US20040236271A1 - Device and method for enhancing transdermal agent flux - Google Patents

Device and method for enhancing transdermal agent flux Download PDF

Info

Publication number
US20040236271A1
US20040236271A1 US10/881,440 US88144004A US2004236271A1 US 20040236271 A1 US20040236271 A1 US 20040236271A1 US 88144004 A US88144004 A US 88144004A US 2004236271 A1 US2004236271 A1 US 2004236271A1
Authority
US
United States
Prior art keywords
agent
connecting medium
skin
electrotransport
delivery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/881,440
Inventor
Felix Theeuwes
Michel Cormier
Armand Neukermans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wisconsin Alumni Research Foundation
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/881,440 priority Critical patent/US20040236271A1/en
Assigned to WISCONSIN ALUMNI RESEARCH FOUNDATION reassignment WISCONSIN ALUMNI RESEARCH FOUNDATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PEPPLER, WALTER W., WENDT, GARY J.
Publication of US20040236271A1 publication Critical patent/US20040236271A1/en
Assigned to UNITED STATES GOVERNMENT SECRETARY OF THE ARMY ARMY MEDICAL RESEARCH AND MATERIEL COMMAND, THE reassignment UNITED STATES GOVERNMENT SECRETARY OF THE ARMY ARMY MEDICAL RESEARCH AND MATERIEL COMMAND, THE CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: WISCONSIN ALUMNI RESEARCH FOUNDATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/20Surgical instruments, devices or methods, e.g. tourniquets for vaccinating or cleaning the skin previous to the vaccination
    • A61B17/205Vaccinating by means of needles or other puncturing devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0023Drug applicators using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0046Solid microneedles

Definitions

  • the present invention relates to transdermal agent delivery and sampling. More particularly, this invention relates to the transdermal delivery of agents, such as peptides and proteins, through the skin of an animal, as well as the transdermal sampling of agents, such as glucose, electrolyte and substances of abuse, such as but not limited to alcohol and illicit drugs.
  • agents such as peptides and proteins
  • Electrotransport refers generally to the passage of a beneficial agent, e.g., a drug or drug precursor, through a body surface such as skin, mucous membranes, nails, and the like.
  • a beneficial agent e.g., a drug or drug precursor
  • the transport of the agent is induced or enhanced by the application of an electrical potential, which results in the application of electric current, which delivers or enhances delivery of the agent.
  • the electrotransport of agents through a body surface may be attained in various manners.
  • One widely used electrotransport process, iontophoresis involves the electrically induced transport of charged ions.
  • Electroosmosis another type of electrotransport process, involves the movement of a solvent with the agent through a membrane under the influence of an electric field. Electroporation, still another type of electrotransport, involves the passage of an agent through pores formed by applying a high voltage electrical pulse to a membrane. In many instances, more than one of these processes may be occurring simultaneously to different extents. Accordingly, the term “electrotransport” is given herein its broadest possible interpretation, to include the electrically induced or enhanced transport of at least one charged or uncharged agent, or mixtures thereof, regardless of the specific mechanism(s) by which the agent is actually being transported. Electrotransport delivery generally increases agent delivery, particularly peptide delivery rates, relative to passive or non-electrically assisted transdermal delivery. However, further increases in transdermal delivery rates and reductions in peptide degradation during transdermal delivery are highly desirable.
  • One method of increasing the agent transdermal delivery rate involves pre-treating the skin with, or alternatively co-delivering with the beneficial agent, a skin permeation enhancer.
  • a skin permeation enhancer is broadly used herein to describe a substance which, when applied to a body surface through which the agent is delivered, enhances its flux therethrough.
  • the mechanism may involve a reduction of the electrical resistance of the body surface to the passage of the agent therethrough, an increase in the permeability of the body surface, the creation of hydrophilic pathways through the body surface, and/or a reduction in the degradation of the agent (e.g., degradation by skin enzymes) during electrotransport.
  • the present invention is a high volume producable, low-cost device suitable for increasing transdermal flux with skin piercing protrusions and contacting a body surface over a large contact area to reduce skin irritation and enhance agent delivery or sampling.
  • the device of the present invention pierces the stratum corneum of a body surface to form pathways through which a substance can either be introduced (i.e., delivery) or withdrawn (i.e., sampling).
  • the invention comprises a plurality of protrusions for piercing the skin which extend through a connecting medium.
  • the connecting medium assists in making substantial contact with the body surface for either delivering or sampling an agent.
  • the connecting medium spreads out the contact area to all the protrusions to reduce the current density at particular locations to reduce irritation.
  • the device utilizes a member having a plurality of openings therethrough, a plurality of blades integral therewith and extending downward from a first side of the member, and a connecting medium covering at least a part of the first side of the member.
  • Delivery devices for use with the present invention include, but are not limited to, electrotransport devices, passive devices, osmotic devices and pressure driven devices.
  • Sampling devices for use with the present invention include, but are not limited to, reverse electrotransport devices, passive devices, and osmotic devices.
  • FIG. 1 is an enlarged cross-sectional view of a skin piercing device in accordance with the present invention
  • FIG. 2 is an enlarged perspective view of the bottom side of a skin piercing device with a connecting medium removed therefrom for clarity in accordance with one embodiment of the present invention
  • FIG. 3 is a exploded perspective view of one embodiment of an electrotransport agent delivery system according to one embodiment of the present invention.
  • FIG. 4 is a bottom plan view of the electrotransport agent delivery system of FIG. 3;
  • FIG. 5 is a right side elevational view of the electrotransport agent delivery system of FIG. 3;
  • FIG. 6 is a rear elevational view of the electrotransport agent delivery system of FIG. 3;
  • FIG. 7 is a cross-sectional view taken along line 7 - 7 of the assembled electrotransport agent delivery system of FIG. 5;
  • FIG. 8 is a diagrammatic cross-sectional view of a passive agent delivery system in accordance with one embodiment of the present invention.
  • FIG. 9 is a diagrammatic cross-sectional view of another embodiment of a passive agent delivery system in accordance with the present invention.
  • FIG. 10 is a diagrammatic cross-sectional view of an osmotic sampling system in accordance with one embodiment of the present invention.
  • FIG. 1 Device 2 is used for the percutaneous administration or sampling of an agent.
  • agent agents
  • drug are used interchangeably herein and broadly include physiologically or pharmacologically active substances for producing a localized or systemic effect or effects in mammals including humans and primates, avians, valuable domestic household, sport or farm animals, or for administering to laboratory animals such as mice, rats, guinea pigs, and the like. These terms also include substances such as glucose, electrolyte, alcohol, illicit drugs, etc. that can be sampled through the skin.
  • the major barrier properties of the skin reside with the outer layer (i.e., stratum corneum).
  • stratum corneum The inner division of the epidermis generally comprises three layers commonly identified as stratum granulosum, stratum malpighii, and stratum germinativum. There is essentially little or no resistance to conduction or to absorption of an agent through the stratum granulosum, stratum malpighii, and stratum germinativum.
  • the device of the present invention is used to pierce the stratum corneum for improved delivery or sampling of an agent and to make contact with the skin over a large contact area using a connecting medium 65 (FIG. 1).
  • the connecting medium 65 of the present invention is predisposed on the skin contacting side 48 of the agent delivery or sampling device.
  • the connecting medium 65 is a conduit for the agent and acts as a bridge between the agent containing or collecting reservoir 26 and the skin, thus allowing an agent to be transported unhindered therethrough.
  • the connecting medium can be free of agent or preloaded with agent.
  • the reservoir 26 is illustrated as being separate from the connecting medium 65 . It should be appreciated, however, that in some embodiments there will be migration of agent into the connecting medium prior to use of the device such that the reservoir and connecting medium are not discrete, for example, the matrix in the reservoir and the connecting medium can be the same material.
  • a separate reservoir may not be present in that the connecting medium 65 may be the reservoir for the sampled agent or the agent to be delivered. In other words, the connecting medium is capable of storing the agent to be delivered or the sampled agent.
  • the connecting medium 65 is either fabricated and stored dry which can be rehydrated upon use or can be packaged in the hydrated form.
  • the connecting medium is an ion conducting hydrogel of a pharmaceutically acceptable grade with minimum extractable or degradation products which sorbs or contains in a functional state an amount of water in the range from 20% to 90%, preferably in the range from 30% to 70%.
  • the connecting medium is a hydrogel that is at least slightly crosslinked to prevent fragments of polymers from penetrating the skin and has adhesive or tacky properties.
  • the connecting medium 65 can be any of a large variety of materials as discussed above and further including, by way of example, an organic polymer having at least some pendent substituents capable of being ionic, a polar natural material, a semi-synthetic material, a cellulosic derivative, an alginate derivative, a starch derivative, a dextran, a polysaccharide, a hydrogel polymer having a backbone selected from the group consisting of a hydrous-gelled, linear polyolefin, polycarbonate, polyester, polyether, polyurethane and polyepoxide backbone, with backbone substituents selected from the group consisting of (alkyl, aryl or aralkyl) alcohol, amide, ketone, nitrogen heterocycle or ester pendent substituents, and any combination thereof.
  • the connecting medium can be in a variety of forms such as a gel, solid, hydrogel, powder, liquid, viscous fluid, gauze made of cotton or other absorbent fabrics as well as pads and sponges, both natural and synthetic, may be used. Any suitable materials listed in U.S. Pat. No. 5,385,543 could be used in conjunction with the present invention.
  • U.S. Pat. No. 5,423,739, issued to Phipps et al. describes iontophoretic materials and substances that can be used as the connecting medium.
  • Device 2 comprises a plurality of protrusions 4 extending downward from one surface of a member or plate 6 which has a connecting medium 65 (FIG. 1) on at least a portion of surface 48 (see FIG. 2 in which device 2 is in an inverted position to show the protrusions and wherein the connecting medium is removed for clarity).
  • the protrusions 4 can be blades (FIGS. 1 and 2), pins (not shown), or any of a variety of configurations for piercing the skin or body surface.
  • the protrusions 4 penetrate the stratum corneum of the epidermis when pressure is applied to the device to increase the administration of or sampling of a substance through a body surface.
  • body surface refers generally to the skin, mucous membranes, and nails of an animal or human, and to the outer surface of a plant.
  • the protrusions 4 extend through the connecting medium 65 to pierce the body surface to create good agent conduction from the system into the body, or vice versa.
  • the member 6 is formed with an opening 8 between the blades 4 for enhancing the movement of agent released from or collected in the agent containing or collecting reservoir 26 .
  • the opening 8 corresponds to the portion of the member occupied by each of the blades 4 prior to the blades being bent into a position which is substantially perpendicular to the plane of member 6 .
  • the number of openings per device and the number of blades per device are independent.
  • the device may have only one large opening with a plurality of blades around the opening.
  • the agent can be administered or sampled at a controlled rate of release from or collection in the reservoir 26 through an agent rate controlling material such as a flux control membrane (not shown) positioned between the reservoir 26 and the member 6 .
  • the protrusions or blades 4 are generally formed from a single piece of material and are sufficiently sharp and long for puncturing at least the stratum corneum of the skin.
  • the blades 4 and the member 6 are essentially impermeable or are impermeable to the passage of an agent.
  • the width of each blade can be any of a range of widths.
  • the blades 4 can have slanted (i.e., angled) leading edges 64 (FIG. 2) to further reduce the insertion force required to press the blades into the skin tissue.
  • the leading edges of each blade can be all be the same angle or can be at different angles suitable for piercing the skin.
  • the leading edge of each blade can be arcuate (i.e., curved) in shape, having, for example, a convex or concave shape.
  • the device 2 of the present invention improves the attachment of the device to the skin so that a continuous agent conducting pathway through the body surface is preserved during movement of the body surface.
  • projections in the form of barbs 50 on at least one of the blades 4 assist in anchoring the device 2 and any corresponding device or structure used in combination therewith to the skin.
  • Barbs 50 can be on any number of the blades from one blade to all blades.
  • the barbs 50 are optional as other means for holding the device in contact with the skin can be used.
  • the present invention can be used in conjunction with a wide variety of blade configurations, for example reference may be had to U.S. Provisional Application No. 60/019,990 filed Jun. 18, 1996 of which any of the disclosed configurations can be used with the present invention.
  • the pattern for any of the blade array devices 2 of the present invention can be produced with a photo-etching process.
  • a thin member 6 of metal such as stainless steel or titanium is etched photo-lithographically with patterns containing blade-like structures.
  • a thin laminate dry resist or wet resist is applied on the member 6 which typically has a thickness of about 7 micrometers to about 100 micrometers, preferably about 25 micrometers to about 50 micrometers.
  • the resist is contact exposed using a mask having the desired pattern and is subsequently developed.: These operations are conducted in much the same way that they are for the manufacture of a printed circuit board.
  • the member 6 is then etched using acidic solutions.
  • the member 6 is placed on a die having a plurality of openings corresponding to the openings 8 in the member.
  • a punch having a plurality of protrusions corresponding to the openings 8 in the member 6 and openings in the die is initially located above the member and the die.
  • the blades 4 are in the same plane as the rest of the member 6 .
  • the protrusions on the punch are then pressed into the openings, thus bending the blades downward to be substantially perpendicular to the plane of the member 6 .
  • the finished structure provides blades 4 with an adjacent opening 8 for the passage of a substance therethrough when the device 2 is applied to the body surface. Rectangular openings 8 are shown in the figures but the invention encompasses the use of any shape openings including, but not limited to, square, triangular, circular and elliptical.
  • a dry resist e.g., “Dynachem FL” available from Dynachem located in Tustin, Calif. is applied 12.5 micrometers thick to one or both sides of the member 6 and exposed in a standard manner. Then using a suitable spray etcher (e.g., “Dynamil VRP 10/NM” available from Western Tech. Assoc. located in Anaheim, Calif.) a mixture of ferric chloride and hydrochloric acid is sprayed onto the resist and member 6 at 125 degrees F. for two minutes. A standard caustic stripper is used for the resist removal.
  • a suitable spray etcher e.g., “Dynamil VRP 10/NM” available from Western Tech. Assoc. located in Anaheim, Calif.
  • a standard caustic stripper is used for the resist removal.
  • a wet resist e.g., “Shipley 111S” available from Shipley Corporation, located in Marlborough, Mass.
  • a suitable etchant e.g., ferric chloride
  • a standard caustic stripper is used for the resist removal.
  • the blades 4 are at an angle of about 90 degrees to the surface 48 of the member 6 after being punched, but they can be disposed at any angle forward or backward from the perpendicular position that will facilitate penetration of and attachment to the stratum corneum.
  • other anchoring elements such as barbs, openings, etc. can be used with the angled blades to further enhance anchoring of the device.
  • the member 6 and blades 4 can be made from materials that have sufficient strength and manufacturability to produce blades, such as, glasses, ceramics, rigid polymers, metals and metal alloys.
  • metals and metal alloys include but are not limited to stainless steel, iron, steel, tin, zinc, copper, silver, platinum, aluminum, germanium, nickel, zirconium, titanium and titanium alloys having nickel, molybdenum or chromium.
  • Each of the member and blades can have a thin layer of silver, gold, platinum, iridium, titanium, rhodium plating or evaporated or sputtered biocompatible metals to provide for inertness, biocompatibility and preservation of the sharpness of the edges during storage.
  • glasses include a devitrified glass such as “Photoceram” available from Corning in Corning, N.Y.
  • polymers include but are not limited to polystyrene, polymethylmethocrylate, polypropylene, “Bakelite”, celluloseacetate, ethylcellulose, styrene/acrylonitrile copolymers, stryrene/butadiene copolymers, acrylonitrile/butadiene/styrene (ABS) copolymers, polyvinyl chloride and acrylic acid polymers including polyacrylates and polymethacrylates.
  • ABS acrylonitrile/butadiene/styrene
  • the number of blades 4 and openings 8 of any of the embodiments of the device 2 is variable with respect to the desired flux rate, agent being sampled or delivered, delivery or sampling device used (i.e., electrotransport, passive, osmotic, pressure driven, etc.), and other factors as will be evident to one of ordinary skill in the art.
  • the larger the number of blades per unit area i.e., blade density
  • Higher concentrations of agents in a skin pathway typically lead to higher incidences and/or severity of skin reactions (e.g., irritation). Therefore, larger blade densities reduce the incidence and/or severity of skin reactions.
  • One embodiment of the present invention relies on the application of an electric current across the body surface or “electrotransport”. It will be appreciated by those working in the field that the present invention can be used in conjunction with a wide variety of electrotransport systems, as the invention is not limited in any way in this regard.
  • electrotransport systems reference may be had to U.S. Pat. No. 5,147,296 to Theeuwes et al., U.S. Pat. No. 5,080,646 to Theeuwes et al., U.S. Pat. No. 5,169,382 to Theeuwes et al., U.S. Pat. No. 5,423,739 to Phipps et al., U.S. Pat.
  • FIGS. 3-7 illustrate a representative electrotransport delivery device 10 that may be used in conjunction with the present invention.
  • Device 10 comprises an upper housing 16 , a circuit board assembly 18 , a lower housing 20 , anode electrode 22 , cathode electrode 24 , anode reservoir 26 , cathode reservoir 28 and skin-compatible adhesive 30 .
  • Upper housing 16 has lateral wings 15 which assist in holding device 10 on a patient's skin.
  • Printed circuit board assembly 18 comprises an integrated circuit 19 coupled to discrete components 40 and battery 32 .
  • Circuit board assembly 18 is attached to housing 16 by posts (not shown in FIG. 3) passing through openings 13 a and 13 b , the ends of the posts being heated/melted in order to heat stake the circuit board assembly 18 to the housing 16 .
  • Lower housing 20 is attached to the upper housing 16 by means of adhesive layer 30 , the upper surface 34 of adhesive layer 30 being adhered to both lower housing 20 and upper housing 16 including the bottom surfaces of wings 15 .
  • Shown (partially) on the underside of circuit board assembly 18 is a button cell battery 32 .
  • Other types of batteries may also be employed to power device 10 depending on the need.
  • the device 10 is generally comprised of battery 32 , electronic circuitry 19 , 40 , electrodes 22 , 24 , agent reservoirs 26 , 28 , and skin piercing device 2 , all of which are integrated into a self-contained unit. Electrodes 22 , 24 and reservoirs 26 , 28 are retained by lower housing 20 .
  • Anodic electrode 22 is preferably comprised of a metal such as silver and cathodic electrode 24 is preferably comprised of a metal halide such as silver chloride.
  • the outputs (not shown in FIG.
  • Electrodes 22 and 24 make electrical contact with the electrodes 24 and 22 through openings 23 , 23 ′ in the depressions 25 , 25 ′ formed in lower housing 20 , by means of electrically conductive adhesive strips 42 , 42 ′. Electrodes 22 and 24 , in turn, are in direct mechanical and electrical contact with the top sides 44 ′, 44 of agent reservoirs 26 and 28 .
  • the bottom side 46 of agent reservoir 28 contacts the patient's skin through the opening 29 in adhesive layer 30 .
  • the bottom side 46 ′ of agent reservoir 26 contacts the connecting medium through the plurality of openings 8 in the skin piercing device 2 .
  • the agent in reservoir 26 is typically a viscous gel that fills the openings 8 such that the agent reservoir is in contact with the connecting medium 65 as can be seen in FIG.
  • Both reservoirs 26 and 28 are preferably comprised of polymeric gel materials.
  • a liquid agent solution or suspension is contained in at least one of the reservoirs 26 and 28 .
  • the device 10 adheres to the patient's body surface (e.g., skin) by means of an adhesive layer 30 (which has upper adhesive side 34 and body-contacting adhesive side 36 ) and, optionally, anchoring elements on the device 2 of any of the embodiments discussed herein.
  • the connecting medium 65 can be tacky or adhesive for assisting in maintaining contact with the skin.
  • the adhesive side 36 covers the entire underneath side of the device 10 except where the device 2 and cathodic electrode are located.
  • the adhesive side 36 has adhesive properties which assures that the device 10 remains in place on the body during normal user activity, and yet permits reasonable removal after the predetermined (e.g., 24-hour) wear period.
  • Upper adhesive side 34 adheres to lower housing 20 and retains the electrodes and agent reservoirs within housing depression 25 , 25 ′ as well as retains device 2 to lower housing 20 and lower housing 20 to upper housing 16 .
  • the agent delivery device there is a release liner (not shown) on the device 10 for maintaining the integrity of the device when it is not in use.
  • the release liner is stripped from the device before the device is applied to the skin.
  • Device 10 also has a push button switch 12 , which when pressed turns the device 10 on which is made apparent to the user by means of LED 14 becoming lit.
  • Drug is delivered through the patient's skin (e.g., on the arm) by electrotransport over the predetermined delivery interval.
  • Examples of neutral or uncharged hydrogels for use in the electrotransport system are polyvinyl alcohol crosslinked through a heating or cooling crystallization process or a combination of polyox crosslinked with carbopol or polyacrylic acid.
  • the connecting medium can be electrically charged such as an ion exchange resin with a fixed charge and mobile counter charges.
  • a preferred embodiment is a resin with fixed charges opposite the charge of the agent ion.
  • An example of an ionically charged or ion exchange resin is cholestyramine ®.
  • passive transdermal delivery or sampling devices are used with a connecting medium 65 predisposed on the bottom (i.e., skin facing) surface of the device.
  • a connecting medium 65 predisposed on the bottom (i.e., skin facing) surface of the device.
  • FIGS. 8 and 9 Two examples of passive transdermal delivery devices are illustrated in FIGS. 8 and 9.
  • passive transdermal delivery device 88 comprises a reservoir 90 containing a therapeutic agent (e.g., a drug) to be delivered transdermally.
  • Reservoir 90 is preferably in the form of a matrix containing the agent dispersed therein.
  • Reservoir 90 is sandwiched between a backing layer 92 , which is impermeable to the agent, and an optional rate-controlling membrane 94 .
  • the reservoir 90 is formed of a material, such as a polymer, that is sufficiently viscous to maintain its shape. If a lower viscosity material is used for reservoir 90 , such as an aqueous gel, backing layer 92 and rate-controlling membrane 94 would be sealed together about their periphery to prevent leakage.
  • Located below membrane 94 is skin piercing device 2 with connecting medium 65 on a skin facing surface thereof which extends through the openings (not shown) in device 2 to contact membrane 94 .
  • the device 88 adheres to a body surface by means of contact adhesive layer 96 around the periphery of the device 2 and, optionally, by the anchoring elements of any of the embodiments described previously.
  • the connecting medium 65 will initially contain agent.
  • a strippable release liner (not shown) is normally provided along the exposed surface of adhesive layer 96 and is removed prior to application of device 10 to the body surface.
  • transdermal therapeutic device 98 may be attached to a body surface by means of a flexible adhesive overlay 100 .
  • Device 98 is comprised of an agent-containing reservoir 90 which is preferably in the form of a matrix containing the agent dispersed therein.
  • Connecting medium 65 extends through the openings 8 to contact the reservoir 90 .
  • the matrix in reservoir 90 can extend through the openings 8 initially to be in contact with the connecting medium 65 or the reservoir and connecting medium can be the same.
  • An impermeable backing layer 102 is provided adjacent one surface of reservoir 90 .
  • Adhesive overlay 100 maintains the device on the body surface.
  • Adhesive overly 100 can be fabricated together with, or provided separately from, the remaining elements of the device 98 .
  • the adhesive overlay 100 may be preferable to the contact adhesive 96 shown in FIG. 8. This is true, for example, where the agent reservoir contains a material (such as, for example, an oily surfactant) which adversely affects the adhesive properties of the contact adhesive layer 96 .
  • Impermeable backing layer 102 is preferably slightly larger than reservoir 90 , and in this manner prevents the agents in reservoir 90 from adversely interacting with the adhesive in overlay 100 .
  • a rate-controlling membrane (not shown in FIG. 9) similar to membrane 94 in FIG. 8 can be provided on the body surface side of reservoir 90 .
  • a strippable release liner (not shown) is also normally provided with device 98 and is removed just prior to application of device 98 to the body surface.
  • the formulation of reservoir 90 may be aqueous or nonaqueous based.
  • the formulation is designed to deliver the agent at the necessary fluxes.
  • Aqueous formulations typically comprise water and about 1 to 60 weight percent of a hydrophilic polymer as a gelling agent, such as hydroxyethylcellulose, hydroxypropylcellulose, hydroxyethylmethacrylate and polymers used in soft contact lenses.
  • Typical non-aqueous formulations are comprised of silicone fluid, silicone rubbers, hydrocarbon polymers, polyisobutylene, rubbers, or mineral oil.
  • Mineral oil-based gels also typically contain 1 to 2 weight percent of a gelling agent such as colloidal silicon dioxide.
  • the reservoir matrix having agent therein should be compatible with the delivered agent, uptake inhibiting agent (if any) and any carrier therefore.
  • the reservoir matrix is preferably a hydrophilic polymer (e.g., a hydrogel).
  • the reservoir matrix is preferably composed of a hydrophobic polymer. Suitable polymeric matrices are well known in the transdermal drug delivery art.
  • the agent is present in the matrix or carrier at a concentration in excess of saturation, the amount of excess being a function of the desired length of the agent delivery period of the system.
  • the agent may, however, be present at a level below saturation without departing from this invention as long as the agent and the uptake-inhibiting agent (if any) are continuously and co-extensively administered to the same body surface site in an amount and for a period of time sufficient to reduce or eliminate skin irritation by the agent.
  • the connecting medium may also contain dyes, pigments, inert fillers, permeation enhancers, excipients tackifiers, neutral polymers, surfactants, reagents, buffers, plasticizers, and other conventional components of pharmaceutical products or transdermal devices known in the art.
  • the amount of agent present in the reservoir and the size of the reservoir is generally non-limited and is an amount equal to or larger than the amount of agent that in its released form is effective in bringing about the desired local and/or systemic physiological and/or pharmacological effects.
  • an agent determines the type of delivery system to be used, and vice versa. That is, the selection of a “passive” system which delivers the agent by diffusion or an electrically powered system which delivers the agent by electrotransport will be mostly determined by the form of the agent.
  • passive delivery systems it has generally been recognized that the agent is preferably delivered in either its free base or acid form, rather than in the form of a water soluble salt when the agent diffuses through the stratum corneum.
  • electrotransport delivery devices it has been recognized that the agents should generally be soluble in water.
  • the pathways for passive and electrotransported transdermal agent delivery through intact skin are different, with passive delivery occurring through lipid regions (i.e., hydrophobic regions) of the skin and electrotransport delivery occurring through hydrophilic pathways or pores such as those associated with hair follicles and sweat glands.
  • the agent for passive delivery in the case of pierced skin is generally hydrophilic (e.g., water soluble salt form) and the preferred form of an agent for electrotransport delivery is also hydrophilic (e.g., water soluble salt form).
  • a combination of ionized agent e.g., water soluble
  • unionized agent e.g., hydrophilic
  • the agent preferably has sufficient solubility in the carrier solvent. It will be appreciated by those working in the field that the present invention can be used in conjunction with a wide variety of osmotic and pressure driven systems, as the invention is not limited to a particular device in this regard.
  • osmotic and pressure driven devices reference may be had to U.S. Pat. No. 4,340,480 to Eckenhoff, U.S. Pat. No. 4,655,766 to Theeuwes et al., U.S. Pat. No. 4,753,651 to Eckenhoff, U.S. Pat. No.
  • This invention has utility in connection with the delivery of agents within any of the broad class of drugs normally delivered through body surfaces and membranes, including skin.
  • this includes drugs in all of the major therapeutic areas including, but not limited to, anti-infectives such as antibiotics and antiviral agents, analgesics including fentanyl, sufentanil, buprenorphine and analgesic combinations, anesthetics, anorexics, antiarthritics, antiasthmatic agents such as terbutaline, anticonvulsants, antidepressants, antidiabetic agents, antidiarrheals, antihistamines, anti-inflammatory agents, antimigraine preparations, antimotion sickness preparations such as scopolamine and ondansetron, antinauseants, antineoplastics, antiparkinsonism drugs, antipruritics, antipsychotics, antipyretics, antispasmodics, including gastrointestinal and urinary anticholinergics, sympathomimetrics
  • the invention is also useful in the transdermal delivery of proteins, peptides and fragments thereof, whether naturally occurring, chemically synthesized or recombinantly produced.
  • the invention may additionally be used in conjunction with the delivery of nucleotidic drugs, including oligonucleotide drugs, polynucleotide drugs, and genes. These substances typically have a molecular weight of at least about 300 daltons, and more typically have a molecular weight of at least about 300 to 40,000 daltons.
  • peptides and proteins in this size range include, without limitation, LHRH, LHRH analogs such as goserelin, buserelin, gonadorelin, napharelin and leuprolide, GHRH, GHRF, insulin, insultropin, calcitonin, octreotide, endorphin, TRH, NT-36 (chemical name: N-[[(s)-4-oxo-2-azetidinyl]carbonyl]-L-histidyl-L-prolinamide), liprecin, pituitary hormones (e.g., HGH, HMG, desmopressin acetate, etc), follicle luteoids, ⁇ ANF, growth factors such as growth factor releasing factor (GFRF), ⁇ MSH, GH, somatostatin, bradykinin, somatotropin, platelet-derived growth factor, asparaginase, bleomycin sulfate, chymopap
  • the device 2 of the present invention can also be used with sampling devices including, but not limited to, reverse electrotransport (i.e., iontophoresis and/or electroosmosis), osmosis, and passive diffusion.
  • FIG. 10 illustrates an osmotic sampling device 104 in combination with any of the embodiments described previously for device 2 with connecting medium 65 .
  • Osmotic sampling devices can be used to sample any of a variety of agents through a body surface including, but not limited to glucose, electrolyte, alcohol and illicit substances (e.g., drugs of abuse).
  • the osmotic sampling device 104 is attached to a body surface by means of a flexible adhesive overlay 100 .
  • Device 104 is comprised of a salt layer 106 separated by semi-permeable membrane 95 from a layer 94 which stores the agent to be sampled.
  • the layer 94 is absorbant in character in that the layer (e.g., hydrogel) passes fluid drawn through the body surface but retains the agent being sampled.
  • the device 2 with connecting medium 65 thereon is in contact with layer 94 such that the projections on device 2 pierce the body surface and the connecting medium 65 makes good contact with the body surface.
  • the salt layer 106 draws fluid from the body by osmosis through the connecting medium 65 and layer 94 . The fluid drawn from the body contains the agent being sampled.
  • the agent As the fluid containing the agent passes through layer 94 , the agent is retained in layer 94 and the fluid is absorbed by the salt layer 106 .
  • the salt layer is free to expand or is encapsulated in a semi-permeable membrane 95 so that it retains the fluid therein.
  • the sampled agent can be measured in situ directly or withdrawn from the layer 94 and sampled by conventional means.
  • salt layer 106 , layer 94 and semi-permeable membrane 95 can be combined in one layer of absorbant hydrogel that stores the absorbed fluid as well as the agent sampled. Additionally, this one layer can be configured as the connecting medium 65 thereby greatly simplifying the device.
  • the effect of the present invention is evaluated for its effect on drug flux and the skin resistance of a hairless guinea pig during electrotransport delivery of a model decapeptide drug.
  • the following are specifications for the device.
  • the device consists of a member having a plurality of rectangular openings having two blades, one on each end of a 0.25 mm 2 void area for each opening. The openings are aligned in pairs with every other pair of openings oriented 90 degrees to the previous pair of openings. All of the blades are about 500 micrometers long. There are 256 void areas per cm 2 and 512 blades per cm 2 .
  • An electrotransport system is used which applies a constant current of 0.1 mA/cm 2 .
  • cathode counter reservoir comprising a Dulbelco's phosphate buffered saline imbibing gel and a donor anode reservoir comprising a hydroxyethylcellulose gel containing an aqueous solution of decapeptide bufferred at pH 7.5.
  • the electrotransport system is placed on the skin of a lightly anesthetized hairless guinea pig. Decapeptide flux is evaluated by measuring urinary excretion of this peptide. Use of the present invention results in increased decapeptide flux over the transport period compared to an ordinary electrotransport device.

Abstract

An agent delivery or sampling device (2) comprising a member (6) having a plurality of blades (4) for piercing the skin and a connecting medium (65) covering at least a part of the skin contacting side (48) of the member (6) for increasing transdermal flux of an agent.

Description

    TECHNICAL FIELD
  • The present invention relates to transdermal agent delivery and sampling. More particularly, this invention relates to the transdermal delivery of agents, such as peptides and proteins, through the skin of an animal, as well as the transdermal sampling of agents, such as glucose, electrolyte and substances of abuse, such as but not limited to alcohol and illicit drugs. [0001]
  • BACKGROUND ART
  • Interest in the percutaneous or transdermal delivery of peptides and proteins to the human body continues to grow with the increasing number of medically useful peptides and proteins becoming available in large quantities and pure form. The transdermal delivery of peptides and proteins still faces significant problems. In many instances, the rate of delivery or flux of polypeptides through the skin is insufficient to produce a desired therapeutic effect due to the low flux of polypeptides through skin. In addition, polypeptides and proteins are easily degradable during and after penetration of the skin, prior to reaching target cells. Likewise, the passive flux of water soluble small molecules such as salts is limited. [0002]
  • One method of increasing the transdermal delivery of agents relies on the application of an electric current across the body surface or on “electrotransport”. “Electrotransport” refers generally to the passage of a beneficial agent, e.g., a drug or drug precursor, through a body surface such as skin, mucous membranes, nails, and the like. The transport of the agent is induced or enhanced by the application of an electrical potential, which results in the application of electric current, which delivers or enhances delivery of the agent. The electrotransport of agents through a body surface may be attained in various manners. One widely used electrotransport process, iontophoresis, involves the electrically induced transport of charged ions. Electroosmosis, another type of electrotransport process, involves the movement of a solvent with the agent through a membrane under the influence of an electric field. Electroporation, still another type of electrotransport, involves the passage of an agent through pores formed by applying a high voltage electrical pulse to a membrane. In many instances, more than one of these processes may be occurring simultaneously to different extents. Accordingly, the term “electrotransport” is given herein its broadest possible interpretation, to include the electrically induced or enhanced transport of at least one charged or uncharged agent, or mixtures thereof, regardless of the specific mechanism(s) by which the agent is actually being transported. Electrotransport delivery generally increases agent delivery, particularly peptide delivery rates, relative to passive or non-electrically assisted transdermal delivery. However, further increases in transdermal delivery rates and reductions in peptide degradation during transdermal delivery are highly desirable. [0003]
  • One method of increasing the agent transdermal delivery rate involves pre-treating the skin with, or alternatively co-delivering with the beneficial agent, a skin permeation enhancer. The term “permeation enhancer” is broadly used herein to describe a substance which, when applied to a body surface through which the agent is delivered, enhances its flux therethrough. The mechanism may involve a reduction of the electrical resistance of the body surface to the passage of the agent therethrough, an increase in the permeability of the body surface, the creation of hydrophilic pathways through the body surface, and/or a reduction in the degradation of the agent (e.g., degradation by skin enzymes) during electrotransport. [0004]
  • There have been many mechanical attempts to enhance transdermal flux, such as, U.S. Pat. No. 5,279,544 issued to Gross et al., U.S. Pat. No. 5,250,023 issued to Lee et al., and U.S. Pat. No. 3,964,482 issued to Gerstel et al. These devices utilize tubular or cylindrical structures generally, although Gerstel does disclose the use of other shapes, to pierce the outer layer of the skin. Each of these devices provide manufacturing challenges, limited mechanical attachment of the structure to the skin, undesirable irritation to the skin, and/or limited conductive contact with the skin. [0005]
  • DESCRIPTION OF THE INVENTION
  • The present invention is a high volume producable, low-cost device suitable for increasing transdermal flux with skin piercing protrusions and contacting a body surface over a large contact area to reduce skin irritation and enhance agent delivery or sampling. The device of the present invention pierces the stratum corneum of a body surface to form pathways through which a substance can either be introduced (i.e., delivery) or withdrawn (i.e., sampling). In one aspect, the invention comprises a plurality of protrusions for piercing the skin which extend through a connecting medium. The connecting medium assists in making substantial contact with the body surface for either delivering or sampling an agent. For an electrotransport device, the connecting medium spreads out the contact area to all the protrusions to reduce the current density at particular locations to reduce irritation. [0006]
  • In one aspect of the invention, the device utilizes a member having a plurality of openings therethrough, a plurality of blades integral therewith and extending downward from a first side of the member, and a connecting medium covering at least a part of the first side of the member. The device of the present invention can be used in connection with agent delivery, agent sampling or both. Delivery devices for use with the present invention include, but are not limited to, electrotransport devices, passive devices, osmotic devices and pressure driven devices. Sampling devices for use with the present invention include, but are not limited to, reverse electrotransport devices, passive devices, and osmotic devices.[0007]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an enlarged cross-sectional view of a skin piercing device in accordance with the present invention; [0008]
  • FIG. 2 is an enlarged perspective view of the bottom side of a skin piercing device with a connecting medium removed therefrom for clarity in accordance with one embodiment of the present invention; [0009]
  • FIG. 3 is a exploded perspective view of one embodiment of an electrotransport agent delivery system according to one embodiment of the present invention; [0010]
  • FIG. 4 is a bottom plan view of the electrotransport agent delivery system of FIG. 3; [0011]
  • FIG. 5 is a right side elevational view of the electrotransport agent delivery system of FIG. 3; [0012]
  • FIG. 6 is a rear elevational view of the electrotransport agent delivery system of FIG. 3; [0013]
  • FIG. 7 is a cross-sectional view taken along line [0014] 7-7 of the assembled electrotransport agent delivery system of FIG. 5;
  • FIG. 8 is a diagrammatic cross-sectional view of a passive agent delivery system in accordance with one embodiment of the present invention; [0015]
  • FIG. 9 is a diagrammatic cross-sectional view of another embodiment of a passive agent delivery system in accordance with the present invention; and [0016]
  • FIG. 10 is a diagrammatic cross-sectional view of an osmotic sampling system in accordance with one embodiment of the present invention.[0017]
  • MODES FOR CARRYING OUT THE INVENTION
  • Turning now to the drawings in detail, the [0018] skin piercing device 2 of the present invention is generally shown in FIG. 1. Device 2 is used for the percutaneous administration or sampling of an agent. The terms “substance”, “agent” and “drug” are used interchangeably herein and broadly include physiologically or pharmacologically active substances for producing a localized or systemic effect or effects in mammals including humans and primates, avians, valuable domestic household, sport or farm animals, or for administering to laboratory animals such as mice, rats, guinea pigs, and the like. These terms also include substances such as glucose, electrolyte, alcohol, illicit drugs, etc. that can be sampled through the skin. The major barrier properties of the skin, such as resistance to agent conduction, reside with the outer layer (i.e., stratum corneum). The inner division of the epidermis generally comprises three layers commonly identified as stratum granulosum, stratum malpighii, and stratum germinativum. There is essentially little or no resistance to conduction or to absorption of an agent through the stratum granulosum, stratum malpighii, and stratum germinativum. The device of the present invention is used to pierce the stratum corneum for improved delivery or sampling of an agent and to make contact with the skin over a large contact area using a connecting medium 65 (FIG. 1).
  • The connecting [0019] medium 65 of the present invention is predisposed on the skin contacting side 48 of the agent delivery or sampling device. In one embodiment, the connecting medium 65 is a conduit for the agent and acts as a bridge between the agent containing or collecting reservoir 26 and the skin, thus allowing an agent to be transported unhindered therethrough. The connecting medium can be free of agent or preloaded with agent. In the embodiment of FIG. 1, the reservoir 26 is illustrated as being separate from the connecting medium 65. It should be appreciated, however, that in some embodiments there will be migration of agent into the connecting medium prior to use of the device such that the reservoir and connecting medium are not discrete, for example, the matrix in the reservoir and the connecting medium can be the same material. In addition, a separate reservoir may not be present in that the connecting medium 65 may be the reservoir for the sampled agent or the agent to be delivered. In other words, the connecting medium is capable of storing the agent to be delivered or the sampled agent.
  • The connecting [0020] medium 65 is either fabricated and stored dry which can be rehydrated upon use or can be packaged in the hydrated form. In a preferred embodiment, the connecting medium is an ion conducting hydrogel of a pharmaceutically acceptable grade with minimum extractable or degradation products which sorbs or contains in a functional state an amount of water in the range from 20% to 90%, preferably in the range from 30% to 70%. Preferably the connecting medium is a hydrogel that is at least slightly crosslinked to prevent fragments of polymers from penetrating the skin and has adhesive or tacky properties.
  • The connecting [0021] medium 65 can be any of a large variety of materials as discussed above and further including, by way of example, an organic polymer having at least some pendent substituents capable of being ionic, a polar natural material, a semi-synthetic material, a cellulosic derivative, an alginate derivative, a starch derivative, a dextran, a polysaccharide, a hydrogel polymer having a backbone selected from the group consisting of a hydrous-gelled, linear polyolefin, polycarbonate, polyester, polyether, polyurethane and polyepoxide backbone, with backbone substituents selected from the group consisting of (alkyl, aryl or aralkyl) alcohol, amide, ketone, nitrogen heterocycle or ester pendent substituents, and any combination thereof. The connecting medium can be in a variety of forms such as a gel, solid, hydrogel, powder, liquid, viscous fluid, gauze made of cotton or other absorbent fabrics as well as pads and sponges, both natural and synthetic, may be used. Any suitable materials listed in U.S. Pat. No. 5,385,543 could be used in conjunction with the present invention. U.S. Pat. No. 5,423,739, issued to Phipps et al., describes iontophoretic materials and substances that can be used as the connecting medium.
  • [0022] Device 2 comprises a plurality of protrusions 4 extending downward from one surface of a member or plate 6 which has a connecting medium 65 (FIG. 1) on at least a portion of surface 48 (see FIG. 2 in which device 2 is in an inverted position to show the protrusions and wherein the connecting medium is removed for clarity). The protrusions 4 can be blades (FIGS. 1 and 2), pins (not shown), or any of a variety of configurations for piercing the skin or body surface. The protrusions 4 penetrate the stratum corneum of the epidermis when pressure is applied to the device to increase the administration of or sampling of a substance through a body surface. The term “body surface” as used herein refers generally to the skin, mucous membranes, and nails of an animal or human, and to the outer surface of a plant. The protrusions 4 extend through the connecting medium 65 to pierce the body surface to create good agent conduction from the system into the body, or vice versa. The member 6 is formed with an opening 8 between the blades 4 for enhancing the movement of agent released from or collected in the agent containing or collecting reservoir 26. In one embodiment, the opening 8 corresponds to the portion of the member occupied by each of the blades 4 prior to the blades being bent into a position which is substantially perpendicular to the plane of member 6. The number of openings per device and the number of blades per device are independent. In addition, the device may have only one large opening with a plurality of blades around the opening. The agent can be administered or sampled at a controlled rate of release from or collection in the reservoir 26 through an agent rate controlling material such as a flux control membrane (not shown) positioned between the reservoir 26 and the member 6.
  • The protrusions or [0023] blades 4 are generally formed from a single piece of material and are sufficiently sharp and long for puncturing at least the stratum corneum of the skin. In one embodiment, the blades 4 and the member 6 are essentially impermeable or are impermeable to the passage of an agent. The width of each blade can be any of a range of widths. The blades 4 can have slanted (i.e., angled) leading edges 64 (FIG. 2) to further reduce the insertion force required to press the blades into the skin tissue. The leading edges of each blade can be all be the same angle or can be at different angles suitable for piercing the skin. Alternatively, the leading edge of each blade can be arcuate (i.e., curved) in shape, having, for example, a convex or concave shape.
  • The [0024] device 2 of the present invention improves the attachment of the device to the skin so that a continuous agent conducting pathway through the body surface is preserved during movement of the body surface. In the embodiment shown in FIG. 2, projections in the form of barbs 50 on at least one of the blades 4 assist in anchoring the device 2 and any corresponding device or structure used in combination therewith to the skin. Barbs 50 can be on any number of the blades from one blade to all blades. The barbs 50 are optional as other means for holding the device in contact with the skin can be used. The present invention can be used in conjunction with a wide variety of blade configurations, for example reference may be had to U.S. Provisional Application No. 60/019,990 filed Jun. 18, 1996 of which any of the disclosed configurations can be used with the present invention.
  • The pattern for any of the [0025] blade array devices 2 of the present invention can be produced with a photo-etching process. A thin member 6 of metal such as stainless steel or titanium is etched photo-lithographically with patterns containing blade-like structures. In general, a thin laminate dry resist or wet resist is applied on the member 6 which typically has a thickness of about 7 micrometers to about 100 micrometers, preferably about 25 micrometers to about 50 micrometers. The resist is contact exposed using a mask having the desired pattern and is subsequently developed.: These operations are conducted in much the same way that they are for the manufacture of a printed circuit board. The member 6 is then etched using acidic solutions. After the pattern has been etched through the member, the member 6 is placed on a die having a plurality of openings corresponding to the openings 8 in the member. A punch having a plurality of protrusions corresponding to the openings 8 in the member 6 and openings in the die is initially located above the member and the die. At the initial stage, the blades 4 are in the same plane as the rest of the member 6. The protrusions on the punch are then pressed into the openings, thus bending the blades downward to be substantially perpendicular to the plane of the member 6. The finished structure provides blades 4 with an adjacent opening 8 for the passage of a substance therethrough when the device 2 is applied to the body surface. Rectangular openings 8 are shown in the figures but the invention encompasses the use of any shape openings including, but not limited to, square, triangular, circular and elliptical.
  • In one embodiment of the etching process, a dry resist (e.g., “Dynachem FL” available from Dynachem located in Tustin, Calif. is applied 12.5 micrometers thick to one or both sides of the [0026] member 6 and exposed in a standard manner. Then using a suitable spray etcher (e.g., “Dynamil VRP 10/NM” available from Western Tech. Assoc. located in Anaheim, Calif.) a mixture of ferric chloride and hydrochloric acid is sprayed onto the resist and member 6 at 125 degrees F. for two minutes. A standard caustic stripper is used for the resist removal.
  • In another embodiment of the etching process, a wet resist (e.g., “Shipley 111S” available from Shipley Corporation, located in Marlborough, Mass.) is applied 7.5 micrometers thick at about 70 degrees F. to one or both sides of the [0027] member 6 and exposed in a standard manner. Then a suitable etchant (e.g., ferric chloride) is sprayed onto the resist and member at 120 degrees F. A standard caustic stripper is used for the resist removal.
  • Generally, the [0028] blades 4 are at an angle of about 90 degrees to the surface 48 of the member 6 after being punched, but they can be disposed at any angle forward or backward from the perpendicular position that will facilitate penetration of and attachment to the stratum corneum. In addition, other anchoring elements such as barbs, openings, etc. can be used with the angled blades to further enhance anchoring of the device.
  • The [0029] member 6 and blades 4 can be made from materials that have sufficient strength and manufacturability to produce blades, such as, glasses, ceramics, rigid polymers, metals and metal alloys. Examples of metals and metal alloys include but are not limited to stainless steel, iron, steel, tin, zinc, copper, silver, platinum, aluminum, germanium, nickel, zirconium, titanium and titanium alloys having nickel, molybdenum or chromium. Each of the member and blades can have a thin layer of silver, gold, platinum, iridium, titanium, rhodium plating or evaporated or sputtered biocompatible metals to provide for inertness, biocompatibility and preservation of the sharpness of the edges during storage. An example of glasses include a devitrified glass such as “Photoceram” available from Corning in Corning, N.Y. Examples of polymers include but are not limited to polystyrene, polymethylmethocrylate, polypropylene, “Bakelite”, celluloseacetate, ethylcellulose, styrene/acrylonitrile copolymers, stryrene/butadiene copolymers, acrylonitrile/butadiene/styrene (ABS) copolymers, polyvinyl chloride and acrylic acid polymers including polyacrylates and polymethacrylates.
  • The number of [0030] blades 4 and openings 8 of any of the embodiments of the device 2 is variable with respect to the desired flux rate, agent being sampled or delivered, delivery or sampling device used (i.e., electrotransport, passive, osmotic, pressure driven, etc.), and other factors as will be evident to one of ordinary skill in the art. In general, the larger the number of blades per unit area (i.e., blade density), the more uniform the flux of the agent is through the skin because there are a greater number of pathways through the skin. Consequently, the smaller the number of blades per unit area, the more concentrated the flux of the agent is through the skin because there are fewer pathways. Higher concentrations of agents in a skin pathway typically lead to higher incidences and/or severity of skin reactions (e.g., irritation). Therefore, larger blade densities reduce the incidence and/or severity of skin reactions.
  • One embodiment of the present invention relies on the application of an electric current across the body surface or “electrotransport”. It will be appreciated by those working in the field that the present invention can be used in conjunction with a wide variety of electrotransport systems, as the invention is not limited in any way in this regard. For examples of electrotransport systems, reference may be had to U.S. Pat. No. 5,147,296 to Theeuwes et al., U.S. Pat. No. 5,080,646 to Theeuwes et al., U.S. Pat. No. 5,169,382 to Theeuwes et al., U.S. Pat. No. 5,423,739 to Phipps et al., U.S. Pat. No. 5,385,543 to Haak et al., U.S. Pat. No. 5,310,404 to Gyory et al., and U.S. Pat. No. 5,169,383 to Gyory et al., of which any of the disclosed electrotransport systems can be used with the present invention. [0031]
  • FIGS. 3-7 illustrate a representative [0032] electrotransport delivery device 10 that may be used in conjunction with the present invention. Device 10 comprises an upper housing 16, a circuit board assembly 18, a lower housing 20, anode electrode 22, cathode electrode 24, anode reservoir 26, cathode reservoir 28 and skin-compatible adhesive 30. Upper housing 16 has lateral wings 15 which assist in holding device 10 on a patient's skin. Printed circuit board assembly 18 comprises an integrated circuit 19 coupled to discrete components 40 and battery 32. Circuit board assembly 18 is attached to housing 16 by posts (not shown in FIG. 3) passing through openings 13 a and 13 b, the ends of the posts being heated/melted in order to heat stake the circuit board assembly 18 to the housing 16. Lower housing 20 is attached to the upper housing 16 by means of adhesive layer 30, the upper surface 34 of adhesive layer 30 being adhered to both lower housing 20 and upper housing 16 including the bottom surfaces of wings 15. Shown (partially) on the underside of circuit board assembly 18 is a button cell battery 32. Other types of batteries may also be employed to power device 10 depending on the need.
  • The [0033] device 10 is generally comprised of battery 32, electronic circuitry 19,40, electrodes 22,24, agent reservoirs 26,28, and skin piercing device 2, all of which are integrated into a self-contained unit. Electrodes 22,24 and reservoirs 26,28 are retained by lower housing 20. Anodic electrode 22 is preferably comprised of a metal such as silver and cathodic electrode 24 is preferably comprised of a metal halide such as silver chloride. The outputs (not shown in FIG. 3) of the circuit board assembly 18 make electrical contact with the electrodes 24 and 22 through openings 23,23′ in the depressions 25,25′ formed in lower housing 20, by means of electrically conductive adhesive strips 42,42′. Electrodes 22 and 24, in turn, are in direct mechanical and electrical contact with the top sides 44′,44 of agent reservoirs 26 and 28. The bottom side 46 of agent reservoir 28 contacts the patient's skin through the opening 29 in adhesive layer 30. The bottom side 46′ of agent reservoir 26 contacts the connecting medium through the plurality of openings 8 in the skin piercing device 2. The agent in reservoir 26 is typically a viscous gel that fills the openings 8 such that the agent reservoir is in contact with the connecting medium 65 as can be seen in FIG. 1. As discussed above, typically the agent is present initially in both the reservoir and the connecting medium because of diffusion or because the reservoir and connecting medium are the same material. Both reservoirs 26 and 28 are preferably comprised of polymeric gel materials. A liquid agent solution or suspension is contained in at least one of the reservoirs 26 and 28.
  • The [0034] device 10 adheres to the patient's body surface (e.g., skin) by means of an adhesive layer 30 (which has upper adhesive side 34 and body-contacting adhesive side 36) and, optionally, anchoring elements on the device 2 of any of the embodiments discussed herein. Further, optionally, the connecting medium 65 can be tacky or adhesive for assisting in maintaining contact with the skin. The adhesive side 36 covers the entire underneath side of the device 10 except where the device 2 and cathodic electrode are located. The adhesive side 36 has adhesive properties which assures that the device 10 remains in place on the body during normal user activity, and yet permits reasonable removal after the predetermined (e.g., 24-hour) wear period. Upper adhesive side 34 adheres to lower housing 20 and retains the electrodes and agent reservoirs within housing depression 25, 25′ as well as retains device 2 to lower housing 20 and lower housing 20 to upper housing 16.
  • In one embodiment of the agent delivery device there is a release liner (not shown) on the [0035] device 10 for maintaining the integrity of the device when it is not in use. In use, the release liner is stripped from the device before the device is applied to the skin. Device 10 also has a push button switch 12, which when pressed turns the device 10 on which is made apparent to the user by means of LED 14 becoming lit. Drug is delivered through the patient's skin (e.g., on the arm) by electrotransport over the predetermined delivery interval.
  • Examples of neutral or uncharged hydrogels for use in the electrotransport system are polyvinyl alcohol crosslinked through a heating or cooling crystallization process or a combination of polyox crosslinked with carbopol or polyacrylic acid. The connecting medium can be electrically charged such as an ion exchange resin with a fixed charge and mobile counter charges. A preferred embodiment is a resin with fixed charges opposite the charge of the agent ion. An example of an ionically charged or ion exchange resin is cholestyramine ®. [0036]
  • In other embodiments of the present invention, passive transdermal delivery or sampling devices are used with a connecting [0037] medium 65 predisposed on the bottom (i.e., skin facing) surface of the device. It will be appreciated by those working in the field that the present invention can be used in conjunction with a wide variety of passive transdermal systems, as the invention is not limited in this regard. For examples of passive systems, reference may be had to, but not limited to, U.S. Pat. No. 4,379,454 to Campbell et al., U.S. Pat. No. 4,588,580 to Gale et al., U.S. Pat. No. 4,832,953 to Campbell et al., U.S. Pat. No. 4,698,062 to Gale et al., U.S. Pat. No. 4,867,982 to Campbell et al., and U.S. Pat. No. 5,268,209 to Hunt at al., of which any of the disclosed systems can be used with the present invention. Two examples of passive transdermal delivery devices are illustrated in FIGS. 8 and 9.
  • In FIG. 8, passive [0038] transdermal delivery device 88 comprises a reservoir 90 containing a therapeutic agent (e.g., a drug) to be delivered transdermally. Reservoir 90 is preferably in the form of a matrix containing the agent dispersed therein. Reservoir 90 is sandwiched between a backing layer 92, which is impermeable to the agent, and an optional rate-controlling membrane 94. In FIG. 8, the reservoir 90 is formed of a material, such as a polymer, that is sufficiently viscous to maintain its shape. If a lower viscosity material is used for reservoir 90, such as an aqueous gel, backing layer 92 and rate-controlling membrane 94 would be sealed together about their periphery to prevent leakage. Located below membrane 94 is skin piercing device 2 with connecting medium 65 on a skin facing surface thereof which extends through the openings (not shown) in device 2 to contact membrane 94. The device 88 adheres to a body surface by means of contact adhesive layer 96 around the periphery of the device 2 and, optionally, by the anchoring elements of any of the embodiments described previously. In most instances, the connecting medium 65 will initially contain agent. A strippable release liner (not shown) is normally provided along the exposed surface of adhesive layer 96 and is removed prior to application of device 10 to the body surface.
  • Alternatively, as shown in enlarged FIG. 9, transdermal [0039] therapeutic device 98 may be attached to a body surface by means of a flexible adhesive overlay 100. Device 98 is comprised of an agent-containing reservoir 90 which is preferably in the form of a matrix containing the agent dispersed therein. Connecting medium 65 extends through the openings 8 to contact the reservoir 90. Alternatively, the matrix in reservoir 90 can extend through the openings 8 initially to be in contact with the connecting medium 65 or the reservoir and connecting medium can be the same. An impermeable backing layer 102 is provided adjacent one surface of reservoir 90. Adhesive overlay 100 maintains the device on the body surface. Adhesive overly 100 can be fabricated together with, or provided separately from, the remaining elements of the device 98. With certain formulations, the adhesive overlay 100 may be preferable to the contact adhesive 96 shown in FIG. 8. This is true, for example, where the agent reservoir contains a material (such as, for example, an oily surfactant) which adversely affects the adhesive properties of the contact adhesive layer 96. Impermeable backing layer 102 is preferably slightly larger than reservoir 90, and in this manner prevents the agents in reservoir 90 from adversely interacting with the adhesive in overlay 100. Optionally, a rate-controlling membrane (not shown in FIG. 9) similar to membrane 94 in FIG. 8 can be provided on the body surface side of reservoir 90. A strippable release liner (not shown) is also normally provided with device 98 and is removed just prior to application of device 98 to the body surface.
  • The formulation of [0040] reservoir 90 may be aqueous or nonaqueous based. The formulation is designed to deliver the agent at the necessary fluxes. Aqueous formulations typically comprise water and about 1 to 60 weight percent of a hydrophilic polymer as a gelling agent, such as hydroxyethylcellulose, hydroxypropylcellulose, hydroxyethylmethacrylate and polymers used in soft contact lenses. Typical non-aqueous formulations are comprised of silicone fluid, silicone rubbers, hydrocarbon polymers, polyisobutylene, rubbers, or mineral oil. Mineral oil-based gels also typically contain 1 to 2 weight percent of a gelling agent such as colloidal silicon dioxide.
  • The reservoir matrix having agent therein should be compatible with the delivered agent, uptake inhibiting agent (if any) and any carrier therefore. When using an aqueous-based system, the reservoir matrix is preferably a hydrophilic polymer (e.g., a hydrogel). When using a non-aqueous-based system, the reservoir matrix is preferably composed of a hydrophobic polymer. Suitable polymeric matrices are well known in the transdermal drug delivery art. [0041]
  • When a constant agent delivery rate is desired, the agent is present in the matrix or carrier at a concentration in excess of saturation, the amount of excess being a function of the desired length of the agent delivery period of the system. The agent may, however, be present at a level below saturation without departing from this invention as long as the agent and the uptake-inhibiting agent (if any) are continuously and co-extensively administered to the same body surface site in an amount and for a period of time sufficient to reduce or eliminate skin irritation by the agent. [0042]
  • In addition to the agent, the connecting medium may also contain dyes, pigments, inert fillers, permeation enhancers, excipients tackifiers, neutral polymers, surfactants, reagents, buffers, plasticizers, and other conventional components of pharmaceutical products or transdermal devices known in the art. [0043]
  • The amount of agent present in the reservoir and the size of the reservoir is generally non-limited and is an amount equal to or larger than the amount of agent that in its released form is effective in bringing about the desired local and/or systemic physiological and/or pharmacological effects. [0044]
  • The preferred form in which an agent is delivered generally determines the type of delivery system to be used, and vice versa. That is, the selection of a “passive” system which delivers the agent by diffusion or an electrically powered system which delivers the agent by electrotransport will be mostly determined by the form of the agent. For example, with passive delivery systems, it has generally been recognized that the agent is preferably delivered in either its free base or acid form, rather than in the form of a water soluble salt when the agent diffuses through the stratum corneum. On the other hand, with electrotransport delivery devices, it has been recognized that the agents should generally be soluble in water. It is generally believed that the pathways for passive and electrotransported transdermal agent delivery through intact skin are different, with passive delivery occurring through lipid regions (i.e., hydrophobic regions) of the skin and electrotransport delivery occurring through hydrophilic pathways or pores such as those associated with hair follicles and sweat glands. For the case of pierced skin, substantial passive flux through the created pathways which are aqueous can be expected. The agent for passive delivery in the case of pierced skin is generally hydrophilic (e.g., water soluble salt form) and the preferred form of an agent for electrotransport delivery is also hydrophilic (e.g., water soluble salt form). For passive delivery, a combination of ionized agent (e.g., water soluble) and unionized agent (e.g., hydrophilic) can be used. [0045]
  • For osmotic and pressure driven systems which deliver agents by connective flow carried by a solvent, the agent preferably has sufficient solubility in the carrier solvent. It will be appreciated by those working in the field that the present invention can be used in conjunction with a wide variety of osmotic and pressure driven systems, as the invention is not limited to a particular device in this regard. For examples of osmotic and pressure driven devices, reference may be had to U.S. Pat. No. 4,340,480 to Eckenhoff, U.S. Pat. No. 4,655,766 to Theeuwes et al., U.S. Pat. No. 4,753,651 to Eckenhoff, U.S. Pat. No. 5,279,544 to Gross et al., U.S. Pat. No. 4,655,766 to Theeuwes, U.S. Pat. No. 5,242,406 to Gross et al., and U.S. Pat. No. 4,753,651 to Eckenhoff any of which can be used with the present invention. [0046]
  • This invention has utility in connection with the delivery of agents within any of the broad class of drugs normally delivered through body surfaces and membranes, including skin. In general, this includes drugs in all of the major therapeutic areas including, but not limited to, anti-infectives such as antibiotics and antiviral agents, analgesics including fentanyl, sufentanil, buprenorphine and analgesic combinations, anesthetics, anorexics, antiarthritics, antiasthmatic agents such as terbutaline, anticonvulsants, antidepressants, antidiabetic agents, antidiarrheals, antihistamines, anti-inflammatory agents, antimigraine preparations, antimotion sickness preparations such as scopolamine and ondansetron, antinauseants, antineoplastics, antiparkinsonism drugs, antipruritics, antipsychotics, antipyretics, antispasmodics, including gastrointestinal and urinary anticholinergics, sympathomimetrics, xanthine derivatives, cardiovascular preparations including calcium channel blockers such as nifedipine, beta-blockers, beta-agonists such as dobutamine and ritodrine, antiarrythmics, antihypertensives such as atenolol, ACE inhibitors such as ranitidine, diuretics, vasodilators, including general, coronary, peripheral and cerebral, central nervous system stimulants, cough and cold preparations, decongestants, diagnostics, hormones such as parathyroid hormone, bisphosphoriates, hypnotics, immunosuppressives, muscle relaxants, parasympatholytics, parasympathomimetrics, prostaglandins, psychostimulants, sedatives and tranquilizers. [0047]
  • The invention is also useful in the transdermal delivery of proteins, peptides and fragments thereof, whether naturally occurring, chemically synthesized or recombinantly produced. The invention may additionally be used in conjunction with the delivery of nucleotidic drugs, including oligonucleotide drugs, polynucleotide drugs, and genes. These substances typically have a molecular weight of at least about 300 daltons, and more typically have a molecular weight of at least about 300 to 40,000 daltons. Specific examples of peptides and proteins in this size range include, without limitation, LHRH, LHRH analogs such as goserelin, buserelin, gonadorelin, napharelin and leuprolide, GHRH, GHRF, insulin, insultropin, calcitonin, octreotide, endorphin, TRH, NT-36 (chemical name: N-[[(s)-4-oxo-2-azetidinyl]carbonyl]-L-histidyl-L-prolinamide), liprecin, pituitary hormones (e.g., HGH, HMG, desmopressin acetate, etc), follicle luteoids, αANF, growth factors such as growth factor releasing factor (GFRF), βMSH, GH, somatostatin, bradykinin, somatotropin, platelet-derived growth factor, asparaginase, bleomycin sulfate, chymopapain, cholecystokinin, chorionic gonadotropin, corticotropin (ACTH), erythropoietin, epoprostenol (platelet aggregation inhibitor), glucagon, HCG, hirulog, hyaluronidase, interferon, interleulins, menotropins (urofollitropin (FSH) and LH), oxytocin, streptokinase, tissue plasminogen activator, urokinase, vasopressin, desmopressin, ACTH analogs, ANP, ANP clearance inhibitors, angiotensin II antagonists, antidiuretic hormone agonists, bradykinin antagonists, ceredase, CSI's, calcitonin gene related peptide (CGRP), enkephalins, FAB fragments, IgE peptide suppressors, IGF-1, neurotrophic factors, colony stimulating factors, parathyroid hormone and agonists, parathyroid hormone antagonists, prostaglandin antagonists, pentigetide, protein C, protein S, renin inhibitors, thymosin alpha-1, thrombolytics, TNF, vaccines, vasopressin. antagonists analogs, alpha-1 antitrypsin (recombinant), and TGF-beta. [0048]
  • As mentioned, the [0049] device 2 of the present invention can also be used with sampling devices including, but not limited to, reverse electrotransport (i.e., iontophoresis and/or electroosmosis), osmosis, and passive diffusion. FIG. 10 illustrates an osmotic sampling device 104 in combination with any of the embodiments described previously for device 2 with connecting medium 65. Osmotic sampling devices can be used to sample any of a variety of agents through a body surface including, but not limited to glucose, electrolyte, alcohol and illicit substances (e.g., drugs of abuse). The osmotic sampling device 104 is attached to a body surface by means of a flexible adhesive overlay 100. Device 104 is comprised of a salt layer 106 separated by semi-permeable membrane 95 from a layer 94 which stores the agent to be sampled. The layer 94 is absorbant in character in that the layer (e.g., hydrogel) passes fluid drawn through the body surface but retains the agent being sampled. The device 2 with connecting medium 65 thereon is in contact with layer 94 such that the projections on device 2 pierce the body surface and the connecting medium 65 makes good contact with the body surface. The salt layer 106 draws fluid from the body by osmosis through the connecting medium 65 and layer 94. The fluid drawn from the body contains the agent being sampled. As the fluid containing the agent passes through layer 94, the agent is retained in layer 94 and the fluid is absorbed by the salt layer 106. Preferably, the salt layer is free to expand or is encapsulated in a semi-permeable membrane 95 so that it retains the fluid therein. The sampled agent can be measured in situ directly or withdrawn from the layer 94 and sampled by conventional means.
  • Alternatively, [0050] salt layer 106, layer 94 and semi-permeable membrane 95 can be combined in one layer of absorbant hydrogel that stores the absorbed fluid as well as the agent sampled. Additionally, this one layer can be configured as the connecting medium 65 thereby greatly simplifying the device.
  • The following example is merely illustrative of the present invention and should not be considered as limiting the scope of the invention in any way, as this example and other equivalents thereof will become apparent to those versed in the art and in light of the present disclosure, drawings, and the accompanying claims. [0051]
  • EXAMPLE 1
  • The effect of the present invention is evaluated for its effect on drug flux and the skin resistance of a hairless guinea pig during electrotransport delivery of a model decapeptide drug. The following are specifications for the device. The device consists of a member having a plurality of rectangular openings having two blades, one on each end of a 0.25 mm[0052] 2 void area for each opening. The openings are aligned in pairs with every other pair of openings oriented 90 degrees to the previous pair of openings. All of the blades are about 500 micrometers long. There are 256 void areas per cm2 and 512 blades per cm2. An electrotransport system is used which applies a constant current of 0.1 mA/cm2. It consists of a cathode counter reservoir comprising a Dulbelco's phosphate buffered saline imbibing gel and a donor anode reservoir comprising a hydroxyethylcellulose gel containing an aqueous solution of decapeptide bufferred at pH 7.5. The electrotransport system is placed on the skin of a lightly anesthetized hairless guinea pig. Decapeptide flux is evaluated by measuring urinary excretion of this peptide. Use of the present invention results in increased decapeptide flux over the transport period compared to an ordinary electrotransport device.
  • It win be appreciated by those of ordinary skill in the art that the invention can be embodied in other specific forms without departing from the spirit or essential character thereof. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restrictive. The scope of the invention is indicated by the appended claims rather than the foregoing description, and all changes which come within the meaning and range of equivalents thereof are intended to be embraced therein. [0053]

Claims (18)

1. A device for introducing or withdrawing an agent through a body surface, comprising:
a member having a body-surface-proximal side and a body-surface-distal side;
said member further having a first surface on said body-surface-proximal side of said member, a second surface on said body-surface-distal side of said member and a plurality of protrusions capable of piercing said body surface; said protrusions extending from the first surface; and
a connecting medium disposed on at least a portion of said first surface of said member, said connecting medium being in the range of about 10 micrometers to about 100 micrometers thick, said connecting medium being capable of storing said biologically active agent therein or passing said biologically active agent therethrough when said plurality of protrusions have pierced the body surface and said connecting medium is placed in contact with said body surface.
2. The device of claim 1, wherein said member includes an opening therethrough.
3. The device of claim 2, wherein said connecting medium extends across said opening.
4. The device of claim 2, wherein said connecting medium extends through said opening.
5. The device of claim 2, wherein said connecting medium is disposed in said opening.
6. (Canceled)
7. The device of claim 1, wherein said connecting medium is about 50 micrometers thick.
8. The device of claim 1, wherein said connecting medium comprises a hydrogel.
9. (Canceled)
10. The device of claim 1, wherein said connecting medium comprises a form selected from the group consisting of a gel, a solid and a powder.
11. The device of claim 1, wherein said connecting medium comprises a matrix material.
12. The device of claim 1, wherein said plurality of protrusions comprise a plurality of blades.
13. The device of claim 12, wherein at least one of said plurality of blades includes means for anchoring said device to the body surface.
14. The device of claim 1, wherein said device further includes an agent delivery device connected said member, said agent delivery device being selected from the group consisting of an electrotransport device, a passive device, an osmotic device, and a pressure driven device.
15. The device of claim 14, wherein said agent is selected from the group consisting of a gene, a polypeptide, and a protein.
16. The device of claim 1, further a sampling device connected to said member, said sampling device being selected from the group consisting of a reverse electrotransport device, a passive device, and an osmotic device.
17. The device of claim 16, wherein a sampled agent is selected from the group consisting of body electrolytes, illicit drugs and glucose.
18-25. (Canceled)
US10/881,440 1997-12-10 2004-06-29 Device and method for enhancing transdermal agent flux Abandoned US20040236271A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/881,440 US20040236271A1 (en) 1997-12-10 2004-06-29 Device and method for enhancing transdermal agent flux

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/988,292 US6918901B1 (en) 1997-12-10 1997-12-10 Device and method for enhancing transdermal agent flux
US10/881,440 US20040236271A1 (en) 1997-12-10 2004-06-29 Device and method for enhancing transdermal agent flux

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/988,292 Continuation US6918901B1 (en) 1997-12-10 1997-12-10 Device and method for enhancing transdermal agent flux

Publications (1)

Publication Number Publication Date
US20040236271A1 true US20040236271A1 (en) 2004-11-25

Family

ID=33452970

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/988,292 Expired - Fee Related US6918901B1 (en) 1997-12-10 1997-12-10 Device and method for enhancing transdermal agent flux
US10/881,440 Abandoned US20040236271A1 (en) 1997-12-10 2004-06-29 Device and method for enhancing transdermal agent flux

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/988,292 Expired - Fee Related US6918901B1 (en) 1997-12-10 1997-12-10 Device and method for enhancing transdermal agent flux

Country Status (1)

Country Link
US (2) US6918901B1 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040265354A1 (en) * 2003-06-30 2004-12-30 Mahmoud Ameri Formulations for coated microprojections containing non-volatile counterions
US20050025778A1 (en) * 2003-07-02 2005-02-03 Cormier Michel J.N. Microprojection array immunization patch and method
US20050031676A1 (en) * 2003-08-04 2005-02-10 Wong Patrick S.L. Method and device for enhancing transdermal agent flux
US20050084604A1 (en) * 2001-03-16 2005-04-21 Trautman Joseph C. Method and apparatus for coating skin piercing microprojections
US20050089553A1 (en) * 2003-10-28 2005-04-28 Cormier Michel J. Method and apparatus for reducing the incidence of tobacco use
US20050090009A1 (en) * 2003-10-23 2005-04-28 Cormier Michel J. Compositions of stabilized DNA for coating microprojctions
US20050106226A1 (en) * 2003-10-24 2005-05-19 Cormier Michel J. Pretreatment method and system for enhancing transdermal drug delivery
US20050123507A1 (en) * 2003-06-30 2005-06-09 Mahmoud Ameri Formulations for coated microprojections having controlled solubility
US20050148926A1 (en) * 2000-10-13 2005-07-07 Trautman Joseph C. Microprotrusion member retainer for impact applicator
US20050234401A1 (en) * 2000-10-13 2005-10-20 Trautman Joseph C Apparatus and method for piercing skin with microprotrusions
US20050256045A1 (en) * 2004-05-13 2005-11-17 Mahmoud Ameri Apparatus and method for transdermal delivery of parathyroid hormone agents
US20050271684A1 (en) * 2004-04-13 2005-12-08 Trautman Joseph C Apparatus and method for transdermal delivery of multiple vaccines
US20060051403A1 (en) * 2004-09-08 2006-03-09 James Matriano Microprojection array with improved skin adhesion and compliance
US20060074377A1 (en) * 2001-04-20 2006-04-06 Cormier Michel J Microprojection array immunization patch and method
US20060142691A1 (en) * 2000-10-13 2006-06-29 Trautman Joseph C Apparatus and method for piercing skin with microprotrusions
US20060200069A1 (en) * 2000-10-26 2006-09-07 Cormier Michel J Transdermal drug delivery devices having coated microprotrusions
US20070118070A1 (en) * 1996-06-18 2007-05-24 Cormier Michel J Device with anchoring elements for transdermal delivery or sampling of agents
US20070293814A1 (en) * 2005-09-12 2007-12-20 Trautman Joseph C Coatable transdermal delivery microprojection assembly
US20070293816A1 (en) * 2006-04-25 2007-12-20 Alza Corporation Microprojection Array Application with Grouped Microprojections for High Drug Loading
US20070299388A1 (en) * 2006-04-25 2007-12-27 Alza Corporation Microprojection array application with multilayered microprojection member for high drug loading
US20080039775A1 (en) * 2006-03-15 2008-02-14 Alza Corporation Apparatus and Method for Transdermal Delivery of Parathyroid Hormone Agents to Prevent or Treat Osteopenia
US20080249469A1 (en) * 2007-03-22 2008-10-09 Ponnambalam Selvaganapathy Method and apparatus for active control of drug delivery using electro-osmotic flow control
US7763203B2 (en) 2001-03-14 2010-07-27 Corium International, Inc. Method of manufacturing microneedle structures using photolithography
US7828827B2 (en) 2002-05-24 2010-11-09 Corium International, Inc. Method of exfoliation of skin using closely-packed microstructures
US7914480B2 (en) 2004-03-24 2011-03-29 Corium International, Inc. Transdermal delivery device
US8216190B2 (en) 2000-10-16 2012-07-10 Corium International, Inc. Microstructures for delivering a composition cutaneously to skin
US8821446B2 (en) 2007-01-22 2014-09-02 Corium International, Inc. Applicators for microneedles
US8911749B2 (en) 2007-04-16 2014-12-16 Corium International, Inc. Vaccine delivery via microneedle arrays
US9114238B2 (en) 2007-04-16 2015-08-25 Corium International, Inc. Solvent-cast microprotrusion arrays containing active ingredient
US9421351B2 (en) 2003-10-31 2016-08-23 Alza Corporation Self-actuating applicator for microprojection array
CN106110490A (en) * 2016-06-21 2016-11-16 唐晨 The method and device that a kind of soft capsule micro-spray formula is microneedle cutaneous
US20170086726A1 (en) * 2011-09-23 2017-03-30 Roche Diabetes Care, Inc. Method for the mask-etching of a piercing element
US9687641B2 (en) 2010-05-04 2017-06-27 Corium International, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array
US9962534B2 (en) 2013-03-15 2018-05-08 Corium International, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
US9968767B1 (en) * 2017-10-10 2018-05-15 King Saud University Combination microarray patch for drug delivery and electrochemotherapy device
US10195409B2 (en) 2013-03-15 2019-02-05 Corium International, Inc. Multiple impact microprojection applicators and methods of use
US10245422B2 (en) 2013-03-12 2019-04-02 Corium International, Inc. Microprojection applicators and methods of use
US10384045B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray with polymer-free microstructures, methods of making, and methods of use
US10384046B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
US10624843B2 (en) 2014-09-04 2020-04-21 Corium, Inc. Microstructure array, methods of making, and methods of use
US10857093B2 (en) 2015-06-29 2020-12-08 Corium, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
US11052231B2 (en) 2012-12-21 2021-07-06 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
AU2001288774B2 (en) * 2000-09-08 2006-06-29 Alza Corporation Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure
DE10057832C1 (en) * 2000-11-21 2002-02-21 Hartmann Paul Ag Blood analysis device has syringe mounted in casing, annular mounting carrying needles mounted behind test strip and being swiveled so that needle can be pushed through strip and aperture in casing to take blood sample
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
DE60233939D1 (en) * 2001-04-20 2009-11-19 Alza Corp MICROPROJECTION ARRANGEMENT WITH A COATING CONTAINING ADVANTAGEOUS MEDIUM
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US7025774B2 (en) * 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
CA2448905C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Blood sampling apparatus and method
ES2352998T3 (en) 2001-06-12 2011-02-24 Pelikan Technologies Inc. LANCETA ELECTRIC ACTUATOR.
CA2448902C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US8337419B2 (en) * 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
WO2002100254A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7429258B2 (en) * 2001-10-26 2008-09-30 Massachusetts Institute Of Technology Microneedle transport device
US20030199810A1 (en) * 2001-11-30 2003-10-23 Trautman Joseph Creagan Methods and apparatuses for forming microprojection arrays
AU2002357372B2 (en) * 2001-12-20 2008-11-20 Alza Corporation Skin-piercing microprojections having piercing depth control
US6908453B2 (en) * 2002-01-15 2005-06-21 3M Innovative Properties Company Microneedle devices and methods of manufacture
US6912417B1 (en) 2002-04-05 2005-06-28 Ichor Medical Systmes, Inc. Method and apparatus for delivery of therapeutic agents
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) * 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7229458B2 (en) * 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7291117B2 (en) * 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7175642B2 (en) * 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US20120296233A9 (en) * 2002-09-05 2012-11-22 Freeman Dominique M Methods and apparatus for an analyte detecting device
WO2004030743A2 (en) * 2002-09-30 2004-04-15 Alza Corporation Drug delivery device having coated microprojections incorporating vasoconstrictors
AR042815A1 (en) * 2002-12-26 2005-07-06 Alza Corp ACTIVE AGENT SUPPLY DEVICE THAT HAS COMPOUND MEMBERS
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
EP2238892A3 (en) * 2003-05-30 2011-02-09 Pelikan Technologies Inc. Apparatus for body fluid sampling
US7850621B2 (en) * 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
EP1635700B1 (en) * 2003-06-13 2016-03-09 Sanofi-Aventis Deutschland GmbH Apparatus for a point of care device
WO2005033659A2 (en) 2003-09-29 2005-04-14 Pelikan Technologies, Inc. Method and apparatus for an improved sample capture device
WO2005037095A1 (en) 2003-10-14 2005-04-28 Pelikan Technologies, Inc. Method and apparatus for a variable user interface
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
EP1706176A4 (en) * 2004-01-09 2008-06-25 Alza Corp Frequency assisted transdermal agent delivery method and system
US20080312555A1 (en) * 2004-02-06 2008-12-18 Dirk Boecker Devices and methods for glucose measurement using rechargeable battery energy sources
EP3466483A1 (en) 2004-03-08 2019-04-10 Ichor Medical Systems Inc. Improved apparatus for electrically mediated delivery of therapeutic agents
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH & Co. KG Printable hydrogel for biosensors
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
WO2005120365A1 (en) * 2004-06-03 2005-12-22 Pelikan Technologies, Inc. Method and apparatus for a fluid sampling device
US20060030811A1 (en) * 2004-08-03 2006-02-09 Wong Patrick S Method and device for enhancing transdermal agent flux
US7590444B2 (en) * 2004-12-09 2009-09-15 Tti Ellebeau, Inc. Iontophoresis device
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
JP4793806B2 (en) * 2005-03-22 2011-10-12 Tti・エルビュー株式会社 Iontophoresis device
US8295922B2 (en) * 2005-08-08 2012-10-23 Tti Ellebeau, Inc. Iontophoresis device
US8386030B2 (en) 2005-08-08 2013-02-26 Tti Ellebeau, Inc. Iontophoresis device
US20070060860A1 (en) * 2005-08-18 2007-03-15 Transcutaneous Technologies Inc. Iontophoresis device
BRPI0616165A2 (en) 2005-09-15 2011-06-07 Tti Ellebeau Inc rod type iontophoresis device
US20070232983A1 (en) * 2005-09-30 2007-10-04 Smith Gregory A Handheld apparatus to deliver active agents to biological interfaces
JP2009509659A (en) * 2005-09-30 2009-03-12 Tti・エルビュー株式会社 Iontophoresis device and method for delivery of active agents to biological interfaces
WO2007041526A2 (en) * 2005-09-30 2007-04-12 Transcutaneous Technologies Inc. Iontophoresis apparatus and method to deliver antibiotics to biological interfaces
US7574256B2 (en) * 2005-09-30 2009-08-11 Tti Ellebeau, Inc. Iontophoretic device and method of delivery of active agents to biological interface
WO2007070719A2 (en) * 2005-12-14 2007-06-21 Pelikan Technologies, Inc. Tissue penetration device
WO2007079193A2 (en) 2005-12-30 2007-07-12 Tti Ellebeau, Inc. Iontophoretic systems, devices, and methods of delivery of active agents to biological interface
DE102006022554B4 (en) * 2006-05-15 2014-12-04 Roche Diagnostics Gmbh A method and apparatus for stimulating tissue for the subcutaneous administration of drugs
RU2009103771A (en) * 2006-07-05 2010-08-10 ТиТиАй ЭЛЛЕБО, ИНК. (JP) DELIVERY DEVICE, INCLUDING SELF-ASSEMBLY BRANCHED POLYMERS, AND METHOD OF APPLICATION
CA2671069A1 (en) 2006-12-01 2008-06-12 Tti Ellebeau, Inc. Systems, devices, and methods for powering and/or controlling devices, for instance transdermal delivery devices
WO2009039366A1 (en) * 2007-09-20 2009-03-26 Transport Pharmaceuticals, Inc. Method of enhancing iontophoretic delivery of a peptide
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
WO2012018486A2 (en) 2010-07-26 2012-02-09 Seventh Sense Biosystems, Inc. Rapid delivery and/or receiving of fluids
WO2010101620A2 (en) 2009-03-02 2010-09-10 Seventh Sense Biosystems, Inc. Systems and methods for creating and using suction blisters or other pooled regions of fluid within the skin
US8827971B2 (en) 2011-04-29 2014-09-09 Seventh Sense Biosystems, Inc. Delivering and/or receiving fluids
WO2011094573A1 (en) 2010-01-28 2011-08-04 Seventh Sense Biosystems, Inc. Monitoring or feedback systems and methods
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
WO2011163347A2 (en) 2010-06-23 2011-12-29 Seventh Sense Biosystems, Inc. Sampling devices and methods involving relatively little pain
JP2013538069A (en) 2010-07-16 2013-10-10 セブンス センス バイオシステムズ,インコーポレーテッド Low pressure environment for fluid transfer devices
WO2012021801A2 (en) 2010-08-13 2012-02-16 Seventh Sense Biosystems, Inc. Systems and techniques for monitoring subjects
WO2012061556A1 (en) * 2010-11-03 2012-05-10 Flugen, Inc. Wearable drug delivery device having spring drive and sliding actuation mechanism
US8808202B2 (en) 2010-11-09 2014-08-19 Seventh Sense Biosystems, Inc. Systems and interfaces for blood sampling
CA2833175A1 (en) 2011-04-29 2012-11-01 Seventh Sense Biosystems, Inc. Devices and methods for collection and/or manipulation of blood spots or other bodily fluids
US20130158468A1 (en) 2011-12-19 2013-06-20 Seventh Sense Biosystems, Inc. Delivering and/or receiving material with respect to a subject surface
WO2012149155A1 (en) 2011-04-29 2012-11-01 Seventh Sense Biosystems, Inc. Systems and methods for collecting fluid from a subject
US20150045628A1 (en) * 2013-08-09 2015-02-12 Vital Connect, Inc. Multi-layer patch for wireless sensor devices
AU2017241925B2 (en) 2016-03-28 2022-01-13 Ichor Medical Systems, Inc. Method and apparatus for delivery of therapeutic agents
GB2568287A (en) * 2017-11-10 2019-05-15 Sisaf Ltd Apparatus and methods for the transdermal delivery of active agents

Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2609821A (en) * 1949-10-27 1952-09-09 Weissberger Bela Hair grooming device
US2619692A (en) * 1949-10-26 1952-12-02 Langley Awning construction
US2893392A (en) * 1958-01-08 1959-07-07 American Cyanamid Co Article of manufacture for intracutaneous injections
US2922425A (en) * 1957-04-24 1960-01-26 Gillette Co Applicator for applying liquid to hair
US3072122A (en) * 1959-01-15 1963-01-08 Rosenthal Sol Roy Package for transcutaneous injection
US3123212A (en) * 1964-03-03 Multiple disposable intracutaneous injector package
US3221740A (en) * 1962-08-31 1965-12-07 Rosenthal Sol Roy Injection device
US3221739A (en) * 1962-03-26 1965-12-07 Rosenthal Sol Roy Injection device
US3675766A (en) * 1970-02-04 1972-07-11 Sol Roy Rosenthal Multiple puncture injector device
US3678150A (en) * 1971-07-27 1972-07-18 American Cyanamid Co Process for improving the stability of ppd, qt and histoplasmin on tine applicators
US3814097A (en) * 1972-02-14 1974-06-04 Ici Ltd Dressing
US3964482A (en) * 1971-05-17 1976-06-22 Alza Corporation Drug delivery device
US4340048A (en) * 1981-03-28 1982-07-20 Alza Corporation Self-driven hypodermic injector
US4379454A (en) * 1981-02-17 1983-04-12 Alza Corporation Dosage for coadministering drug and percutaneous absorption enhancer
US4588580A (en) * 1984-07-23 1986-05-13 Alza Corporation Transdermal administration of fentanyl and device therefor
US4655766A (en) * 1985-08-01 1987-04-07 Alza Corporation Fluid imbibing pump with self-regulating skin patch
US4698062A (en) * 1985-10-30 1987-10-06 Alza Corporation Medical device for pulsatile transdermal delivery of biologically active agents
US4711247A (en) * 1986-04-18 1987-12-08 Henry Fishman Allergy testing method and apparatus
US4714621A (en) * 1985-04-24 1987-12-22 Pharmacia Ab Coating method
US4753651A (en) * 1982-08-30 1988-06-28 Alza Corporation Self-driven pump
US4832953A (en) * 1987-08-13 1989-05-23 Alza Corporation Method for preventing the formation of a crystalline hydrate in a dispersion of a liquid in a monaqueous matrix
US4856541A (en) * 1987-08-06 1989-08-15 Creative Products Resource Associates, Ltd. Brush incorporating a hydrophilic foam pad for hair cleaning and conditioning
US4867982A (en) * 1986-01-13 1989-09-19 Alza Corporation Transdermal drug delivery device
US5022075A (en) * 1988-04-12 1991-06-04 Telic Alcatel Mechanical assembly for ensuring electrical safety in a telephone set or terminal
US5080646A (en) * 1988-10-03 1992-01-14 Alza Corporation Membrane for electrotransport transdermal drug delivery
US5147296A (en) * 1988-10-03 1992-09-15 Alza Corporation Membrane for electrotransport transdermal drug delivery
US5169382A (en) * 1988-10-03 1992-12-08 Alza Corporation Membrane for electrotransport transdermal drug delivery
US5224927A (en) * 1990-11-01 1993-07-06 Robert Tapper Iontophoretic treatment system
US5242406A (en) * 1990-10-19 1993-09-07 Sil Medics Ltd. Liquid delivery device particularly useful for delivering drugs
US5250023A (en) * 1989-10-27 1993-10-05 Korean Research Institute on Chemical Technology Transdermal administration method of protein or peptide drug and its administration device thereof
US5261426A (en) * 1991-05-30 1993-11-16 Creative Products Resource Associates, Ltd. Hydrophilic foam pad for hair styling
US5268209A (en) * 1989-12-21 1993-12-07 Alza Corporation Nicotine packaging materials
US5279544A (en) * 1990-12-13 1994-01-18 Sil Medics Ltd. Transdermal or interdermal drug delivery devices
US5310404A (en) * 1992-06-01 1994-05-10 Alza Corporation Iontophoretic delivery device and method of hydrating same
US5385543A (en) * 1990-10-29 1995-01-31 Alza Corporation Iontophoretic delivery device and method of hydrating same
US5423739A (en) * 1990-03-30 1995-06-13 Alza Corporation Device and method for iontophoretic drug delivery
US5472456A (en) * 1995-01-06 1995-12-05 Larsky; Edvin G. Electrophoretic apparatus and method for applying therapeutic, cosmetic and dyeing solutions to hair
US5845653A (en) * 1998-05-15 1998-12-08 Abercrombie; Tracy H. Applicator for coloring hair or fibers and methods for making and using same
US6050988A (en) * 1997-12-11 2000-04-18 Alza Corporation Device for enhancing transdermal agent flux
US6083196A (en) * 1997-12-11 2000-07-04 Alza Corporation Device for enhancing transdermal agent flux
US6230051B1 (en) * 1996-06-18 2001-05-08 Alza Corporation Device for enhancing transdermal agent delivery or sampling
US6322808B1 (en) * 1997-12-11 2001-11-27 Alza Corporation Device for enhancing transdermal agent flux
US20020087182A1 (en) * 2000-10-13 2002-07-04 Trautman Joseph C. Microblade array impact applicator
US20020128599A1 (en) * 2000-10-26 2002-09-12 Cormier Michel J.N. Transdermal drug delivery devices having coated microprotrusions
US20020177839A1 (en) * 2001-04-20 2002-11-28 Cormier Michel J. N. Microprojection array having a beneficial agent containing coating
US20030181936A1 (en) * 2001-12-20 2003-09-25 Trautman Joseph C. Skin-piercing microprojections having piercing depth control
US20030199810A1 (en) * 2001-11-30 2003-10-23 Trautman Joseph Creagan Methods and apparatuses for forming microprojection arrays
US20040062813A1 (en) * 2002-06-28 2004-04-01 Cormier Michel J. N. Transdermal drug delivery devices having coated microprotrusions
US20040138610A1 (en) * 2002-12-26 2004-07-15 Michel Cormier Active agent delivery device having composite members
US20040265354A1 (en) * 2003-06-30 2004-12-30 Mahmoud Ameri Formulations for coated microprojections containing non-volatile counterions
US6855131B2 (en) * 2000-10-13 2005-02-15 Alza Corporation Microprotrusion member retainer for impact applicator
US6855372B2 (en) * 2001-03-16 2005-02-15 Alza Corporation Method and apparatus for coating skin piercing microprojections
US7131960B2 (en) * 2000-10-13 2006-11-07 Alza Corporation Apparatus and method for piercing skin with microprotrusions

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5002075A (en) * 1987-08-06 1991-03-26 Creative Product Resource Associates, Ltd. Hydrophilic foam pad for hair styling, conditioning and coloring
WO1996017648A1 (en) 1994-12-09 1996-06-13 Novartis Ag Transdermal system
EP1643340B1 (en) 1995-02-13 2013-08-14 Intertrust Technologies Corp. Secure transaction management
WO1996037256A1 (en) 1995-05-22 1996-11-28 Silicon Microdevices, Inc. Micromechanical patch for enhancing the delivery of compounds through the skin
DE19525607A1 (en) 1995-07-14 1997-01-16 Boehringer Ingelheim Kg Transcorneal drug delivery system
IL123379A (en) 1995-08-29 2002-04-21 Spectrx Inc Microporation of human skin for drug delivery and monitoring applications

Patent Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123212A (en) * 1964-03-03 Multiple disposable intracutaneous injector package
US2619692A (en) * 1949-10-26 1952-12-02 Langley Awning construction
US2609821A (en) * 1949-10-27 1952-09-09 Weissberger Bela Hair grooming device
US2922425A (en) * 1957-04-24 1960-01-26 Gillette Co Applicator for applying liquid to hair
US2893392A (en) * 1958-01-08 1959-07-07 American Cyanamid Co Article of manufacture for intracutaneous injections
US3072122A (en) * 1959-01-15 1963-01-08 Rosenthal Sol Roy Package for transcutaneous injection
US3221739A (en) * 1962-03-26 1965-12-07 Rosenthal Sol Roy Injection device
US3221740A (en) * 1962-08-31 1965-12-07 Rosenthal Sol Roy Injection device
US3675766A (en) * 1970-02-04 1972-07-11 Sol Roy Rosenthal Multiple puncture injector device
US3964482A (en) * 1971-05-17 1976-06-22 Alza Corporation Drug delivery device
US3678150A (en) * 1971-07-27 1972-07-18 American Cyanamid Co Process for improving the stability of ppd, qt and histoplasmin on tine applicators
US3814097A (en) * 1972-02-14 1974-06-04 Ici Ltd Dressing
US4379454A (en) * 1981-02-17 1983-04-12 Alza Corporation Dosage for coadministering drug and percutaneous absorption enhancer
US4340048A (en) * 1981-03-28 1982-07-20 Alza Corporation Self-driven hypodermic injector
US4753651A (en) * 1982-08-30 1988-06-28 Alza Corporation Self-driven pump
US4588580A (en) * 1984-07-23 1986-05-13 Alza Corporation Transdermal administration of fentanyl and device therefor
US4588580B1 (en) * 1984-07-23 1989-01-03
US4588580B2 (en) * 1984-07-23 1999-02-16 Alaz Corp Transdermal administration of fentanyl and device therefor
US4714621A (en) * 1985-04-24 1987-12-22 Pharmacia Ab Coating method
US4655766A (en) * 1985-08-01 1987-04-07 Alza Corporation Fluid imbibing pump with self-regulating skin patch
US4698062A (en) * 1985-10-30 1987-10-06 Alza Corporation Medical device for pulsatile transdermal delivery of biologically active agents
US4867982A (en) * 1986-01-13 1989-09-19 Alza Corporation Transdermal drug delivery device
US4711247A (en) * 1986-04-18 1987-12-08 Henry Fishman Allergy testing method and apparatus
US4856541A (en) * 1987-08-06 1989-08-15 Creative Products Resource Associates, Ltd. Brush incorporating a hydrophilic foam pad for hair cleaning and conditioning
US4832953A (en) * 1987-08-13 1989-05-23 Alza Corporation Method for preventing the formation of a crystalline hydrate in a dispersion of a liquid in a monaqueous matrix
US5022075A (en) * 1988-04-12 1991-06-04 Telic Alcatel Mechanical assembly for ensuring electrical safety in a telephone set or terminal
US5080646A (en) * 1988-10-03 1992-01-14 Alza Corporation Membrane for electrotransport transdermal drug delivery
US5147296A (en) * 1988-10-03 1992-09-15 Alza Corporation Membrane for electrotransport transdermal drug delivery
US5169382A (en) * 1988-10-03 1992-12-08 Alza Corporation Membrane for electrotransport transdermal drug delivery
US5250023A (en) * 1989-10-27 1993-10-05 Korean Research Institute on Chemical Technology Transdermal administration method of protein or peptide drug and its administration device thereof
US5268209A (en) * 1989-12-21 1993-12-07 Alza Corporation Nicotine packaging materials
US5423739A (en) * 1990-03-30 1995-06-13 Alza Corporation Device and method for iontophoretic drug delivery
US5242406A (en) * 1990-10-19 1993-09-07 Sil Medics Ltd. Liquid delivery device particularly useful for delivering drugs
US5385543A (en) * 1990-10-29 1995-01-31 Alza Corporation Iontophoretic delivery device and method of hydrating same
US5224927A (en) * 1990-11-01 1993-07-06 Robert Tapper Iontophoretic treatment system
US5279544A (en) * 1990-12-13 1994-01-18 Sil Medics Ltd. Transdermal or interdermal drug delivery devices
US5261426A (en) * 1991-05-30 1993-11-16 Creative Products Resource Associates, Ltd. Hydrophilic foam pad for hair styling
US5310404A (en) * 1992-06-01 1994-05-10 Alza Corporation Iontophoretic delivery device and method of hydrating same
US5472456A (en) * 1995-01-06 1995-12-05 Larsky; Edvin G. Electrophoretic apparatus and method for applying therapeutic, cosmetic and dyeing solutions to hair
US6230051B1 (en) * 1996-06-18 2001-05-08 Alza Corporation Device for enhancing transdermal agent delivery or sampling
US7184826B2 (en) * 1996-06-18 2007-02-27 Alza Corporation Device and method for enhancing transdermal flux of agents being delivered or sampled
US6050988A (en) * 1997-12-11 2000-04-18 Alza Corporation Device for enhancing transdermal agent flux
US6083196A (en) * 1997-12-11 2000-07-04 Alza Corporation Device for enhancing transdermal agent flux
US6322808B1 (en) * 1997-12-11 2001-11-27 Alza Corporation Device for enhancing transdermal agent flux
US6953589B1 (en) * 1997-12-11 2005-10-11 Alza Corporation Device for enhancing transdermal agent flux
US5845653A (en) * 1998-05-15 1998-12-08 Abercrombie; Tracy H. Applicator for coloring hair or fibers and methods for making and using same
US20020087182A1 (en) * 2000-10-13 2002-07-04 Trautman Joseph C. Microblade array impact applicator
US6855131B2 (en) * 2000-10-13 2005-02-15 Alza Corporation Microprotrusion member retainer for impact applicator
US7131960B2 (en) * 2000-10-13 2006-11-07 Alza Corporation Apparatus and method for piercing skin with microprotrusions
US20020128599A1 (en) * 2000-10-26 2002-09-12 Cormier Michel J.N. Transdermal drug delivery devices having coated microprotrusions
US6855372B2 (en) * 2001-03-16 2005-02-15 Alza Corporation Method and apparatus for coating skin piercing microprojections
US20020177839A1 (en) * 2001-04-20 2002-11-28 Cormier Michel J. N. Microprojection array having a beneficial agent containing coating
US20030199810A1 (en) * 2001-11-30 2003-10-23 Trautman Joseph Creagan Methods and apparatuses for forming microprojection arrays
US20030181936A1 (en) * 2001-12-20 2003-09-25 Trautman Joseph C. Skin-piercing microprojections having piercing depth control
US20040062813A1 (en) * 2002-06-28 2004-04-01 Cormier Michel J. N. Transdermal drug delivery devices having coated microprotrusions
US20040138610A1 (en) * 2002-12-26 2004-07-15 Michel Cormier Active agent delivery device having composite members
US20040265354A1 (en) * 2003-06-30 2004-12-30 Mahmoud Ameri Formulations for coated microprojections containing non-volatile counterions

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070118070A1 (en) * 1996-06-18 2007-05-24 Cormier Michel J Device with anchoring elements for transdermal delivery or sampling of agents
US20060142691A1 (en) * 2000-10-13 2006-06-29 Trautman Joseph C Apparatus and method for piercing skin with microprotrusions
US8753318B2 (en) 2000-10-13 2014-06-17 Alza Corporation Microprotrusion member retainer for impact applicator
US7798987B2 (en) 2000-10-13 2010-09-21 Alza Corporation Apparatus and method for piercing skin with microprotrusions
US7419481B2 (en) 2000-10-13 2008-09-02 Alza Corporation Apparatus and method for piercing skin with microprotrusions
US20050148926A1 (en) * 2000-10-13 2005-07-07 Trautman Joseph C. Microprotrusion member retainer for impact applicator
US20050234401A1 (en) * 2000-10-13 2005-10-20 Trautman Joseph C Apparatus and method for piercing skin with microprotrusions
US8702726B2 (en) 2000-10-16 2014-04-22 Corium International, Inc. Method of exfoliation of skin using closely-packed microstructures
US8216190B2 (en) 2000-10-16 2012-07-10 Corium International, Inc. Microstructures for delivering a composition cutaneously to skin
US8663155B2 (en) 2000-10-26 2014-03-04 Alza Corporation Transdermal drug delivery devices having coated microprotrusions
US20060200069A1 (en) * 2000-10-26 2006-09-07 Cormier Michel J Transdermal drug delivery devices having coated microprotrusions
US7763203B2 (en) 2001-03-14 2010-07-27 Corium International, Inc. Method of manufacturing microneedle structures using photolithography
US7435299B2 (en) 2001-03-16 2008-10-14 Alza Corporation Method and apparatus for coating skin piercing microprojections
US20050084604A1 (en) * 2001-03-16 2005-04-21 Trautman Joseph C. Method and apparatus for coating skin piercing microprojections
US20060074377A1 (en) * 2001-04-20 2006-04-06 Cormier Michel J Microprojection array immunization patch and method
US20090143724A1 (en) * 2001-04-20 2009-06-04 Alza Corporation Microprojection Array Immunization Patch and Method
US7828827B2 (en) 2002-05-24 2010-11-09 Corium International, Inc. Method of exfoliation of skin using closely-packed microstructures
US20050123507A1 (en) * 2003-06-30 2005-06-09 Mahmoud Ameri Formulations for coated microprojections having controlled solubility
US20040265354A1 (en) * 2003-06-30 2004-12-30 Mahmoud Ameri Formulations for coated microprojections containing non-volatile counterions
US7579013B2 (en) 2003-06-30 2009-08-25 Alza Corporation Formulations for coated microprojections containing non-volatile counterions
US20050025778A1 (en) * 2003-07-02 2005-02-03 Cormier Michel J.N. Microprojection array immunization patch and method
US20050031676A1 (en) * 2003-08-04 2005-02-10 Wong Patrick S.L. Method and device for enhancing transdermal agent flux
US20050049549A1 (en) * 2003-08-04 2005-03-03 Wong Patrick S.L. Method and device for enhancing transdermal agent flux
US20050090009A1 (en) * 2003-10-23 2005-04-28 Cormier Michel J. Compositions of stabilized DNA for coating microprojctions
US20050106226A1 (en) * 2003-10-24 2005-05-19 Cormier Michel J. Pretreatment method and system for enhancing transdermal drug delivery
US20050089553A1 (en) * 2003-10-28 2005-04-28 Cormier Michel J. Method and apparatus for reducing the incidence of tobacco use
US7455654B2 (en) 2003-10-28 2008-11-25 Alza Corporation Method and apparatus for reducing the incidence of tobacco use
US9421351B2 (en) 2003-10-31 2016-08-23 Alza Corporation Self-actuating applicator for microprojection array
US7914480B2 (en) 2004-03-24 2011-03-29 Corium International, Inc. Transdermal delivery device
US20050271684A1 (en) * 2004-04-13 2005-12-08 Trautman Joseph C Apparatus and method for transdermal delivery of multiple vaccines
US8361022B2 (en) 2004-05-13 2013-01-29 Alza Corporation Apparatus for transdermal delivery of parathyroid hormone agents
US20050256045A1 (en) * 2004-05-13 2005-11-17 Mahmoud Ameri Apparatus and method for transdermal delivery of parathyroid hormone agents
US7556821B2 (en) 2004-05-13 2009-07-07 Alza Corporation Apparatus and method for transdermal delivery of parathyroid hormone agents
US20060051403A1 (en) * 2004-09-08 2006-03-09 James Matriano Microprojection array with improved skin adhesion and compliance
US20070293814A1 (en) * 2005-09-12 2007-12-20 Trautman Joseph C Coatable transdermal delivery microprojection assembly
US20080039775A1 (en) * 2006-03-15 2008-02-14 Alza Corporation Apparatus and Method for Transdermal Delivery of Parathyroid Hormone Agents to Prevent or Treat Osteopenia
US20070293816A1 (en) * 2006-04-25 2007-12-20 Alza Corporation Microprojection Array Application with Grouped Microprojections for High Drug Loading
US20070299388A1 (en) * 2006-04-25 2007-12-27 Alza Corporation Microprojection array application with multilayered microprojection member for high drug loading
US8821446B2 (en) 2007-01-22 2014-09-02 Corium International, Inc. Applicators for microneedles
US20080249469A1 (en) * 2007-03-22 2008-10-09 Ponnambalam Selvaganapathy Method and apparatus for active control of drug delivery using electro-osmotic flow control
US9114238B2 (en) 2007-04-16 2015-08-25 Corium International, Inc. Solvent-cast microprotrusion arrays containing active ingredient
US10238848B2 (en) 2007-04-16 2019-03-26 Corium International, Inc. Solvent-cast microprotrusion arrays containing active ingredient
US9452280B2 (en) 2007-04-16 2016-09-27 Corium International, Inc. Solvent-cast microprotrusion arrays containing active ingredient
US9498524B2 (en) 2007-04-16 2016-11-22 Corium International, Inc. Method of vaccine delivery via microneedle arrays
US8911749B2 (en) 2007-04-16 2014-12-16 Corium International, Inc. Vaccine delivery via microneedle arrays
US11419816B2 (en) 2010-05-04 2022-08-23 Corium, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array
US9687641B2 (en) 2010-05-04 2017-06-27 Corium International, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array
US20170086726A1 (en) * 2011-09-23 2017-03-30 Roche Diabetes Care, Inc. Method for the mask-etching of a piercing element
US10842425B2 (en) * 2011-09-23 2020-11-24 Roche Diabetes Care, Inc. Method for the mask-etching of a piercing element
US11052231B2 (en) 2012-12-21 2021-07-06 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
US10245422B2 (en) 2013-03-12 2019-04-02 Corium International, Inc. Microprojection applicators and methods of use
US11110259B2 (en) 2013-03-12 2021-09-07 Corium, Inc. Microprojection applicators and methods of use
US10195409B2 (en) 2013-03-15 2019-02-05 Corium International, Inc. Multiple impact microprojection applicators and methods of use
US10384045B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray with polymer-free microstructures, methods of making, and methods of use
US10384046B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
US9962534B2 (en) 2013-03-15 2018-05-08 Corium International, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
US11565097B2 (en) 2013-03-15 2023-01-31 Corium Pharma Solutions, Inc. Microarray for delivery of therapeutic agent and methods of use
US10624843B2 (en) 2014-09-04 2020-04-21 Corium, Inc. Microstructure array, methods of making, and methods of use
US10857093B2 (en) 2015-06-29 2020-12-08 Corium, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
CN106110490A (en) * 2016-06-21 2016-11-16 唐晨 The method and device that a kind of soft capsule micro-spray formula is microneedle cutaneous
US9968767B1 (en) * 2017-10-10 2018-05-15 King Saud University Combination microarray patch for drug delivery and electrochemotherapy device

Also Published As

Publication number Publication date
US6918901B1 (en) 2005-07-19

Similar Documents

Publication Publication Date Title
US6918901B1 (en) Device and method for enhancing transdermal agent flux
EP0957972B1 (en) Device and method for enhancing transdermal agent flux
EP0914178B1 (en) Device for enhancing transdermal agent delivery or sampling
CA2313698C (en) Device for enhancing transdermal agent flux
EP1035889B1 (en) Device for enhancing transdermal agent flux
US6071508A (en) Preparation of formulations for electrotransport drug delivery
KR100500202B1 (en) Device for enhancing transdermal agent delivery or sampling
EP1911488A2 (en) Device for enhancing transdermal agent flux
KR20000016697A (en) Device for enhancing transdermal agent delivery or sampling
MXPA00005725A (en) Device for enhancing transdermal agent flux

Legal Events

Date Code Title Description
AS Assignment

Owner name: WISCONSIN ALUMNI RESEARCH FOUNDATION, WISCONSIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WENDT, GARY J.;PEPPLER, WALTER W.;REEL/FRAME:015226/0287

Effective date: 20041005

AS Assignment

Owner name: UNITED STATES GOVERNMENT SECRETARY OF THE ARMY ARM

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:WISCONSIN ALUMNI RESEARCH FOUNDATION;REEL/FRAME:016906/0645

Effective date: 20041006

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION