US20050155731A1 - Process for making abrasion resistant paper and paper and paper products made by the process - Google Patents

Process for making abrasion resistant paper and paper and paper products made by the process Download PDF

Info

Publication number
US20050155731A1
US20050155731A1 US10/972,730 US97273004A US2005155731A1 US 20050155731 A1 US20050155731 A1 US 20050155731A1 US 97273004 A US97273004 A US 97273004A US 2005155731 A1 US2005155731 A1 US 2005155731A1
Authority
US
United States
Prior art keywords
paper
cationic
strength agent
dry
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/972,730
Inventor
William Martin
Richard Weir
Neal Stephenson
Edward Brown
Douglas Champion
Ronald Stacey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Gypsum Properties LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/972,730 priority Critical patent/US20050155731A1/en
Assigned to NATIONAL GYPSUM PROPERTIES, LLC reassignment NATIONAL GYPSUM PROPERTIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BROWN, EDWARD, CHAMPION, DOUGLAS, MARTIN, WILLIAM C., STACY, RONALD, STEPHENSON, NEIL, WEIR, RICHARD
Publication of US20050155731A1 publication Critical patent/US20050155731A1/en
Assigned to BANK OF AMERICA, N.A. reassignment BANK OF AMERICA, N.A. SECURITY AGREEMENT Assignors: NATIONAL GYPSUM PROPERTIES, LLC
Abandoned legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/55Polyamides; Polyaminoamides; Polyester-amides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/69Water-insoluble compounds, e.g. fillers, pigments modified, e.g. by association with other compositions prior to incorporation in the pulp or paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • D21H21/20Wet strength agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/30Luminescent or fluorescent substances, e.g. for optical bleaching
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/76Processes or apparatus for adding material to the pulp or to the paper characterised by choice of auxiliary compounds which are added separately from at least one other compound, e.g. to improve the incorporation of the latter or to obtain an enhanced combined effect
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/14Secondary fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • D21H17/375Poly(meth)acrylamide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/42Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups anionic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/18Paper- or board-based structures for surface covering
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B2001/742Use of special materials; Materials having special structures or shape
    • E04B2001/745Vegetal products, e.g. plant stems, barks

Definitions

  • the present invention relates to papermaking and, more particularly, to processes for making paper having improved properties such as abrasion resistance, decreased coefficient of friction, and increased brightness.
  • U.S. Pat. No. 6,083,586 describes compositions and methods for the manufacture of material sheets having a starch-bound matrix, optionally reinforced with fibers and inorganic mineral filler.
  • U.S. Pat. No. 6,153,040 discloses a process for reducing the rollups in gypsum board panels when the panels are laminated. At least one face of the gypsum board paper is treated with a friction reducing agent, such as a wax or wax emulsion, in order to reduce its coefficient of friction, resulting in the reduction of shear force which develops between the backing paper of a gypsum board panel and the conveyor belts used to carry such a panel.
  • a friction reducing agent such as a wax or wax emulsion
  • U.S. Pat. No. 6,517,674 describes a process for manufacturing wear resistant/abrasion resistant paper incorporating spacer- or separator-particles to minimize the amount of surface damage on the paper surface.
  • the particles described and incorporated into the paper are microspheres, such as glass microspheres, and abrasion resistant particles of grit such as aluminum oxide or silicon carbide. According to the '674 patent, the particles are added to the paper fiber pulp at the wet end of the paper machine from a primary or secondary headbox using a curtain slot coater as the application device.
  • paper is produced from an aqueous suspension containing cellulosic fibers and optional fillers. After draining the suspension, the obtained paper web is passed through the nip of a paper manufacturing machine. A chemical system comprising a polymeric component and a micro- or nano-particle component is added to the paper suspension/web. The addition of such a mixture of components is said to improve the overall quality and strength of the paper product, such as its coefficient of friction.
  • U.S. Pat. No. 6,562,444 discloses a fiber-cement and gypsum laminate composite building material that contains an adhesive layer interposed between the fiber-cement sheet and the gypsum panel, so as to improve the abrasion resistance of the laminate.
  • the adhesive layer is a polymeric adhesive, such as modified starches.
  • U.S. Pat. No. 6,568,148 discloses a covering element for building surfaces and a method for the production of such an element.
  • the covering element is described as having an upper face with a support layer made up of cellulose in which an abrasion-resistant material, such as corundrum particles, is embedded, thereby providing enhanced abrasion resistance and a lowered coefficient of friction.
  • the present invention provides a process for making paper as well as paper and paper products made by the process.
  • a first strength agent is added to the stock suspension containing pulp and optionally other additives prior to its being formed into a web at the wet end of a papermaking machine.
  • the web is then formed and processed into paper.
  • a second strength agent is then applied to the surface of the paper.
  • the strength agents are selected to have opposite charge (or to be amphoteric).
  • the first strength agent is a cationic dry-strength agent and the second strength agent is an anionic dry-strength agent.
  • the process of this invention can be used to make paper that is resistant to abrasion.
  • Embodiments of this process produce paper having other desirable physical properties like high optical brightness and a low friction surface.
  • An optically bright paper can be obtained by applying the second strength agent in a solution that also contains an optical brightener.
  • a paper having a low friction surface can be obtained by including a hydrophobic organo-silicone in the solution that is used to apply the second strength agent.
  • Paper made by the process is useful in a variety of paper products.
  • the process is useful for making abrasion resistant backing paper for gypsum wallboard.
  • Paper refers to a web of pulp fibers that are formed from an aqueous suspension on a wire or screen and held together at least in part by hydrogen bonding, and which can be made by hand or by machine. Included in this definition are the wide range of matted or felted webs of vegetable fiber (mostly wood) that have been formed on a screen from a water suspension, such as “tree paper” manufactured from wood pulp derived from trees, “plant papers” or “vegetable papers” which include a wide variety of plant fibers (also known as “secondary fibers”), such as straw, flax, and rice fibers, and is broadly referred to as “cellulose-based paper”, and Kraft paper (paper manufactured by the Kraft process). Further, the term paper as used herein is meant to refer to products containing substantially all virgin pulp fibers, substantially all recycled pulp fibers, or both virgin and recycled pulp fibers.
  • Papermaking machine refers to any of the papermaking machines known in the art, all of which are suitable for use with the process of the present invention. Such machines include cylinder machines, fourdrinier machines, twin wire forming machines, FC Former machines, and modifications thereof.
  • Pulp refers to fibers that are plant based, including but not limited to wood and similar “woody” plants, soy, rice, cotton, straw, flax, abaca, hemp, bagasse, lignin-containing plants, and the like. Such pulps include, but are not limited to, thermomechanical pulps, bleached thermomechanical pulps, chemi-thermomechanical pulps (CTMP), bleached chemi-thermomechanical pulps, and deinked bleached thermomechanical pulps.
  • CMP chemi-thermomechanical pulps
  • Sheet is intended to include any substantially flat, corrugated, curved, bent, or textured sheet made using the compositions and methods described herein.
  • the sheets can have greatly varying thickness depending on the particular application for which the sheet is intended. That is, the sheets can be as thin as about 0.01 mm and as thick as 1 cm or greater, where strength, durability, and/or bulk are important considerations depending upon the end use of the paper sheet.
  • Wash suspension refers to a mixture, or slurry, of pulp, fillers, water, and other papermaking materials.
  • stock suspension is meant to be equivalent to the term “pulp slurry”.
  • “Strength agent” refers to compounds that are incorporated into paper in order to increase its resistance to tearing. “Wet-strength agents” are agents that make paper more resistant to tearing when the paper is wet. “Dry-strength agents” are agents that make the paper more resistant to tearing when the paper is dry, but are less effective at strengthening wet paper than wet-strength agents are. Dry-strength agents can be cationic, anionic or amphoteric in nature.
  • Web refers to the continuous mat of fibers that is deposited on the wire or felt, drained, pressed and dried to form paper.
  • the present invention provides a process for making paper.
  • the paper and paper products made by the process may exhibit improved surface strength, abrasion resistant, a low friction surface and/or a high optical brightness depending upon the particular embodiment of the process that is followed.
  • the process of the present invention can be practiced on conventional papermaking equipment.
  • papermaking equipment varies in operation and mechanical design, the processes by which paper is made on different equipment contain common stages.
  • Papermaking includes a pulping stage, stock preparation stage, a wet end stage and a dry end stage.
  • the liberated fibers, or pulp is suspended in water in the stock preparation stage.
  • Additives such as brightening agents, dyes, pigments, fillers, antimicrobial agents, defoamers, pH control agents and drainage aids also may be added to the stock at this stage.
  • stock preparation includes such operations as dilution, screening and cleaning of the stock suspension that may occur prior to forming of the web. In particular, it includes feeding the pulp stream to a fan pump from a machine chest.
  • the wet end stage commences after preparation of the stock suspension.
  • the wet end stage commences when the pulp first contacts a wire or felt in a papermaking machine.
  • the wet end stage further includes such later operations as forming of the web, draining of the web and consolidation of the web (pressing).
  • the web is dried and may be subjected to additional processing like size pressing, calendering, spray coating of surface modifiers, printing, cutting, corrugating and the like.
  • a size press is a device for applying a solution to the paper. It includes a pair of squeeze rolls which are moistened with the solution sought to be applied.
  • the size press typically is situated between drying sections to allow removal of excess moisture. Size presses are typically used to apply surface sizing to improve the water resistance of the paper and improve ink absorption.
  • a calender stack is a series of solid rolls, usually made of steel or iron through which the dry paper is passed in a serpentine manner. Pressure applied to the paper as it passes between rolls in the calender stack can improve surface smoothness, increase gloss, make the caliper of the paper more uniform and decrease porosity.
  • a nip (or multiple nips) between calender rolls may be flooded in a “waterbox” application.
  • the calender waterbox may be used to apply coatings to the paper for a variety of purposes, such as to increase water resistance, reduce curl and improve gloss.
  • the web is formed by delivering a ribbon of stock suspension to a porous belt known to those skilled in the art as the “wire” from a headbox.
  • the headbox is a tank positioned above or beside the wire.
  • the wire is drawn between a “breast roll” and a “couch roll” and is typically driven by the couch roll.
  • the headbox is typically positioned above the wire near the breastroll.
  • the web is delivered from the headbox to the wire through a narrow opening in the headbox that is known to those skilled in the art as the “slice.” As the wire travels, the web is drawn towards the couch roll.
  • the web While in transit, water drains from the pulp through the porous wire under the effect of gravity and typically with the assistance of tube rolls, hydrofoils and/or suction boxes.
  • the web is passed to the pressing section of the paper machine.
  • the web typically has a consistency of from about 12% to about 25% before pressing.
  • the pressing section the web is squeezed between press rolls to eliminate more water.
  • the partially dried web is passed to the drying section. There, the web is dried, typically to a moisture content of from about 4% to about 12% by passing over heated dryer cans, although many papermachines in the gypsum industry dry to 0% to about 1% moisture content for greater dimensional stability.
  • Cationic dry-strength agents useful in practice of the present invention include, but are not limited to, cationic polyacrylamides, natural polymers, modified natural polymers, synthetic polymers, starches modified to have quaternary ammonium functional groups, celluloses, natural gums, polyvinyl alcohol, and any number of commercially available compounds having dipolar functional groups that allow for the formation of hydrogen bonds.
  • Preferred cationic dry-strength agents are cationic polyacrylamides and cationic synthetic polymers.
  • a cationic polyacrylamide can be made by co-polymerization of acrylamide with another acrylic monomer having a quaternary ammonium substituent thereon, such as (CH 3 ) 3 N + CH 2 CH 2 OC(O)CHCH 2 .
  • An example of a commercially available cationic polyacrylamide is Nalco 997, available from Nalco Chemical Company (Naperville, Ill.).
  • Anionic dry-strength agents useful in practice of the present invention include, but are not limited to, anionic polyacrylamides, natural starches, and carboxymethylcellulose (CMC).
  • the most preferred anionic dry-strength agents are anionic polyacrylamides.
  • an anionic polyacrylamide can be made by co-polymerization of acrylamide with an anionic acrylic monomer such as sodium acrylate.
  • An example of a commercially available anionic polyacrylamide is Nalco 1044, available from Nalco Chemical Company (Naperville, Ill.).
  • Amphoteric compounds useful in practice of the present invention have a ratio of anionic groups to cationic groups of from about 0.1:1.0 to about 1.0:1.0.
  • the amphoteric compounds have a ratio of anionic groups to cationic groups of about 1.0:1.0.
  • ratios of anionic groups to cationic groups in amphoteric compounds suitable for use with the present disclosure include ratios of about 0.1:1.0, about 0.2:1.0, about 0.3:1.0, about 0.4:1.0, about 0.5:1.0, about 0.5:1.0, about 0.6:1.0, about 0.7:1.0, about 0.8:1.0, about 0.9:1.0, about 1.0:1.0, and ratios that fall between any two of these ratios.
  • the cationic dry-strength agent is substituted by a cationic wet-strength agent.
  • Wet-strength agents are typically thermosetting resins that are added to the stock suspension, web or paper in order to impart wet-strength to the paper product. They also often contribute to the dry-strength of the paper.
  • Wet-strength agents are often cationic thermosetting resins, and are typically added to the stock prior to being sent to the paper machine. By thermosetting, it is meant that upon drying and/or heating, the wet-strength resins form a substantially insoluble, and water-resistant, network which can withstand wetting of the paper, thus contributing to the wet-strength of the paper.
  • wet-strength agents are polymeric, polar enough to be soluble or substantially dispersible in water, cationic so as to be substantive to pulp, and reactive/thermosetting.
  • the types of wet-strength agents useful in the practice of the present invention include acid-curing resins, neutral to acid curing resins, and neutral to alkaline curing resins.
  • Useful acid-curing, or formaldehyde-based, resins include urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and other resins which can be used at a system pH between about pH 4 and pH 5.
  • the cationic dry-strength agents added prior to the wet end can be added in an amount of from about 1 lbs/ton (of total paper) (0.5 kg/t) to about 40 lbs/t (9.1 kg/t), and more preferably from about 5 lbs/ton (2.3 kg/t) to about 15 lbs/t (6.8 kg/t).
  • the cationic dry-strength agents added prior to the wet end of the manufacturing process can be added in an amount of about 1 lb/t (0.5 kg/t), about 2 lb/t (0.9 kg/t), about 3 lb/t (1.4 kg/t), about 4 lb/t (1.8 kg/t), about 5 lb/t (2.3 kg/t), about 6 lb/t (2.7 kg/t), about 7 lb/t (3.2 kg/t), about 8 lb/t (3.6 kg/t), about 9 lb/t (4.1 kg/t), about 10 lb/t (4.5 kg/t), about 15 lb/t (6.8 kg/t) and about 20 lb/t (9.1 kg/t), as well as in ranges between any two of these values.
  • the cationic dry-strength agent is Nalco 997, it is preferably added at a rate of about 10 lbs/ton dry.
  • the anionic dry-strength agents are added at the dry end (e.g., in the calender waterbox) in an amount of from about 5 lbs/ton (of liner plies) (2.3 kg/t) to about 25 lbs/ton (11.3 kg/t), and more preferably from about 6 lbs/t (2.7 kg/t) to about 20 lbs/ton (9.1 kg/t).
  • the dry-strength agents added at the dry end of the manufacturing process can be added in an amount of from about 5 lb/t (2.3 kg/t), about 6 lb/t (2.7 kg/t), about 7 lb/t (3.2 kg/t), about 8 lb/t (3.6 kg/t), about 9 lb/t (4.1 kg/t), about 10 lb/t (4.5 kg/t), about 15 lb/t (6.8 kg/t), about 20 lb/t (9.1 kg/t), and about 25 lb/t (11.3 kg/t), as well as in ranges between any two of these values.
  • the anionic dry-strength agent is Nalco 1044, it is preferably added at a rate of about 2 lbs/ton dry.
  • the web Following deposition of the stock suspension from the headbox onto the moving wire, the web is carried over rolls (such as breast rolls, table rolls, and couch rolls) and suction boxes, and off the table. As the paper web is transported on the wire, the sheet loses water by drainage and through the suction boxes, and optionally through foils, lovacs, vacuum units, and the like.
  • rolls such as breast rolls, table rolls, and couch rolls
  • suction boxes As the paper web is transported on the wire, the sheet loses water by drainage and through the suction boxes, and optionally through foils, lovacs, vacuum units, and the like.
  • Drying can be accomplished through the use of drying devices such as dryer cans (hollow, revolving, steam-filled drums), dryer felts, steam control systems, pocket ventilation systems, dryer hoods, Yankee dryers drums, impulse drying, combinations thereof, and the like.
  • drying devices such as dryer cans (hollow, revolving, steam-filled drums), dryer felts, steam control systems, pocket ventilation systems, dryer hoods, Yankee dryers drums, impulse drying, combinations thereof, and the like.
  • the choice of type of drying means will generally depend upon the machine and/or the type of paper product being manufactured. Sizing, defoamers, and the like can be added using one or more size presses located between dryer sections.
  • the paper then passes through a waterbox-equipped calender stack, where an anionic dry-strength agent or agents are added.
  • an anionic dry-strength agent or agents are added.
  • a hydrophobic organo-silicone compound in combination with the anionic dry-strength agent and an optical brightener are fed into the waterbox, and are consequently applied to the paper as it passes through the calender stack waterbox.
  • paper and paper products made by the process of this invention exhibit improved surface strength.
  • Normal gypsum facing paper will lose ⁇ 0.009′′ in 100 to 200 cycles of abrasion while paper made according to our process loses only 0.000 to 0.005′′ after 1000 cycles.
  • Surface strength was measured using a modification of the procedure specified in ASTM D 4977-98b.
  • One particular embodiment of the inventive process yields a paper with a surface having a low coefficient of friction.
  • This embodiment includes the steps of: (1) preparing a stock suspension of cellulosic fibers, (2) adding a first strength agent to the stock suspension, (3) forming the cellulosic fibers into a substantially uniform web and (4) drying the web into paper and applying a solution containing a second strength agent and a hydrophobic organo-silicone compound to the surface of the paper.
  • hydrophobic organo-silicones are described in U.S. Pat. No. 3,389,042, the disclosure of which is hereby incorporated by reference in its entirety.
  • Commercially available silicones that are especially preferred for use in the present invention are RE-29, GE-OSI and SM-8715 available from Dow Corning Corp. (Midland, Mich.).
  • the hydrophobic organo-silicone is preferably added in solution with the anionic dry-strength agent that is fed into the waterbox.
  • silicone sizing agents also can be added in any conventional manner during the papermaking process.
  • the hydrophobic organo-silicone is preferably added in an amount of from about 1 lb/ton (0.5 kg/t) to about 10 lb/ton (4.5 kg/t), and more preferably from about 1 lb/ton (0.5 kg/t) to about 5 lb/ton (2.3 kg/t), and most preferably from about 1 lb/ton to about 3 lb/ton (0.5-1.5 kg/t).
  • Another particular embodiment of the inventive process yields a paper with a bright surface. Surfaces with an L* value of 89 or above can be obtained.
  • This embodiment includes the steps of: (1) preparing a stock suspension of cellulosic fibers, (2) adding a first strength agent to the stock suspension, (3) forming the cellulosic fibers into a substantially uniform web and (4) drying the web into paper and applying a solution containing a second strength agent and a brightener to the surface of the paper.
  • naphthalimides such as the Leucophor® range of optical brighteners available from the Clariant Corporation (Muttenz, Switzerland), and Tinopal® from Ciba Specialty Chemicals (Basel, Switzerland); salts of such compounds including but not limited to alkali metal salts, alkali earth metal salts, transition metal salts, organic salts (e.g., cyclohexyl and citric acid salts), and ammonium salts of such brightening agents; and combinations of one or more of the foregoing agents.
  • the paper and paper products manufactured according to the inventive process can also optionally contain other additives useful in improving one or more properties of the finished paper product, assisting in the process of manufacturing the paper itself, or both.
  • additives are generally characterized as either functional additives or control additives.
  • Functional additives are typically those additives that are use to improve or impart certain specifically desired properties to the final paper product and include but are not limited to brightening agents, dyes, fillers, sizing agents, starches, and adhesives.
  • Control additives are additives incorporated during the process of manufacturing the paper so as to improve the overall process without significantly affecting the physical properties of the paper. Control additives include biocides, retention aids, defoamers, pH control agents, pitch control agents, and drainage aids. Paper and paper products made using the process of the present invention may contain one or more functional additive and/or control additive.
  • Pigments and dyes impart color to paper.
  • Dyes include organic compounds having conjugated double bond systems; azo compounds; metallic azo compounds; anthraquinones; triaryl compounds, such as triarylmethane; quinoline and related compounds; acidic dyes (anionic organic dyes containing sulfonate groups, used with organic cations such as alum); basic dyes (cationic organic dyes containing amine functional groups); and direct dyes (acid-type dyes having high molecular weights and a specific, direct affinity for cellulose); as well as combinations of the above-listed suitable dye compounds.
  • Pigments are finely divided mineral that can be either white or colored. The pigments that are most commonly used in the papermaking industry are clay, calcium carbonate and titanium dioxide.
  • Sizing agents are added to the paper during the manufacturing process to aid in the development of a resistance to penetration of liquids through the paper.
  • Sizing agents can be internal sizing agents or external (surface) sizing agents, and can be used for hard-sizing, slack-sizing, or both methods of sizing.
  • Biocides used in papermaking include thiazoles and thiazolidinones such as isothiozolin, 3-chloroisothiazolidinone, 2-methyl-4-isothiazolin-3-one, 5-chloro-4-isothiazolin-3-one, and 1,2-bensiothiazolin-3-one; quaternary ammonium salts containing alkyl, aryl, or heterocyclic substituents; aldehydes capable of acting as crosslinking agents, such as glutaraldehyde, formaldehyde, and acetaldehyde; alcohols and diols such as 2-bromo-2-nitropropane-1,3-diol (NBG 88, available from Nova BioGenetics, Inc., Atlanta, Ga.); amides, and especially halogenated propionamides such as dibromopropionamide (NBG 20, available from Nova Biogenetics, Inc.); carbamates such as monoalkyl carbamates; chlorine
  • sulfides such as tetramethylthiuram disulfide; salts such as sodium chloride, sodium peroxide, and sodium hydrogen sulfite; sulfones such as phenyl-(2-chloro-2-cyanovinyl)-sulfone and phenyl-(1,2-dichloro-2-cyanovinyl)-sulfone; organic acids such as benzoic acid, ascorbic acid, formic acid, sorbic acid, p-hydroxybenzoic acid, and mixtures thereof; and silicate such as sodium hexafluorosilicate, and mixtures and combinations of the above.
  • sulfides such as tetramethylthiuram disulfide
  • salts such as sodium chloride, sodium peroxide, and sodium hydrogen sulfite
  • sulfones such as phenyl-(2-chloro-2-cyanovinyl)-sulfone and phenyl-(1,2-dichloro-2-
  • Biocides are typically added to the stock suspension in an amount ranging from about 0.1 to about 2.0 lbs/ ton of paper. Optimal usage will depend upon the process variables of a given papermachine (primarily degree of closure and incoming raw materials.
  • Defoamers compounds used to destabilize and break apart existing foams also can be added to the stock suspension, web or paper. Defoamers are typically used to control the foaming that results when air or other entrained gases mixes in with the stock suspension, especially one of the ingredients of the suspension is a surfactant. Defoamers are usually added late in the papermaking process, near to the origination of the foam.
  • Defoamers include but are not limited to aliphatic chemicals such as kerosene; fuel oils; hydrophobic oils, such as vegetable oils; hydrophobic particles such as hydrocarbon or polyethylene waxes; fatty alcohols; fatty acids; fatty esters; hydrophobic silica; ethylenebisstearamide (EBS) suspended in oil, hydrocarbons, or a water emulsion; alkylpolyethers; silicon oils such as polydimethylsiloxanes; oligomers of ethylene oxide or polypropylene oxide attached to an alcohol, amine, or organic acid, the oligomer having a degree of polymerization from about 3 to about 8; as well as combinations of these compounds.
  • EBS ethylenebisstearamide
  • defoamers are added in an amount of from about 0.01 wt. % to about 1.0 wt. %, and more typically from about 0.01 wt. % to about 0.5 wt. %, based upon total weight of the pulp mixture.
  • Additives for the control of pH can also be optionally added to the pulp suspension so as to buffer the overall pH and thereby reduce corrosion of the machines and minimize fungal and bacteria growth.
  • Typical pH control agents include sulfuric acid, carbon dioxide gas bubbled into the slurry, organic buffering agents, and combinations thereof.
  • Formation aids promote the dispersion of fibers throughout the slurry. The addition of such compounds can lead to improvements in product formation, as well as improved headbox consistencies. Formation aids include linear, water soluble polyelectrolytes of high molecular weight, such as anionic polyacrylamides; and natural gums such as locust bean gum, karaya gum, and guar gum, as well as mixtures and combinations thereof. These formation aids are typically used at a volume of from about 1 lb/ton (0.5 kg/t) of stock suspension solution to about 10 lb/ton (4.5 kg/t), and more preferably from about 2 lb/ton (0.9 kg/t) to about 6 lb/ton (2.7 kg/t).
  • the abrasion resistance, indentation resistance, and impact resistance of the paper product produced by the processes of the present invention can be determined by methods and modifications of methods used in such standard industry tests as ASTM D 4977-98b (Standard Test Method for Granule Adhesion to Mineral Surfaced roofing by Abrasion), ASTM D 5420 (Impact Resistance of Flat, Rigid Plastic Specimen by Means of a Striker by a Falling Weight (Gardner Impact), or other suitable abrasion or impact tests.
  • a stock suspension for the outer liner plies of the paper was prepared from recycled wastepaper.
  • the grades of waste paper were flyleaf, sections, and envelope cuttings.
  • This stock suspension was pumped from the machine chest to the fan pump.
  • a metering pump accurately fed the cationic dry-strength agent into a flow of dilution water which was then fed into the liner thick stock prior to the fan pump, The dilution water was used to help mix the dry-strength with the thick stock.
  • the dry-strength agent was fed before the addition of retention aid, ASA, and defoamer.
  • the anionic dry-strength agent was blended in a tank with other ingredients (silicone, optical brightner, water). The solution was mixed until all ingredients were thoroughly dispersed. The solution was pumped to a run tank, which feeds to the calender waterbox with the overflow from the waterbox returning to the run tank to maintain a flooded nip.
  • Paper was produced according to the process described in Example 1, with the addition of an optical brightener, Leucophor® BCW Liquid, T-26 Liquid, or T-4 Liquid (Clariant Corporation, Muttenz, Switzerland) to the solution circulating between the run tank and waterbox in the amounts shown in Table 2.
  • Optical brightness was determined using CIE Lab values, as measured on a profilometer wherein L* refers to the value relating to the lightness/darkness of the color; a* refers to the chromaticity on the red/green axis; and b* refers to chromaticity on the blue/yellow axis.
  • compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and/or processes and in the steps or in the sequence of steps of the methods described herein without departing from the spirit and scope of the invention. More specifically, it will be apparent that certain agents which are chemically related can be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit and scope of the invention.

Abstract

In this papermaking process, a first strength agent is added to a stock suspension containing pulp and optionally other additives prior to its being formed into a web at the wet end of a papermaking machine. The web is then formed and processed into paper. A second strength agent is then applied to the surface of the paper. The strength agents may be selected to have opposite charge.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of provisional application Ser. No. 60/514279, filed Oct. 24, 2003 which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to papermaking and, more particularly, to processes for making paper having improved properties such as abrasion resistance, decreased coefficient of friction, and increased brightness.
  • BACKGROUND OF THE INVENTION
  • The surface strength of manufactured paper products is receiving increased attention as papermaking technology advances and the paper products produced thereby find an ever-growing field of use. Poor surface strength has numerous repercussions on papermaking machinery and on the products themselves. Paper products having a low surface strength can bind or catch on rollers during the manufacturing process causing costly delays and waste of materials. Similarly, paper that is used as a component of a commercial product, such as the backing paper for gypsum wallboard, ideally should have a high surface strength in order to prevent tearing or damage to the core components as well as to prevent catching or binding on conveyor belts during the various steps of product manufacture and transportation. Consequently, it would be highly desirable to be able to manufacture paper having an increased surface strength in order to improve abrasion resistance, especially when the paper is to be used as backing paper in abuse resistant wallboard products.
  • A variety of different solutions have been proposed to solve or minimize the problem of abrasion resistance on the surfaces of paper. For example, U.S. Pat. No. 6,083,586 describes compositions and methods for the manufacture of material sheets having a starch-bound matrix, optionally reinforced with fibers and inorganic mineral filler.
  • U.S. Pat. No. 6,153,040 discloses a process for reducing the rollups in gypsum board panels when the panels are laminated. At least one face of the gypsum board paper is treated with a friction reducing agent, such as a wax or wax emulsion, in order to reduce its coefficient of friction, resulting in the reduction of shear force which develops between the backing paper of a gypsum board panel and the conveyor belts used to carry such a panel.
  • The addition of cationic wet-strength polyamide resins to paper cover sheets, especially polyamide epichlorohydrin resin, is described in U.S. Pat. No. 6,489,040.
  • U.S. Pat. No. 6,517,674 describes a process for manufacturing wear resistant/abrasion resistant paper incorporating spacer- or separator-particles to minimize the amount of surface damage on the paper surface. The particles described and incorporated into the paper are microspheres, such as glass microspheres, and abrasion resistant particles of grit such as aluminum oxide or silicon carbide. According to the '674 patent, the particles are added to the paper fiber pulp at the wet end of the paper machine from a primary or secondary headbox using a curtain slot coater as the application device.
  • In the process taught in U.S. Pat. No. 6,551,457, paper is produced from an aqueous suspension containing cellulosic fibers and optional fillers. After draining the suspension, the obtained paper web is passed through the nip of a paper manufacturing machine. A chemical system comprising a polymeric component and a micro- or nano-particle component is added to the paper suspension/web. The addition of such a mixture of components is said to improve the overall quality and strength of the paper product, such as its coefficient of friction.
  • U.S. Pat. No. 6,562,444 discloses a fiber-cement and gypsum laminate composite building material that contains an adhesive layer interposed between the fiber-cement sheet and the gypsum panel, so as to improve the abrasion resistance of the laminate. The adhesive layer is a polymeric adhesive, such as modified starches.
  • U.S. Pat. No. 6,568,148 discloses a covering element for building surfaces and a method for the production of such an element. The covering element is described as having an upper face with a support layer made up of cellulose in which an abrasion-resistant material, such as corundrum particles, is embedded, thereby providing enhanced abrasion resistance and a lowered coefficient of friction.
  • The literature has also reported several approaches to the problem of abrasion resistance in papers. Zhang, et al. in Wear, Vol. 253 (2002), pp. 1086-1093 (“Effect of Particle Surface Treatment on the Tribological Performance of Epoxy Based Nanocomposites”) describes the preparation of modified nanosilica covalently bonded to polyacrylamide particles, thereby increasing the interfacial interaction between particles and matrix, and resulting in reductions in surface abrasion. Gumagul, et al. described factors affecting the coefficient of friction of paper, and suggested that the coefficient of friction is a function of the amount of extractives present in or on a paper surface (Journal of Applied Polymer Science, Vol. 46 (1992), pp. 805-814; “Factors Affecting the Coefficient of Friction of Paper”). According to the article, the amount and identity of the particles significantly effect the coefficient of friction. Finally, a review describing the effect of fillers on the coefficient of friction in papers was detailed in TAPPI Journal, Vol. 74 (1991), pp.341-347 (“Effect of Fillers on Paper Friction Properties”), describing how the use of various fillers such as kaolin, talc, and synthetic precipitated silica in the paper manufacturing process can effect the coefficient of friction.
  • While it is known that the addition of small, hard abrasion resistant particles (also referred to as “grit”) to the paper, or to resin mixtures which coat the sheet, can enhance the abrasion resistance of papers, paper products and high-pressure laminates, their use is often accompanied by costly side effects. For example, the use of alumina has been reported to give wear resistance of 400 to 600 cycles. However, the use of abrasion resistant particles, even microparticles or nanoparticles, tend to scratch and cause significant damage to highly polished caul plates and rollers used during the paper production process for producing both high pressure and low pressure products. Rollers and caul plates scratched or otherwise damaged through contact with abrasion resistant materials such as described above must either be resurfaced or replaced at a significant cost
  • In view of the foregoing, it will be appreciated that there is a need for abrasion resistant paper, and a process for producing such abrasion resistant paper that avoids damage to the papermaking machinery caused by incorporation of grit into the paper.
  • SUMMARY OF THE INVENTION
  • The present invention provides a process for making paper as well as paper and paper products made by the process. In this papermaking process, a first strength agent is added to the stock suspension containing pulp and optionally other additives prior to its being formed into a web at the wet end of a papermaking machine. The web is then formed and processed into paper. A second strength agent is then applied to the surface of the paper. In this process, the strength agents are selected to have opposite charge (or to be amphoteric). Thus, in one embodiment, for example, the first strength agent is a cationic dry-strength agent and the second strength agent is an anionic dry-strength agent.
  • The process of this invention can be used to make paper that is resistant to abrasion. Embodiments of this process produce paper having other desirable physical properties like high optical brightness and a low friction surface. An optically bright paper can be obtained by applying the second strength agent in a solution that also contains an optical brightener. A paper having a low friction surface can be obtained by including a hydrophobic organo-silicone in the solution that is used to apply the second strength agent.
  • Paper made by the process is useful in a variety of paper products. In particular, the process is useful for making abrasion resistant backing paper for gypsum wallboard.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Where not expressly defined, the terms used in this disclosure are intended to be construed as those skilled in the art would understand them. The following express definitions are consonant with the understanding of those skilled in the art.
  • “Paper”, as used herein, refers to a web of pulp fibers that are formed from an aqueous suspension on a wire or screen and held together at least in part by hydrogen bonding, and which can be made by hand or by machine. Included in this definition are the wide range of matted or felted webs of vegetable fiber (mostly wood) that have been formed on a screen from a water suspension, such as “tree paper” manufactured from wood pulp derived from trees, “plant papers” or “vegetable papers” which include a wide variety of plant fibers (also known as “secondary fibers”), such as straw, flax, and rice fibers, and is broadly referred to as “cellulose-based paper”, and Kraft paper (paper manufactured by the Kraft process). Further, the term paper as used herein is meant to refer to products containing substantially all virgin pulp fibers, substantially all recycled pulp fibers, or both virgin and recycled pulp fibers.
  • “Papermaking machine”, as used herein, refers to any of the papermaking machines known in the art, all of which are suitable for use with the process of the present invention. Such machines include cylinder machines, fourdrinier machines, twin wire forming machines, FC Former machines, and modifications thereof.
  • “Pulp” refers to fibers that are plant based, including but not limited to wood and similar “woody” plants, soy, rice, cotton, straw, flax, abaca, hemp, bagasse, lignin-containing plants, and the like. Such pulps include, but are not limited to, thermomechanical pulps, bleached thermomechanical pulps, chemi-thermomechanical pulps (CTMP), bleached chemi-thermomechanical pulps, and deinked bleached thermomechanical pulps.
  • “Sheet”, as used herein, is intended to include any substantially flat, corrugated, curved, bent, or textured sheet made using the compositions and methods described herein. The sheets can have greatly varying thickness depending on the particular application for which the sheet is intended. That is, the sheets can be as thin as about 0.01 mm and as thick as 1 cm or greater, where strength, durability, and/or bulk are important considerations depending upon the end use of the paper sheet.
  • “Stock suspension”, as used herein, refers to a mixture, or slurry, of pulp, fillers, water, and other papermaking materials. As used herein, the term “stock suspension” is meant to be equivalent to the term “pulp slurry”.
  • “Strength agent” refers to compounds that are incorporated into paper in order to increase its resistance to tearing. “Wet-strength agents” are agents that make paper more resistant to tearing when the paper is wet. “Dry-strength agents” are agents that make the paper more resistant to tearing when the paper is dry, but are less effective at strengthening wet paper than wet-strength agents are. Dry-strength agents can be cationic, anionic or amphoteric in nature.
  • “Web”, as used herein, refers to the continuous mat of fibers that is deposited on the wire or felt, drained, pressed and dried to form paper.
  • The present invention provides a process for making paper. The paper and paper products made by the process may exhibit improved surface strength, abrasion resistant, a low friction surface and/or a high optical brightness depending upon the particular embodiment of the process that is followed.
  • The process of the present invention can be practiced on conventional papermaking equipment. Although papermaking equipment varies in operation and mechanical design, the processes by which paper is made on different equipment contain common stages. Papermaking includes a pulping stage, stock preparation stage, a wet end stage and a dry end stage.
  • In pulping, individual cellulose fibers are liberated from a source of cellulose such as wood either by mechanical or chemical action, or both.
  • The liberated fibers, or pulp, is suspended in water in the stock preparation stage. Additives such as brightening agents, dyes, pigments, fillers, antimicrobial agents, defoamers, pH control agents and drainage aids also may be added to the stock at this stage. As the term is used in this disclosure “stock preparation” includes such operations as dilution, screening and cleaning of the stock suspension that may occur prior to forming of the web. In particular, it includes feeding the pulp stream to a fan pump from a machine chest.
  • The wet end stage commences after preparation of the stock suspension. For purposes of this disclosure, the wet end stage commences when the pulp first contacts a wire or felt in a papermaking machine. The wet end stage further includes such later operations as forming of the web, draining of the web and consolidation of the web (pressing).
  • In the dry end stage, the web is dried and may be subjected to additional processing like size pressing, calendering, spray coating of surface modifiers, printing, cutting, corrugating and the like.
  • Of relevance to the present invention, a size press is a device for applying a solution to the paper. It includes a pair of squeeze rolls which are moistened with the solution sought to be applied. The size press typically is situated between drying sections to allow removal of excess moisture. Size presses are typically used to apply surface sizing to improve the water resistance of the paper and improve ink absorption.
  • A calender stack is a series of solid rolls, usually made of steel or iron through which the dry paper is passed in a serpentine manner. Pressure applied to the paper as it passes between rolls in the calender stack can improve surface smoothness, increase gloss, make the caliper of the paper more uniform and decrease porosity. Of relevance to the present invention, a nip (or multiple nips) between calender rolls may be flooded in a “waterbox” application. The calender waterbox may be used to apply coatings to the paper for a variety of purposes, such as to increase water resistance, reduce curl and improve gloss.
  • In addition to a size press and calender waterbox, the dried paper can be coated by spray coating using a sprayboom.
  • Three general types of papermaking machines that are routinely used in the papermaking industry are differentiated by the way that they form the web. In a fourdrinier papermaking machine, the web is formed by delivering a ribbon of stock suspension to a porous belt known to those skilled in the art as the “wire” from a headbox. The headbox is a tank positioned above or beside the wire. The wire is drawn between a “breast roll” and a “couch roll” and is typically driven by the couch roll. The headbox is typically positioned above the wire near the breastroll. The web is delivered from the headbox to the wire through a narrow opening in the headbox that is known to those skilled in the art as the “slice.” As the wire travels, the web is drawn towards the couch roll. While in transit, water drains from the pulp through the porous wire under the effect of gravity and typically with the assistance of tube rolls, hydrofoils and/or suction boxes. From the wire, the web is passed to the pressing section of the paper machine. The web typically has a consistency of from about 12% to about 25% before pressing. In the pressing section, the web is squeezed between press rolls to eliminate more water. From the pressing section, the partially dried web is passed to the drying section. There, the web is dried, typically to a moisture content of from about 4% to about 12% by passing over heated dryer cans, although many papermachines in the gypsum industry dry to 0% to about 1% moisture content for greater dimensional stability.
  • Another common papermaking machine is the cylinder machine. The stock suspension is fed into one or more vats. In each vat, there is a horizontally disposed cylinder having a wire around its circumference. The cylinder is partially immersed in the stock suspension. The cylinder is rotated. As it does so, the wire picks up fibers, carries them out of the stock suspension and delivers them to a “pick-up felt.” The pick-up felt is a porous belt that travels synchronously with the cylinder. In a multiple cylinder machine, multi-ply paper can be made by supplying a different stock suspension to each vat. The web is then transferred from the pickup felt to the pressing section and then to the drying section.
  • In another common design, the stock suspension is sprayed between two converging wires. Such twin wire formers accelerate the removal of water making them well suited for high speed machines.
  • It has been found that adding a cationic dry-strength agent prior to the wet stage of the papermaking process and an anionic dry-strength agent during the dry stage of the papermaking process yields paper having an increased surface strength.
  • Accordingly, the present invention provides a process for making paper and paper products comprising the steps of (1) preparing a stock suspension of cellulosic fibers, (2) adding a first strength agent to the stock suspension, (3) forming the cellulosic fibers into a substantially uniform web and (4) drying the web into paper and applying a second strength agent to the surface of the paper. The first strength agent is either a cationic dry-strength agent, an amphoteric dry-strength agent, or a cationic wet-strength agent, with cationic dry-strength agents being preferred. The second strength agent is either an anionic dry-strength agent or an amphoteric dry-strength agent, with anionic dry-strength agents being preferred.
  • Cationic dry-strength agents useful in practice of the present invention include, but are not limited to, cationic polyacrylamides, natural polymers, modified natural polymers, synthetic polymers, starches modified to have quaternary ammonium functional groups, celluloses, natural gums, polyvinyl alcohol, and any number of commercially available compounds having dipolar functional groups that allow for the formation of hydrogen bonds. Preferred cationic dry-strength agents are cationic polyacrylamides and cationic synthetic polymers. As those skilled in the art appreciate, a cationic polyacrylamide can be made by co-polymerization of acrylamide with another acrylic monomer having a quaternary ammonium substituent thereon, such as (CH3)3N+CH2CH2OC(O)CHCH2. An example of a commercially available cationic polyacrylamide is Nalco 997, available from Nalco Chemical Company (Naperville, Ill.).
  • Anionic dry-strength agents useful in practice of the present invention include, but are not limited to, anionic polyacrylamides, natural starches, and carboxymethylcellulose (CMC). The most preferred anionic dry-strength agents are anionic polyacrylamides. As those skilled in the art appreciate, an anionic polyacrylamide can be made by co-polymerization of acrylamide with an anionic acrylic monomer such as sodium acrylate. An example of a commercially available anionic polyacrylamide is Nalco 1044, available from Nalco Chemical Company (Naperville, Ill.).
  • In an alternative embodiment, either the cationic dry-strength agent or the anionic dry-strength agent, or both, is substituted by an amphoteric dry-strength agent, such as amphoteric starches. Amphoteric compounds useful in practice of the present invention have a ratio of anionic groups to cationic groups of from about 0.1:1.0 to about 1.0:1.0. Preferably, the amphoteric compounds have a ratio of anionic groups to cationic groups of about 1.0:1.0. For example, ratios of anionic groups to cationic groups in amphoteric compounds suitable for use with the present disclosure include ratios of about 0.1:1.0, about 0.2:1.0, about 0.3:1.0, about 0.4:1.0, about 0.5:1.0, about 0.5:1.0, about 0.6:1.0, about 0.7:1.0, about 0.8:1.0, about 0.9:1.0, about 1.0:1.0, and ratios that fall between any two of these ratios.
  • In yet another alternative embodiment, the cationic dry-strength agent is substituted by a cationic wet-strength agent. Wet-strength agents are typically thermosetting resins that are added to the stock suspension, web or paper in order to impart wet-strength to the paper product. They also often contribute to the dry-strength of the paper. Wet-strength agents are often cationic thermosetting resins, and are typically added to the stock prior to being sent to the paper machine. By thermosetting, it is meant that upon drying and/or heating, the wet-strength resins form a substantially insoluble, and water-resistant, network which can withstand wetting of the paper, thus contributing to the wet-strength of the paper. Generally speaking, wet-strength agents are polymeric, polar enough to be soluble or substantially dispersible in water, cationic so as to be substantive to pulp, and reactive/thermosetting. The types of wet-strength agents useful in the practice of the present invention include acid-curing resins, neutral to acid curing resins, and neutral to alkaline curing resins. Useful acid-curing, or formaldehyde-based, resins include urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and other resins which can be used at a system pH between about pH 4 and pH 5. Neutral to acid curing resins that are useful as wet-strength agents in the practice of the present invention include dialdehyde starch (DAS), polyacrylamide-glyoxal (PAMG) resins, and aldehyde-modified starches. Neutral/alkaline curing resins that are useful as wet-strength agents polyamide-epichlorohydrin resin (PAE), resins containing at least one epoxide functional group, and derivatives of the reaction of epichlorohydrin with a polyamine resin.
  • The cationic, anionic and amphoteric dry-strength agents, as well as the wet-strength agents, preferably have a specific gravity of from about 1.00 to about 1.20, and more preferably a specific gravity of from about 1.01 to about 1.10. Most preferably, the specific gravity is from about 1.02 to about 1.08. The dry-strength agents preferably have a viscosity of from about 1,000 cps (1 Pa-s) to about 15,000 cps (15 Pa-s), and more preferably of from about 2,000 cps (2 Pa-s) to about 14,000 cps (14 Pa-s).
  • The cationic dry-strength agents added prior to the wet end (e.g., fed to the liner thick stock) can be added in an amount of from about 1 lbs/ton (of total paper) (0.5 kg/t) to about 40 lbs/t (9.1 kg/t), and more preferably from about 5 lbs/ton (2.3 kg/t) to about 15 lbs/t (6.8 kg/t). For example, the cationic dry-strength agents added prior to the wet end of the manufacturing process can be added in an amount of about 1 lb/t (0.5 kg/t), about 2 lb/t (0.9 kg/t), about 3 lb/t (1.4 kg/t), about 4 lb/t (1.8 kg/t), about 5 lb/t (2.3 kg/t), about 6 lb/t (2.7 kg/t), about 7 lb/t (3.2 kg/t), about 8 lb/t (3.6 kg/t), about 9 lb/t (4.1 kg/t), about 10 lb/t (4.5 kg/t), about 15 lb/t (6.8 kg/t) and about 20 lb/t (9.1 kg/t), as well as in ranges between any two of these values. When the cationic dry-strength agent is Nalco 997, it is preferably added at a rate of about 10 lbs/ton dry.
  • The anionic dry-strength agents are added at the dry end (e.g., in the calender waterbox) in an amount of from about 5 lbs/ton (of liner plies) (2.3 kg/t) to about 25 lbs/ton (11.3 kg/t), and more preferably from about 6 lbs/t (2.7 kg/t) to about 20 lbs/ton (9.1 kg/t). The dry-strength agents added at the dry end of the manufacturing process can be added in an amount of from about 5 lb/t (2.3 kg/t), about 6 lb/t (2.7 kg/t), about 7 lb/t (3.2 kg/t), about 8 lb/t (3.6 kg/t), about 9 lb/t (4.1 kg/t), about 10 lb/t (4.5 kg/t), about 15 lb/t (6.8 kg/t), about 20 lb/t (9.1 kg/t), and about 25 lb/t (11.3 kg/t), as well as in ranges between any two of these values. When the anionic dry-strength agent is Nalco 1044, it is preferably added at a rate of about 2 lbs/ton dry.
  • The dry-strength agents can be added in one portion, or in increments over a predetermined period of time. For example, the cationic dry-strength agent can be added prior to the wet end of the papermaking machine in substantially one portion, or charge. Preferably, the cationic dry-strength agent is added to the wet end incrementally in predetermined amounts over a period of time.
  • A typical process for the manufacture of a paper product having increased surface strength in accordance with the present invention is as follows. A suspension of pulp and fibers is prepared and additives, as necessary, are added in. A cationic dry-strength agent or agents can be added at this point. The pulp is ‘formed’, or applied to the wire at a consistency suitable to give good formation. That is, the stock is applied such that an even distribution of fibers results, allowing for the generation of a paper product of uniform thickness. This is accomplished by circulating the stock suspension into a headbox so that the stock is delivered as a substantially uniform web of pulp onto the wire through the slice at a velocity substantially equivalent to that of the wire. An optional secondary headbox can be provided to deliver a top coat of higher-quality fiber onto the primary paper product sheet as it moves down the production line.
  • Following deposition of the stock suspension from the headbox onto the moving wire, the web is carried over rolls (such as breast rolls, table rolls, and couch rolls) and suction boxes, and off the table. As the paper web is transported on the wire, the sheet loses water by drainage and through the suction boxes, and optionally through foils, lovacs, vacuum units, and the like.
  • Water is further removed from the web by pressing and drying. Drying can be accomplished through the use of drying devices such as dryer cans (hollow, revolving, steam-filled drums), dryer felts, steam control systems, pocket ventilation systems, dryer hoods, Yankee dryers drums, impulse drying, combinations thereof, and the like. The choice of type of drying means will generally depend upon the machine and/or the type of paper product being manufactured. Sizing, defoamers, and the like can be added using one or more size presses located between dryer sections.
  • The paper then passes through a waterbox-equipped calender stack, where an anionic dry-strength agent or agents are added. Optionally, a hydrophobic organo-silicone compound in combination with the anionic dry-strength agent and an optical brightener are fed into the waterbox, and are consequently applied to the paper as it passes through the calender stack waterbox.
  • As further illustrated in Example 1, which follows, paper and paper products made by the process of this invention exhibit improved surface strength. Normal gypsum facing paper will lose ˜0.009″ in 100 to 200 cycles of abrasion while paper made according to our process loses only 0.000 to 0.005″ after 1000 cycles. Surface strength was measured using a modification of the procedure specified in ASTM D 4977-98b.
  • One particular embodiment of the inventive process yields a paper with a surface having a low coefficient of friction. This embodiment includes the steps of: (1) preparing a stock suspension of cellulosic fibers, (2) adding a first strength agent to the stock suspension, (3) forming the cellulosic fibers into a substantially uniform web and (4) drying the web into paper and applying a solution containing a second strength agent and a hydrophobic organo-silicone compound to the surface of the paper.
  • Preferred hydrophobic organo-silicones are described in U.S. Pat. No. 3,389,042, the disclosure of which is hereby incorporated by reference in its entirety. Commercially available silicones that are especially preferred for use in the present invention are RE-29, GE-OSI and SM-8715 available from Dow Corning Corp. (Midland, Mich.). The hydrophobic organo-silicone is preferably added in solution with the anionic dry-strength agent that is fed into the waterbox. Previously, due to the high cost of silicone, surface sizing was done prior to a silicone coating, and its use as a sizing agent was deterred by its cost (Duraiswamy, C, et al., “Effect of Starch Type on the Silicone Hold-Out of Release Papers, 2000 Coating Conference Proceedings”, TAPPI Journal, 2001, Vol. 84(3)). However, it has been found that addition of silicone in combination with an anionic dry-strength agent in the waterbox creates a synergistic effect, wherein the silicone imparts some sizing while the dry-strength agent enhances the strength of the surface of the paper product. Of course, silicone sizing agents also can be added in any conventional manner during the papermaking process.
  • The hydrophobic organo-silicone is preferably added in an amount of from about 1 lb/ton (0.5 kg/t) to about 10 lb/ton (4.5 kg/t), and more preferably from about 1 lb/ton (0.5 kg/t) to about 5 lb/ton (2.3 kg/t), and most preferably from about 1 lb/ton to about 3 lb/ton (0.5-1.5 kg/t).
  • Another particular embodiment of the inventive process yields a paper with a bright surface. Surfaces with an L* value of 89 or above can be obtained. This embodiment includes the steps of: (1) preparing a stock suspension of cellulosic fibers, (2) adding a first strength agent to the stock suspension, (3) forming the cellulosic fibers into a substantially uniform web and (4) drying the web into paper and applying a solution containing a second strength agent and a brightener to the surface of the paper. Compounds useful as brightening agents in practice of the present invention include but are not limited to azoles; biphenyls; chelating agents such as ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), hydroxyethylethylenediaminetriacetic acid (HEDTA) and nitrilotriacetic acid (NTA) and other compounds that are capable of chelating heavy metals that catalyze color-forming reactions. Useful optical brighteners further include coumarins; furans; ionic brighteners, including anionic, cationic, and anionic (neutral) compounds, such as the Eccobrite® and Eccowhite® compounds available from Eastern Color & Chemical Co. (Providence, R.I.); naphthalimides; pyrazenes; stilbenes, such as the Leucophor® range of optical brighteners available from the Clariant Corporation (Muttenz, Switzerland), and Tinopal® from Ciba Specialty Chemicals (Basel, Switzerland); salts of such compounds including but not limited to alkali metal salts, alkali earth metal salts, transition metal salts, organic salts (e.g., cyclohexyl and citric acid salts), and ammonium salts of such brightening agents; and combinations of one or more of the foregoing agents.
  • Preferably, the brightening agent is added to the paper in an amount of from about 0.01 wt. % to about 90 wt. %. More preferably, paper contains from about 0.1 wt. % to about 50 wt. % brightening agent. For example, the optical brightener can be added in an amount of from about 0.1 lbs/1000 sq. ft of paper to about 0.5 lbs/1000 sq. ft of paper. In accordance with this particular embodiment of the inventive process, the brightener is added to the solution of the second strength agent and applied simultaneously therewith to the paper during the dry stage of the papermaking process. Of course, brightening agents also can be added in any conventional manner during the papermaking process.
  • The paper and paper products manufactured according to the inventive process can also optionally contain other additives useful in improving one or more properties of the finished paper product, assisting in the process of manufacturing the paper itself, or both. These additives are generally characterized as either functional additives or control additives.
  • Functional additives are typically those additives that are use to improve or impart certain specifically desired properties to the final paper product and include but are not limited to brightening agents, dyes, fillers, sizing agents, starches, and adhesives. Control additives, on the other hand, are additives incorporated during the process of manufacturing the paper so as to improve the overall process without significantly affecting the physical properties of the paper. Control additives include biocides, retention aids, defoamers, pH control agents, pitch control agents, and drainage aids. Paper and paper products made using the process of the present invention may contain one or more functional additive and/or control additive.
  • Pigments and dyes impart color to paper. Dyes include organic compounds having conjugated double bond systems; azo compounds; metallic azo compounds; anthraquinones; triaryl compounds, such as triarylmethane; quinoline and related compounds; acidic dyes (anionic organic dyes containing sulfonate groups, used with organic cations such as alum); basic dyes (cationic organic dyes containing amine functional groups); and direct dyes (acid-type dyes having high molecular weights and a specific, direct affinity for cellulose); as well as combinations of the above-listed suitable dye compounds. Pigments are finely divided mineral that can be either white or colored. The pigments that are most commonly used in the papermaking industry are clay, calcium carbonate and titanium dioxide.
  • Fillers, are added to paper to increase opacity and brightness. Fillers include but are not limited to calcium carbonate (calcite); precipitated calcium carbonate (PCC); calcium sulfate (including the various hydrated forms); calcium aluminate; zinc oxides; magnesium silicates, such as talc; titanium dioxide (TiO2), such as anatase or rutile; clay, or kaolin, consisting of hydrated SiO2 and Al2O3; synthetic clay; mica; vermiculite; inorganic aggregates; perlite; sand; gravel; sandstone; glass beads; aeorgels; xerogels; seagel; fly ash; alumina; microspheres; hollow glass spheres; porous ceramic spheres; cork; seeds; lightweight polymers; xonotlite (a crystalline calcium silicate gel); pumice; exfoliated rock; waste concrete products; partially hydrated or unhydrated hydraulic cement particles; and diatomaceous earth, as well as combinations of such compounds.
  • The average diameter of the filler particles is typically less than about 5 microns, although sizes up to 200 microns can be used depending upon the thickness of the finished paper sheet. Generally, however, the average particle size diameter of the filler particles is typically from about 0.001 microns to about 100 microns, and more typically from about 0.01 microns to about 50 microns in diameter.
  • Fillers are typically added to the pulp suspension in amounts of from about 1 wt. % to about 70 wt. %, and more typically from about 5 wt. % to about 40 wt. %, and most typically from about 10 wt. % to about 30 wt. %, based on total dry weight of the starting pulp stock.
  • Fillers typically have an index of refraction from about 1.50 to about 3.00, and more typically from about 1.53 to about 2.80. Indices of refraction of fillers include about 1.50, about 1.51, about 1.52, about 1.53, about 1.54, about 1.55, about 1.56, about 1.57, about 1.58, about 1.59, about 1.60, about 1.61, about 1.62, about 1.63, about 1.64, about 1.65, about 1.70, about 1.75, about 1.80, about 1.90, about 2.00, about 2.10, about 2.20, about 2.30, about 2.40, about 2.50, about 2.60, about 2.70, about 2.80, about 2.90, about 3.00, and ranges between any two of these values.
  • Fillers typically have a specific gravity of from about 1.50 to about 4.5, and more typically from about 1.50 to about 4.2, and most typically from about 2.50 to about 2.70.
  • Sizing agents are added to the paper during the manufacturing process to aid in the development of a resistance to penetration of liquids through the paper. Sizing agents can be internal sizing agents or external (surface) sizing agents, and can be used for hard-sizing, slack-sizing, or both methods of sizing. More specifically, sizing agents include rosin; rosin precipitated with alum (Al2(SO4)3); abietic acid and abietic acid homologues such as neoabietic acid and levopimaric acid; stearic acid and stearic acid derivatives; ammonium zirconium carbonate; silicone and silicone-containing compounds, such as RE-29 available from GE-OSI and SM-8715, available from Dow Corning Corporation (Midland, Mich.); fluorochemicals of the general structure CF3(CF2)nR, wherein R is anionic, cationic or another functional group, such as Gortex™; alkylketene dimer (AKD), such as Aquapel® 364, Aquapel® 752, Hercon® 70, Hercon® 79, Precis® 787, Precis® 2000, and Precis® 3000, all of which are commercially available from Hercules, Incorporated (Willmington, Del.); and alkyl succinic anhydride (ASA); emulsions of ASA or AKD with cationic starch; ASA incorporating alum; starch; hydroxymethyl starch; carboxymethylcellulose (CMC); polyvinyl alcohol; methyl cellulose; alginates; waxes; wax emulsions; and combinations of such sizing agents.
  • Starch has many uses in papermaking. For example, it functions as a retention agent, dry-strength agent, surface sizing agent. Starches include but are not limited to amylose; amylopectin; starches containing various amounts of amylose and amylopectin, such as 25% amylose and 75% amylopectin (corn starch) and 20% amylose and 80% amylopectin (potato starch); enzymatically treated starches; hydrolyzed starches; heated starches, also known in the art as “pasted starches”; cationic starches, such as those resulting from the reaction of a starch with a tertiary amine to form a quaternary ammonium salt; anionic starches; ampholytic starches (containing both cationic and anionic functionalities); cellulose and cellulose derived compounds; and combinations of these compounds.
  • Microorganisms such as bacteria, algae, yeasts, and fungi are a common problem associated with the papermaking process, often occurring around the paper manufacturing machines themselves and producing slimes that can result in pitted paper products, corrosion damage to the machines, or even breaks in the paper web. The growth of microorganism can be inhibited with biocides. Biocides used in papermaking include thiazoles and thiazolidinones such as isothiozolin, 3-chloroisothiazolidinone, 2-methyl-4-isothiazolin-3-one, 5-chloro-4-isothiazolin-3-one, and 1,2-bensiothiazolin-3-one; quaternary ammonium salts containing alkyl, aryl, or heterocyclic substituents; aldehydes capable of acting as crosslinking agents, such as glutaraldehyde, formaldehyde, and acetaldehyde; alcohols and diols such as 2-bromo-2-nitropropane-1,3-diol (NBG 88, available from Nova BioGenetics, Inc., Atlanta, Ga.); amides, and especially halogenated propionamides such as dibromopropionamide (NBG 20, available from Nova Biogenetics, Inc.); carbamates such as monoalkyl carbamates; chlorine compounds, including both inorganic and organic chemicals that either contain chlorine or can split off chlorine and are commonly employed in the paper industry, including but not limited to alkali hypochloride, alkali earth hypochloride, chlorine, and chlorine dioxides; cyanates such as methylene bis-thiocyanate and disodium cyanodithioimido carbonate; gases such as ozone or chlorine which are capable of being bubbled into a slurry of pulp; peroxides such as hydrogen peroxide (e.g. 35% solution); sulfides such as tetramethylthiuram disulfide; salts such as sodium chloride, sodium peroxide, and sodium hydrogen sulfite; sulfones such as phenyl-(2-chloro-2-cyanovinyl)-sulfone and phenyl-(1,2-dichloro-2-cyanovinyl)-sulfone; organic acids such as benzoic acid, ascorbic acid, formic acid, sorbic acid, p-hydroxybenzoic acid, and mixtures thereof; and silicate such as sodium hexafluorosilicate, and mixtures and combinations of the above.
  • Biocides are typically added to the stock suspension in an amount ranging from about 0.1 to about 2.0 lbs/ ton of paper. Optimal usage will depend upon the process variables of a given papermachine (primarily degree of closure and incoming raw materials.
  • Retention and drainage aids affect the amount of pulp that is retained on the wire and hence incorporated into the paper. Retention and drainage aids include polyamines, such as polyethylenimine (PEI) and poly(diallyldimethylammonium chloride (DADMAC); high molecular weight polyacrylamides (e.g., those with a molecular weight greater than 500,000); polyethyleneoxide (PEO); starch; gums; alum; aluminum-containing polymers; wood fibers; and dual component systems containing both cationic and anionic agents, such as polyethyleneimine (PEI) and anionic polyacrylamide, or cationic starch or PAM with colloidal silica, as well as combinations of such compounds.
  • Defoamers, compounds used to destabilize and break apart existing foams also can be added to the stock suspension, web or paper. Defoamers are typically used to control the foaming that results when air or other entrained gases mixes in with the stock suspension, especially one of the ingredients of the suspension is a surfactant. Defoamers are usually added late in the papermaking process, near to the origination of the foam. Defoamers include but are not limited to aliphatic chemicals such as kerosene; fuel oils; hydrophobic oils, such as vegetable oils; hydrophobic particles such as hydrocarbon or polyethylene waxes; fatty alcohols; fatty acids; fatty esters; hydrophobic silica; ethylenebisstearamide (EBS) suspended in oil, hydrocarbons, or a water emulsion; alkylpolyethers; silicon oils such as polydimethylsiloxanes; oligomers of ethylene oxide or polypropylene oxide attached to an alcohol, amine, or organic acid, the oligomer having a degree of polymerization from about 3 to about 8; as well as combinations of these compounds. Typically such defoamers are added in an amount of from about 0.01 wt. % to about 1.0 wt. %, and more typically from about 0.01 wt. % to about 0.5 wt. %, based upon total weight of the pulp mixture.
  • Additives for the control of pH can also be optionally added to the pulp suspension so as to buffer the overall pH and thereby reduce corrosion of the machines and minimize fungal and bacteria growth. Typical pH control agents include sulfuric acid, carbon dioxide gas bubbled into the slurry, organic buffering agents, and combinations thereof.
  • Formation aids promote the dispersion of fibers throughout the slurry. The addition of such compounds can lead to improvements in product formation, as well as improved headbox consistencies. Formation aids include linear, water soluble polyelectrolytes of high molecular weight, such as anionic polyacrylamides; and natural gums such as locust bean gum, karaya gum, and guar gum, as well as mixtures and combinations thereof. These formation aids are typically used at a volume of from about 1 lb/ton (0.5 kg/t) of stock suspension solution to about 10 lb/ton (4.5 kg/t), and more preferably from about 2 lb/ton (0.9 kg/t) to about 6 lb/ton (2.7 kg/t).
  • Having thus described the present invention with reference to certain preferred embodiments, it is further illustrated by the examples which follow. These examples are provided for illustrative purposes only and are not intended to limit in any way the invention which is defined by the claims which follow the examples.
  • EXAMPLES
  • The abrasion resistance, indentation resistance, and impact resistance of the paper product produced by the processes of the present invention can be determined by methods and modifications of methods used in such standard industry tests as ASTM D 4977-98b (Standard Test Method for Granule Adhesion to Mineral Surfaced Roofing by Abrasion), ASTM D 5420 (Impact Resistance of Flat, Rigid Plastic Specimen by Means of a Striker by a Falling Weight (Gardner Impact), or other suitable abrasion or impact tests.
  • Example 1
  • A stock suspension for the outer liner plies of the paper was prepared from recycled wastepaper. The grades of waste paper were flyleaf, sections, and envelope cuttings. This stock suspension was pumped from the machine chest to the fan pump. A metering pump accurately fed the cationic dry-strength agent into a flow of dilution water which was then fed into the liner thick stock prior to the fan pump, The dilution water was used to help mix the dry-strength with the thick stock. The dry-strength agent was fed before the addition of retention aid, ASA, and defoamer.
  • The anionic dry-strength agent was blended in a tank with other ingredients (silicone, optical brightner, water). The solution was mixed until all ingredients were thoroughly dispersed. The solution was pumped to a run tank, which feeds to the calender waterbox with the overflow from the waterbox returning to the run tank to maintain a flooded nip.
    TABLE 1
    Dry-strength Dry-strength Abrasion Test Results4
    Agent Added Agent Added Caliper
    Prior to Wet end2 at Dry end3 Number Reduction
    Run (lb/ton) (lb/ton) of Cycles (inches)
    control1 0 0 200 0.009
    1 10.0 6.5 1000 0.001
    2 10.0 6.5 1000 0.001
    3 10.0 6.5 1000 0.001
    4 10.0 6.5 1000 0.002

    1Ordinary gypsum board cover sheet.

    2The amount of cationic dry-strength agent added to the stock prior to the wet end of the process.

    3The amount of anionic dry-strength agent added to the stock at the dry end of the process.

    4The abrasion test was performed following generally the procedure of ASTM D4977-98b.
  • As can be seen in Table 1, gypsum board facing paper made according to the process of the invention lost only 0.001 to 0.002 inches of surface material after 1000 cycles of abrasion. In contrast, normal gypsum facing paper will lose about 0.009 inches of surface material after only two hundred cycles. Thus, this example illustrates the improvement in surface strength that can be realized with the process.
  • Example 2
  • Paper was produced according to the process described in Example 1, with the addition of an optical brightener, Leucophor® BCW Liquid, T-26 Liquid, or T-4 Liquid (Clariant Corporation, Muttenz, Switzerland) to the solution circulating between the run tank and waterbox in the amounts shown in Table 2. Optical brightness was determined using CIE Lab values, as measured on a profilometer wherein L* refers to the value relating to the lightness/darkness of the color; a* refers to the chromaticity on the red/green axis; and b* refers to chromaticity on the blue/yellow axis.
    TABLE 2
    Quantity of Optical
    Brightener
    Example lbs/1000 sq. ft Gal/batch L* b* a*
    Control 0.0 0.0 87.55 −0.04 3.87
    1 0.1 15.0 88.23 −0.08 3.05
    2 0.2 30.0 88.57 0.09 2.30
    3 0.3 40.0 88.69 −0.02 2.03
    4 0.2 30.0 89.37 −0.10 1.81
    5 0.2 30.0 89.47 −0.02 1.84
    6 0.2 30.0 89.64 −0.01 1.74
  • As can be seen in Table 2, the addition of an optical brightener in the waterbox, along with the anionic dry-strength agent yielded a paper product having a marked improvement in optical brightness. While the control paper product contained no optical brightener and had a brightness (L*) of 87.55, the addition of an optical brightener such as Leucophor in the waterbox (e.g., run 6) results in a markedly brighter (L*=89.64 , a* ˜0 and b* is approaching 0) paper product. That is, L* is approaching 100 (ideal), while a* and b* are both approaching zero, the point of ideal optical brightness (pure white).
  • While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and/or processes and in the steps or in the sequence of steps of the methods described herein without departing from the spirit and scope of the invention. More specifically, it will be apparent that certain agents which are chemically related can be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit and scope of the invention.

Claims (28)

1. A process for making paper and paper products comprising:
a) a stock preparation stage wherein a stock suspension of cellulosic fibers is prepared,
b) adding a first strength agent selected from the group consisting of cationic dry-strength agents, amphoteric dry-strength agents and cationic wet-strength agents to the stock suspension,
c) a wet end stage wherein the cellulosic fibers are formed into a substantially uniform web, and
d) a dry end stage wherein the web is dried into paper and a second strength agent selected from the group consisting of anionic dry-strength agents and amphoteric strength agents is applied to the surface of the paper.
2. The process of claim 1 wherein the first strength agent is a cationic dry-strength agent.
3. The process of claim 2 wherein the cationic dry-strength agent is selected from the group consisting of cationic polyacrylamides, cationic natural polymers, cationic modified natural polymers, cationic synthetic polymers, starches modified to have quaternary ammonium functional groups, cationic celluloses, cationic natural gums, cationic polyvinyl alcohol adducts, and combinations thereof.
4. The process of claim 3 wherein the cationic dry-strength agent is a cationic polyacrylamide.
5. The process of claim 2 wherein the cationic dry-strength agent is added in an amount of from about 1 lb/t (0.5 kg/t) to about 20 lb/t (9.1 kg/t).
6. The process of claim 2 wherein the cationic dry-strength agent has a viscosity from about 1,000 cps (1 Pa-s) to about 15,000 cps (15 Pa-s).
7. The process of claim 2 wherein the cationic dry-strength agent has a specific gravity of from about 1.00 to about 1.20.
8. The process of claim 1 wherein the first strength agent is a cationic wet-strength agent.
9. The process of claim 8 wherein the cationic wet-strength agent is selected from the group consisting of cationic acid curing resins, cationic neutral to acid curing resins, and cationic neutral to alkaline curing resins.
10. The process of claim 8 wherein the cationic wet-strength agent is added in an amount of from about 1 lb/t (0.5 kg/t) to about 20 lb/t (9.1 kg/t).
11. The process of claim 1 wherein the second strength agent is an anionic dry-strength agent.
12. The process of claim 11 wherein the anionic dry-strength agent is selected from the group consisting of anionic polyacrylamides, anionic natural starches, and anionic carboxymethylcellulose.
13. The process of claim 12 wherein the anionic dry-strength agent is an anionic polyacrylamide.
14. The process of claim 11 wherein the anionic dry-strength agent is added in an amount of from about 5 lbs/t (2.3 kg/t) to about 25 lbs/t (11.3 kg/t).
15. The process of claim 11 wherein the anionic dry-strength agent has a specific gravity from about 1.00 to about 1.20.
16. The process of claim 11 wherein the anionic dry-strength agent has a viscosity from about 1,000 cps (1 Pa-s) to about 15,000 cps (15 Pa-s).
17. The process of claim 1 wherein the second strength agent is applied to the surface of the paper by a technique selected from the group consisting of:
a) immersing the paper in a solution of the second strength agent in a calender waterbox,
b) applying a solution of the second strength agent to the paper with a size press, and
c) spraying a solution of the second strength agent on the paper using a sprayboom.
18. The process of claim 17 wherein the solution of the second dry-strength agent is applied to the paper in a calender waterbox.
19. The process of claim 17 wherein the solution further contains at least one optical brightener.
20. The process of claim 19 wherein the at least one optical brightener is selected from the group consisting of azoles, biphenyls, chelating agents, coumarins, furans, ionic brighteners, naphthalimides, pyrazenes, stilbenes, tetrasulfonated stilbenes, hexasulfonated stilbenes, salts thereof, and combinations thereof.
21. The process of claim 19 wherein the at least one optical brightener is added in an amount of from about 0.1 lbs/MSF to about 0.5 lbs/1000 square feed.
22. The process of claim 19 wherein the paper product has an optical brightness with a lightness value, L*, greater than about 0.89 after application of the solution.
23. The process of claim 1 further comprising adding at least one biocide to the stock suspension.
24. The process of claim 17 wherein the solution further contains at least one hydrophobic organo-silicone.
25. Paper made by the process of claim 1.
26. The process of claim 1 further comprising incorporating the paper into a paper product.
27. A paper product made by the process of claim 26.
28. A paper product of claim 27 that is drywall (wallboard) facing paper applied to the drywall by a conventional gypsum wallboard industry manufacturing process or by lamination onto the drywall after it is manufactured.
US10/972,730 2003-10-24 2004-10-25 Process for making abrasion resistant paper and paper and paper products made by the process Abandoned US20050155731A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/972,730 US20050155731A1 (en) 2003-10-24 2004-10-25 Process for making abrasion resistant paper and paper and paper products made by the process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US51427903P 2003-10-24 2003-10-24
US10/972,730 US20050155731A1 (en) 2003-10-24 2004-10-25 Process for making abrasion resistant paper and paper and paper products made by the process

Publications (1)

Publication Number Publication Date
US20050155731A1 true US20050155731A1 (en) 2005-07-21

Family

ID=34549324

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/972,730 Abandoned US20050155731A1 (en) 2003-10-24 2004-10-25 Process for making abrasion resistant paper and paper and paper products made by the process

Country Status (5)

Country Link
US (1) US20050155731A1 (en)
EP (1) EP1680545A4 (en)
CA (1) CA2543609A1 (en)
MX (1) MXPA06004585A (en)
WO (1) WO2005042843A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060019081A1 (en) * 2002-12-13 2006-01-26 Levit Mikhail R Mica sheet and tape
US20060191656A1 (en) * 2005-02-11 2006-08-31 Buzza Stephen A Paper substrates useful in wallboard tape applications
US20060207738A1 (en) * 2005-03-16 2006-09-21 Wild Martha P Paper substrates useful in wallboard tape applications
US20080190574A1 (en) * 2005-07-04 2008-08-14 Astenjohnson, Inc. Sheet-Like Products Exhibiting Oleophobic and Hydrophobic Properties
US20080233160A1 (en) * 2007-03-20 2008-09-25 Nichiha Corporation Building board
US20080277084A1 (en) * 2007-05-09 2008-11-13 Buckman Laboratories International, Inc. ASA Sizing Emulsions For Paper and Paperboard
WO2008143580A1 (en) * 2007-05-23 2008-11-27 Akzo Nobel N.V. Process for the production of a cellulosic product
WO2009154898A1 (en) * 2008-06-20 2009-12-23 International Paper Company Composition and recording sheet with improved optical properties
US20100059191A1 (en) * 2008-09-11 2010-03-11 Copamex, S.A. De C.V. Heat, grease, and cracking resistant release paper and process for producing the same
US7799169B2 (en) 2004-09-01 2010-09-21 Georgia-Pacific Consumer Products Lp Multi-ply paper product with moisture strike through resistance and method of making the same
US20110067832A1 (en) * 2009-09-22 2011-03-24 Zheming Xia Paperboard Containing Recycled Fibers and Method of Making the Same
WO2012025228A1 (en) * 2010-08-25 2012-03-01 Ashland Licensing And Intellectual Property Llc. Method for increasing the advantages of starch in pulped cellulosic material in the production of paper and paperboard
WO2012042115A1 (en) * 2010-10-01 2012-04-05 Kemira Oyj Method for improving runnability of a wet paper web, use of a solution and paper
WO2012067877A1 (en) * 2010-11-15 2012-05-24 Kemira Oyj Composition and process for increasing the dry strength of a paper product
US20120199304A1 (en) * 2007-09-12 2012-08-09 Weiguo Cheng Controllable filler prefloculation using a dual polymer system
WO2013026578A1 (en) 2011-08-25 2013-02-28 Ashland Licensing And Intellectual Property Llc Method for increasing the advantages of strength aids in the production of paper and paperboard
US8496784B2 (en) 2011-04-05 2013-07-30 P.H. Glatfelter Company Process for making a stiffened paper
US8506756B2 (en) 2008-03-06 2013-08-13 Sca Tissue France Embossed sheet comprising a ply of water-soluble material and method for manufacturing such a sheet
US20130299110A1 (en) * 2007-09-12 2013-11-14 Nalco Company Method of improving dewatering efficiency, increasing sheet wet web strength, increasing sheet wet strength and enhancing filler retention in papermaking
US20140102651A1 (en) * 2012-10-12 2014-04-17 Georgia-Pacific Chemicals Llc Greaseproof paper with lower content of fluorochemicals
WO2014105494A1 (en) 2012-12-28 2014-07-03 Ecolab Usa Inc. Method of increasing paper surface strength by using acrylic acid/acrylamide copolymer in a size press formulation containing starch
WO2014105479A1 (en) * 2012-12-31 2014-07-03 Nalco Company Method of increasing paper strength by using natural gums and dry strength agent in the wet end
US20140302280A1 (en) * 2011-04-29 2014-10-09 Georgia-Pacific Gypsum Llc Gypsum boards made with high performance bio-based facers and method of making the same
US9133583B2 (en) 2011-04-05 2015-09-15 P.H. Glatfelter Company Process for making a stiffened paper
KR20170052564A (en) * 2014-09-04 2017-05-12 케미라 오와이제이 Sizing composition, its use and a method for producing paper, board or the like
US9752283B2 (en) 2007-09-12 2017-09-05 Ecolab Usa Inc. Anionic preflocculation of fillers used in papermaking
WO2019143519A1 (en) * 2018-01-16 2019-07-25 Solenis Technologies, L.P. Process for making paper with improved filler retention and opacity while maintaining wet tensile strength
WO2020205905A1 (en) 2019-04-02 2020-10-08 Kemira Oyj Use of metal chelates as a surface application for abrasion and/or taber stiffness, improvement in paper and paperboard
CN113201972A (en) * 2021-05-25 2021-08-03 岳阳林纸股份有限公司 Plastic-removing food paper and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008003121A1 (en) * 2006-07-04 2008-01-10 Russell Leslie Burton Paper strengthening methods and apparatus
CA3091316A1 (en) 2018-03-22 2019-09-26 Kemira Oyj Method for manufacturing a multi-layered paperboard, multi-layered paperboard and composition for use in multi-layered paperboard manufacturing
IT202100032753A1 (en) * 2021-12-28 2023-06-28 Gruppo Cordenons Spa TOTALLY CLOSURE PAPER MATERIAL PARTICULARLY FOR USE IN THE FOOD INDUSTRY

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3389042A (en) * 1964-02-13 1968-06-18 Nat Gypsum Co Gypsum wallboard and method for producing same
US4028172A (en) * 1974-04-15 1977-06-07 National Starch And Chemical Corporation Process of making paper
US4056432A (en) * 1971-07-06 1977-11-01 Calgon Corporation Process for making paper products of improved dry strength
US4665014A (en) * 1981-03-24 1987-05-12 Mitsubishi Paper Mills, Inc. Polyolefin coated photographic paper support
US5061346A (en) * 1988-09-02 1991-10-29 Betz Paperchem, Inc. Papermaking using cationic starch and carboxymethyl cellulose or its additionally substituted derivatives
US5318669A (en) * 1991-12-23 1994-06-07 Hercules Incorporated Enhancement of paper dry strength by anionic and cationic polymer combination
US5677067A (en) * 1993-03-02 1997-10-14 Mitsubishi Paper Mills Limited Ink jet recording sheet
US5824190A (en) * 1995-08-25 1998-10-20 Cytec Technology Corp. Methods and agents for improving paper printability and strength
US5935383A (en) * 1996-12-04 1999-08-10 Kimberly-Clark Worldwide, Inc. Method for improved wet strength paper
US6083348A (en) * 1996-12-27 2000-07-04 Basf Aktiengesellschaft Method for producing paper
US6083586A (en) * 1993-11-19 2000-07-04 E. Khashoggi Industries, Llc Sheets having a starch-based binding matrix
US6113743A (en) * 1999-06-16 2000-09-05 Vice; Gerald End dam for waterbox of paper making machine
US6153040A (en) * 1998-05-15 2000-11-28 United States Gypsum Company Gypsum board paper that reduces roll up during lamination, and board comprising such paper
US6291127B1 (en) * 2000-08-23 2001-09-18 Eastman Kodak Company Water-borne polyester coated imaging member
US20010051687A1 (en) * 1995-08-25 2001-12-13 Rajiv Bazaj Methods and agents for improving paper printability and strength
US6429253B1 (en) * 1997-02-14 2002-08-06 Bayer Corporation Papermaking methods and compositions
US6475341B1 (en) * 1997-09-12 2002-11-05 Ciba Specialty Chemicals Water Treatments Ltd. Process for making paper
US6489040B1 (en) * 2000-02-15 2002-12-03 United States Gypsium Company Wallboard with improved roll-up resistance
US6517674B1 (en) * 2000-02-02 2003-02-11 The Mead Corporation Process for manufacturing wear resistant paper
US6551457B2 (en) * 2000-09-20 2003-04-22 Akzo Nobel N.V. Process for the production of paper
US6562444B1 (en) * 1999-10-08 2003-05-13 James Hardie Research Pty Limited Fiber-cement/gypsum laminate composite building material
US6568148B1 (en) * 1997-08-14 2003-05-27 Akzenta Paneele + Profile Gmbh Covering element for building surfaces or the like and method for the production thereof
US6767430B1 (en) * 1999-11-25 2004-07-27 Cooperatieve Verkoop-En Productievereniging Van Aardappelmeel En Derivaten Avebe B.A. Process for making paper

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3389042A (en) * 1964-02-13 1968-06-18 Nat Gypsum Co Gypsum wallboard and method for producing same
US4056432A (en) * 1971-07-06 1977-11-01 Calgon Corporation Process for making paper products of improved dry strength
US4028172A (en) * 1974-04-15 1977-06-07 National Starch And Chemical Corporation Process of making paper
US4665014A (en) * 1981-03-24 1987-05-12 Mitsubishi Paper Mills, Inc. Polyolefin coated photographic paper support
US5061346A (en) * 1988-09-02 1991-10-29 Betz Paperchem, Inc. Papermaking using cationic starch and carboxymethyl cellulose or its additionally substituted derivatives
US5318669A (en) * 1991-12-23 1994-06-07 Hercules Incorporated Enhancement of paper dry strength by anionic and cationic polymer combination
US5677067A (en) * 1993-03-02 1997-10-14 Mitsubishi Paper Mills Limited Ink jet recording sheet
US6083586A (en) * 1993-11-19 2000-07-04 E. Khashoggi Industries, Llc Sheets having a starch-based binding matrix
US5824190A (en) * 1995-08-25 1998-10-20 Cytec Technology Corp. Methods and agents for improving paper printability and strength
US20010051687A1 (en) * 1995-08-25 2001-12-13 Rajiv Bazaj Methods and agents for improving paper printability and strength
US5935383A (en) * 1996-12-04 1999-08-10 Kimberly-Clark Worldwide, Inc. Method for improved wet strength paper
US6083348A (en) * 1996-12-27 2000-07-04 Basf Aktiengesellschaft Method for producing paper
US6429253B1 (en) * 1997-02-14 2002-08-06 Bayer Corporation Papermaking methods and compositions
US6568148B1 (en) * 1997-08-14 2003-05-27 Akzenta Paneele + Profile Gmbh Covering element for building surfaces or the like and method for the production thereof
US6475341B1 (en) * 1997-09-12 2002-11-05 Ciba Specialty Chemicals Water Treatments Ltd. Process for making paper
US6153040A (en) * 1998-05-15 2000-11-28 United States Gypsum Company Gypsum board paper that reduces roll up during lamination, and board comprising such paper
US6113743A (en) * 1999-06-16 2000-09-05 Vice; Gerald End dam for waterbox of paper making machine
US6562444B1 (en) * 1999-10-08 2003-05-13 James Hardie Research Pty Limited Fiber-cement/gypsum laminate composite building material
US6767430B1 (en) * 1999-11-25 2004-07-27 Cooperatieve Verkoop-En Productievereniging Van Aardappelmeel En Derivaten Avebe B.A. Process for making paper
US6517674B1 (en) * 2000-02-02 2003-02-11 The Mead Corporation Process for manufacturing wear resistant paper
US6489040B1 (en) * 2000-02-15 2002-12-03 United States Gypsium Company Wallboard with improved roll-up resistance
US6291127B1 (en) * 2000-08-23 2001-09-18 Eastman Kodak Company Water-borne polyester coated imaging member
US6551457B2 (en) * 2000-09-20 2003-04-22 Akzo Nobel N.V. Process for the production of paper

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Smook, Gary A., Handbook for Pulp and Paper Technologists, 2nd ed, Angus Wilde Publications, 1992, pp 220 and 228. *

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060019081A1 (en) * 2002-12-13 2006-01-26 Levit Mikhail R Mica sheet and tape
US7399379B2 (en) * 2002-12-13 2008-07-15 E.I. Du Pont De Nemours And Company Process of attaching reinforcing ply to ply containing mica-rich and mica-poor faces
US8216424B2 (en) 2004-09-01 2012-07-10 Georgia-Pacific Consumer Products Lp Multi-ply paper product with moisture strike through resistance and method of making the same
US8025764B2 (en) 2004-09-01 2011-09-27 Georgia-Pacific Consumer Products Lp Multi-ply paper product with moisture strike through resistance and method of making the same
US7799169B2 (en) 2004-09-01 2010-09-21 Georgia-Pacific Consumer Products Lp Multi-ply paper product with moisture strike through resistance and method of making the same
US20060191656A1 (en) * 2005-02-11 2006-08-31 Buzza Stephen A Paper substrates useful in wallboard tape applications
US8152961B2 (en) 2005-02-11 2012-04-10 International Paper Company Paper substrates useful in wallboard tape applications
US7789996B2 (en) * 2005-02-11 2010-09-07 International Paper Company Paper substrates useful in wallboard tape applications
US8388802B2 (en) 2005-02-11 2013-03-05 International Paper Company Paper substrates useful in wallboard tape applications
US8382949B2 (en) 2005-03-16 2013-02-26 International Paper Company Paper substrates useful in wallboard tape applications
US8613831B2 (en) 2005-03-16 2013-12-24 International Paper Company Paper substrates useful in wallboard tape applications
US20060207738A1 (en) * 2005-03-16 2006-09-21 Wild Martha P Paper substrates useful in wallboard tape applications
US8007638B2 (en) * 2005-07-04 2011-08-30 Astenjohnson, Inc. Sheet-like products exhibiting oleophobic and hydrophobic properties
US20080190574A1 (en) * 2005-07-04 2008-08-14 Astenjohnson, Inc. Sheet-Like Products Exhibiting Oleophobic and Hydrophobic Properties
US7534485B2 (en) * 2007-03-20 2009-05-19 Nichiha Corporation Building board
US20080233160A1 (en) * 2007-03-20 2008-09-25 Nichiha Corporation Building board
US20080277084A1 (en) * 2007-05-09 2008-11-13 Buckman Laboratories International, Inc. ASA Sizing Emulsions For Paper and Paperboard
WO2008143580A1 (en) * 2007-05-23 2008-11-27 Akzo Nobel N.V. Process for the production of a cellulosic product
US20100236737A1 (en) * 2007-05-23 2010-09-23 Akzo Nobel N.V. Process for the production of a cellulosic product
US8118976B2 (en) 2007-05-23 2012-02-21 Akzo Nobel N.V. Process for the production of a cellulosic product
US9487916B2 (en) * 2007-09-12 2016-11-08 Nalco Company Method of improving dewatering efficiency, increasing sheet wet web strength, increasing sheet wet strength and enhancing filler retention in papermaking
US9181657B2 (en) 2007-09-12 2015-11-10 Nalco Company Method of increasing paper strength by using natural gums and dry strength agent in the wet end
US8747617B2 (en) * 2007-09-12 2014-06-10 Nalco Company Controllable filler prefloculation using a dual polymer system
US10145067B2 (en) 2007-09-12 2018-12-04 Ecolab Usa Inc. Method of improving dewatering efficiency, increasing sheet wet web strength, increasing sheet wet strength and enhancing filler retention in papermaking
US20120199304A1 (en) * 2007-09-12 2012-08-09 Weiguo Cheng Controllable filler prefloculation using a dual polymer system
US9752283B2 (en) 2007-09-12 2017-09-05 Ecolab Usa Inc. Anionic preflocculation of fillers used in papermaking
US20130299110A1 (en) * 2007-09-12 2013-11-14 Nalco Company Method of improving dewatering efficiency, increasing sheet wet web strength, increasing sheet wet strength and enhancing filler retention in papermaking
US8771466B2 (en) 2008-03-06 2014-07-08 Sca Tissue France Method for manufacturing an embossed sheet comprising a ply of water-soluble material
US8506756B2 (en) 2008-03-06 2013-08-13 Sca Tissue France Embossed sheet comprising a ply of water-soluble material and method for manufacturing such a sheet
US8361571B2 (en) 2008-06-20 2013-01-29 International Paper Company Composition and recording sheet with improved optical properties
US20090317549A1 (en) * 2008-06-20 2009-12-24 International Paper Company Composition and recording sheet with improved optical properties
US8906476B2 (en) 2008-06-20 2014-12-09 International Paper Company Composition and recording sheet with improved optical properties
WO2009154898A1 (en) * 2008-06-20 2009-12-23 International Paper Company Composition and recording sheet with improved optical properties
EP2787120A1 (en) * 2008-06-20 2014-10-08 International Paper Company Recording sheet with improved optical properties
US9745700B2 (en) 2008-06-20 2017-08-29 International Paper Company Composition and recording sheet with improved optical properties
US20100059191A1 (en) * 2008-09-11 2010-03-11 Copamex, S.A. De C.V. Heat, grease, and cracking resistant release paper and process for producing the same
US8419899B2 (en) 2009-09-22 2013-04-16 Sonoco Development Inc. Paperboard containing recycled fibers and method of making the same
US20110067832A1 (en) * 2009-09-22 2011-03-24 Zheming Xia Paperboard Containing Recycled Fibers and Method of Making the Same
US8709206B2 (en) 2009-09-22 2014-04-29 Sonoco Development Inc. Paperboard containing recycled fibers and method of making the same
AU2011295397B2 (en) * 2010-08-25 2015-07-02 Solenis Technologies Cayman, L.P. Method for increasing the advantages of starch in pulped cellulosic material in the production of paper and paperboard
WO2012025228A1 (en) * 2010-08-25 2012-03-01 Ashland Licensing And Intellectual Property Llc. Method for increasing the advantages of starch in pulped cellulosic material in the production of paper and paperboard
US8758562B2 (en) 2010-08-25 2014-06-24 Hercules Incorporated Method for increasing the advantages of starch in pulped cellulosic material in the production of paper and paperboard
WO2012042115A1 (en) * 2010-10-01 2012-04-05 Kemira Oyj Method for improving runnability of a wet paper web, use of a solution and paper
CN103201426A (en) * 2010-10-01 2013-07-10 凯米罗总公司 Method for improving runnability of a wet paper web, use of a solution and paper
WO2012067877A1 (en) * 2010-11-15 2012-05-24 Kemira Oyj Composition and process for increasing the dry strength of a paper product
US8980056B2 (en) 2010-11-15 2015-03-17 Kemira Oyj Composition and process for increasing the dry strength of a paper product
CN103210145A (en) * 2010-11-15 2013-07-17 凯米罗总公司 Composition and process for increasing the dry strength of a paper product
US8496784B2 (en) 2011-04-05 2013-07-30 P.H. Glatfelter Company Process for making a stiffened paper
US9133583B2 (en) 2011-04-05 2015-09-15 P.H. Glatfelter Company Process for making a stiffened paper
US20140302280A1 (en) * 2011-04-29 2014-10-09 Georgia-Pacific Gypsum Llc Gypsum boards made with high performance bio-based facers and method of making the same
RU2614272C2 (en) * 2011-08-25 2017-03-24 Соленис Текнолоджиз Кейман, Л.П. Method of increasing advantages of reinforcing materials for producing paper and cardboard
US9388533B2 (en) 2011-08-25 2016-07-12 Solenis Technologies, L.P. Method for increasing the advantages of strength aids in the production of paper and paperboard
WO2013026578A1 (en) 2011-08-25 2013-02-28 Ashland Licensing And Intellectual Property Llc Method for increasing the advantages of strength aids in the production of paper and paperboard
US20140102651A1 (en) * 2012-10-12 2014-04-17 Georgia-Pacific Chemicals Llc Greaseproof paper with lower content of fluorochemicals
WO2014105494A1 (en) 2012-12-28 2014-07-03 Ecolab Usa Inc. Method of increasing paper surface strength by using acrylic acid/acrylamide copolymer in a size press formulation containing starch
WO2014105479A1 (en) * 2012-12-31 2014-07-03 Nalco Company Method of increasing paper strength by using natural gums and dry strength agent in the wet end
KR102456340B1 (en) * 2014-09-04 2022-10-20 케미라 오와이제이 Sizing composition, its use and a method for producing paper, board or the like
KR20170052564A (en) * 2014-09-04 2017-05-12 케미라 오와이제이 Sizing composition, its use and a method for producing paper, board or the like
US10407831B2 (en) 2014-09-04 2019-09-10 Kemira Oyj Sizing composition, its use and a method for producing paper, board or the like
WO2019143519A1 (en) * 2018-01-16 2019-07-25 Solenis Technologies, L.P. Process for making paper with improved filler retention and opacity while maintaining wet tensile strength
US10975524B2 (en) 2018-01-16 2021-04-13 Solenis Technologies, L.P. Process for making paper with improved filler retention and opacity while maintaining wet tensile strength
TWI810236B (en) * 2018-01-16 2023-08-01 美商索雷尼斯科技公司 Process for making paper with improved filler retention and opacity while maintaining wet tensile strength
WO2020205905A1 (en) 2019-04-02 2020-10-08 Kemira Oyj Use of metal chelates as a surface application for abrasion and/or taber stiffness, improvement in paper and paperboard
CN113201972A (en) * 2021-05-25 2021-08-03 岳阳林纸股份有限公司 Plastic-removing food paper and preparation method thereof

Also Published As

Publication number Publication date
EP1680545A1 (en) 2006-07-19
MXPA06004585A (en) 2006-06-27
CA2543609A1 (en) 2005-05-12
EP1680545A4 (en) 2008-06-11
WO2005042843A1 (en) 2005-05-12

Similar Documents

Publication Publication Date Title
US20050155731A1 (en) Process for making abrasion resistant paper and paper and paper products made by the process
US4545854A (en) Method for preparing a fibrous product containing cellulosic fibers and useful in particular, in the field of coverings in lieu of asbestos
US8425723B2 (en) Process for improving optical properties of paper
KR101506920B1 (en) A process for improving paper strength
US20060183816A1 (en) Additive system for use in paper making and process of using the same
WO2015100125A1 (en) Method for improving sizing efficiency of asa emulsion emulsified by a polymer emulsifier
CN111771026B (en) Method for producing a multilayer cardboard, multilayer cardboard and composition for producing a multilayer cardboard
CN106087523B (en) A kind of papermaking process of on-line coater water-transfer printing paper base stock body paper
CN102888778A (en) Production method of glassine body paper
US20200407918A1 (en) Method for production of a product comprising a first ply
CN105239439A (en) Method for making environmental-friendly low-quantification high-endurability coated duplex boards with grey backs
AU2016228111B2 (en) A system and process
EP2238293A1 (en) A method for production of paper
CN108411704A (en) A kind of high interfacial bonding strength dumb light U.S. line paper and preparation method thereof
WO2022049484A1 (en) A method for producing a multilayer machine glazed paper comprising highly refined cellulose fibers and a multilayer machine glazed paper produced
CN101748656B (en) Method for making label paper with kenaf bast bleached pulp
CN111021126B (en) Low-quantitative release base paper and preparation method thereof
EP3177769B1 (en) A method of increasing the filler content in paper or paperboard
EP3947813B1 (en) Use of metal chelates as a surface application for abrasion and/or taber stiffness, improvement in paper and paperboard
SE2230110A1 (en) Highly refined cellulose pulp composition with compression refined cellulose pulp
RU2021138982A (en) PAPER AND CARDBOARD PRODUCTS
CN112626908A (en) Method for manufacturing environment-friendly weather-resistant functional household board surface coating base paper

Legal Events

Date Code Title Description
AS Assignment

Owner name: NATIONAL GYPSUM PROPERTIES, LLC, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARTIN, WILLIAM C.;WEIR, RICHARD;STEPHENSON, NEIL;AND OTHERS;REEL/FRAME:015995/0939

Effective date: 20050324

AS Assignment

Owner name: BANK OF AMERICA, N.A., NORTH CAROLINA

Free format text: SECURITY AGREEMENT;ASSIGNOR:NATIONAL GYPSUM PROPERTIES, LLC;REEL/FRAME:020741/0807

Effective date: 20080324

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION