (20,20a) in einem Ofen - insbesondere einem Vakuumofen - endgetrocknet werden.
EP93922880A 1992-11-06 1993-10-19 Kapillar-schreibstoff-speichersystem Expired - Lifetime EP0667818B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4237616A DE4237616A1 (de) 1992-11-06 1992-11-06 Kapillar-Schreibstoff-Speichersystem
DE4237616 1992-11-06
PCT/DE1993/000989 WO1994011205A1 (de) 1992-11-06 1993-10-19 Kapillar-schreibstoff-speichersystem

Publications (2)

Publication Number Publication Date
EP0667818A1 EP0667818A1 (de) 1995-08-23
EP0667818B1 true EP0667818B1 (de) 1996-07-03

Family

ID=6472330

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93922880A Expired - Lifetime EP0667818B1 (de) 1992-11-06 1993-10-19 Kapillar-schreibstoff-speichersystem

Country Status (5)

Country Link
US (2) US6027271A (de)
EP (1) EP0667818B1 (de)
JP (1) JP3476459B2 (de)
DE (2) DE4237616A1 (de)
WO (1) WO1994011205A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7775734B2 (en) 2007-02-01 2010-08-17 Sanford L.P. Seal assembly for retractable instrument
US7850382B2 (en) 2007-01-18 2010-12-14 Sanford, L.P. Valve made from two materials and writing utensil with retractable tip incorporating same
US8221012B2 (en) 2008-11-07 2012-07-17 Sanford, L.P. Retractable instruments comprising a one-piece valve door actuating assembly
US8226312B2 (en) 2008-03-28 2012-07-24 Sanford, L.P. Valve door having a force directing component and retractable instruments comprising same
US8393814B2 (en) 2009-01-30 2013-03-12 Sanford, L.P. Retractable instrument having a two stage protraction/retraction sequence

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322268B1 (en) 1993-11-12 2001-11-27 Avery Dennison Corporation Efficient fluid dispensing utensil
US6416242B1 (en) 1993-11-12 2002-07-09 Dataprint R. Kaufmann Gmbh Efficient fluid dispensing utensil
DE19529865C2 (de) 1995-08-14 2002-02-28 Kaufmann R Dataprint Gerät zum Auftragen von Flüssigkeiten auf eine Unterlage mittels eines Auftragselements
JP3801819B2 (ja) * 1999-10-05 2006-07-26 パイロットインキ株式会社 水変色性玩具セット
CA2403819A1 (en) * 2000-03-22 2002-09-20 Hisashi Iida Writing implement
JP2001260586A (ja) * 2000-03-22 2001-09-25 Mitsubishi Pencil Co Ltd 筆記具
JP4530321B2 (ja) * 2001-08-24 2010-08-25 三菱鉛筆株式会社 筆記具
CN1248872C (zh) * 2001-08-24 2006-04-05 三菱铅笔株式会社 书写工具
US7070352B2 (en) * 2001-08-31 2006-07-04 Mitsubishi Pencil Kabushikikaisha Writing implement
JP2003072278A (ja) * 2001-09-05 2003-03-12 Mitsubishi Pencil Co Ltd 筆記具
FR2842760B1 (fr) * 2002-07-26 2004-10-22 Conte Article d'ecriture capillaire a restitution amelioree
US6729786B1 (en) * 2003-03-14 2004-05-04 Mediflex Hospital Products, Inc. Liquid applicator for coloring a liquid
US7322375B2 (en) * 2004-04-30 2008-01-29 Vanderbilt University High bandwidth rotary servo valves
US8334034B2 (en) * 2006-09-27 2012-12-18 Filtrona Porous Technologies Corp. Rapid release and anti-drip porous reservoirs
US8517728B2 (en) * 2007-01-24 2013-08-27 Colgate-Palmolive Company Oral care implement having fluid delivery system
MX368188B (es) 2010-02-26 2019-09-23 Colgate Palmolive Co Sistema de suministro de fluido para un implemento para el cuidado oral.
US8398326B2 (en) 2010-03-04 2013-03-19 Colgate-Palmolive Company Fluid dispensing oral care implement
KR20130128009A (ko) 2011-03-09 2013-11-25 콜게이트-파아므올리브캄파니 치간 세척기구
US9150045B2 (en) * 2012-01-31 2015-10-06 Novadaq Technologies Inc. Method and device for surgical marking
CN103660699A (zh) * 2012-09-03 2014-03-26 张晓东 新型自动加墨毛笔
US9554641B2 (en) 2012-10-26 2017-01-31 Colgate-Palmolive Company Oral care implement
EP3771573A1 (de) * 2019-07-29 2021-02-03 Société BIC Nachfüllmine für einen schreibfilzstift
EP3798016B1 (de) * 2019-09-30 2022-07-13 Société BIC Schreibspitze für instrumentenspitze eines schreibfilzstiftes

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1250302B (de) * 1967-09-14 Fa A W. Faber-Castell, Stein bei Nürnberg Full-, Zeichen- oder Schreibstift mit einem Docht als Schreibelement
US620216A (en) * 1899-02-28 X john blair
AT85744B (de) 1918-05-24 1921-09-26 Anna Leopold Füllfederhalter.
US1947092A (en) * 1933-07-08 1934-02-13 Russell B Kingman Soluble ink fountain pen
US1978676A (en) * 1934-05-01 1934-10-30 Russell B Kingman Soluble ink fountain pen
US1998930A (en) * 1934-10-16 1935-04-23 Russell B Kingman Soluble ink fountain pen
FR822542A (fr) * 1936-12-17 1937-12-31 Porte-plume à réservoir
BE539687A (de) * 1948-03-19
CH269816A (de) * 1948-12-05 1950-07-31 Neo Technik Ag Schreibeinrichtung.
FR1193795A (fr) * 1958-03-21 1959-11-04 Instrument pour dessiner, colorier ou marquer
GB859820A (en) * 1959-03-26 1961-01-25 Max Goldman Improvements in sponge activated water filled ink cartridge pen
US3038506A (en) * 1961-02-06 1962-06-12 Parker Pen Co Filler device for fountain pens
US3290717A (en) * 1964-06-06 1966-12-13 Mizutani Norihiko Pen
US3481677A (en) * 1967-03-01 1969-12-02 Gen Mills Inc Marking device
DE2124298A1 (de) * 1971-05-15 1972-11-23 Fa. A.W. Faber-Castell, 8504 Stein Füll-, Schreib- oder Zeichengerät mit einem auswechselbaren Tintenbehälter
US3993409A (en) * 1974-05-20 1976-11-23 Hart Una L Coloring pen assembly
DE2424918A1 (de) * 1974-05-22 1975-12-04 Pelikan Werke Wagner Guenther Faserschreiber mit auswechselbarer tintenpatrone
DE3642037A1 (de) * 1986-12-09 1988-06-23 Staedtler Fa J S Kapillarspeicher fuer tintenschreibgeraete
DE4104871A1 (de) * 1991-02-18 1992-08-20 Staedtler Fa J S Nachfuellbares auftragsgeraet, insbesondere nachfuellbares schreib-, zeichen-, mal- oder markierungsgeraet
DE4112420B4 (de) * 1991-04-16 2004-10-14 Merz & Krell Gmbh & Co. Kgaa Nachfüllbares Schreibgerät und Flüssigkeitsspeicherverfahren
US5362168A (en) * 1992-10-21 1994-11-08 Zebra Co., Ltd. Writing device with spaced walls and sliding valve

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7850382B2 (en) 2007-01-18 2010-12-14 Sanford, L.P. Valve made from two materials and writing utensil with retractable tip incorporating same
US8246265B2 (en) 2007-01-18 2012-08-21 Sanford, L.P. Valve made from two materials and writing utensil with retractable tip incorporating same
US7775734B2 (en) 2007-02-01 2010-08-17 Sanford L.P. Seal assembly for retractable instrument
US8226312B2 (en) 2008-03-28 2012-07-24 Sanford, L.P. Valve door having a force directing component and retractable instruments comprising same
US8221012B2 (en) 2008-11-07 2012-07-17 Sanford, L.P. Retractable instruments comprising a one-piece valve door actuating assembly
US8393814B2 (en) 2009-01-30 2013-03-12 Sanford, L.P. Retractable instrument having a two stage protraction/retraction sequence
US8568047B2 (en) 2009-01-30 2013-10-29 Sanford, L.P. Retractable instrument having a two stage protraction/retraction sequence

Also Published As

Publication number Publication date
DE4237616A1 (de) 1994-05-11
DE59303157D1 (de) 1996-08-08
US6244774B1 (en) 2001-06-12
WO1994011205A1 (de) 1994-05-26
JP3476459B2 (ja) 2003-12-10
US6027271A (en) 2000-02-22
EP0667818A1 (de) 1995-08-23
JPH08502934A (ja) 1996-04-02

Similar Documents

Publication Publication Date Title
EP0667818B1 (de) Kapillar-schreibstoff-speichersystem
DE3809498C2 (de)
DE1617732B1 (de) Vorrichtung zur Untersuchung lebender Zellen von Mikroorganismen
DE4112420B4 (de) Nachfüllbares Schreibgerät und Flüssigkeitsspeicherverfahren
DE2621544A1 (de) Schreibspitze
DE1561819B2 (de) Schreibgerät
DE2208111C3 (de) Kapillarschreibgerät für flüssige Tinten
DE2945173A1 (de) Schreibgeraet
DE19737177A1 (de) Verfahren und Vorrichtung zum Wiederbefüllen einer Tintenpatrone für einen Tintenstrahldrucker
DE4305369C2 (de) Verfahren zur Herstellung von Stiften, insbes. von Kosmetikstiften
DE2914154A1 (de) Schreibstift und verfahren zu dessen herstellung
DE10163592A1 (de) Schreibgerät vom freien Tintentyp
DE2754338A1 (de) Schreib- oder zeichengeraet
DE19823717A1 (de) Verfahren zur Herstellung eines Farbstoffspeichers
DE1771421A1 (de) Behaeltnis zur Aufnahme von Fluessigkeiten,insbesondere Farbfluessigkeiten
DE2854604A1 (de) Kugelschreiber
DE2535906A1 (de) Schreibspitze fuer fluessigkeits- schreibgeraete
DE822364C (de) Kugelschreiber mit mehreren achsparallelen Pasten-Vorratsraeumen
DE3302528A1 (de) Mine fuer kugelschreiber
DE3527303C1 (de) Farbige Lichte
DE3400004A1 (de) Ventilationselement fuer einen rauchbaren artikel
DE1761537B2 (de) Kapillarspeicher fur Flussigkeitsschreibgeräte und Verfahren zum Herstellen eines derartigen Kapillarspeichers
AT300162B (de) Kerze
DE3000022C2 (de) Künstliche Pflanze
DE697753C (de) Verfahren zur Herstellung von Fackeln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950526

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 19950927

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

ITF It: translation for a ep patent filed

Owner name: DR. ING. A. RACHELI & C.

REF Corresponds to:

Ref document number: 59303157

Country of ref document: DE

Date of ref document: 19960808

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061031

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061222

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061016

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071019