US20060057231A1 - Pterostilbene as a new agonist for the peroxisome proliferator-activated receptor alpha isoform - Google Patents

Pterostilbene as a new agonist for the peroxisome proliferator-activated receptor alpha isoform Download PDF

Info

Publication number
US20060057231A1
US20060057231A1 US11/207,038 US20703805A US2006057231A1 US 20060057231 A1 US20060057231 A1 US 20060057231A1 US 20703805 A US20703805 A US 20703805A US 2006057231 A1 US2006057231 A1 US 2006057231A1
Authority
US
United States
Prior art keywords
pterostilbene
resveratrol
pparα
composition
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/207,038
Inventor
Agnes Rimando
Dennis Feller
Wallace Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Mississippi
US Department of Agriculture USDA
Original Assignee
University of Mississippi
US Department of Agriculture USDA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Mississippi, US Department of Agriculture USDA filed Critical University of Mississippi
Priority to US11/207,038 priority Critical patent/US20060057231A1/en
Assigned to THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF AGRICULTURE reassignment THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF AGRICULTURE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YOKOYAMA, WALLACE H., RIMANDO, AGNES M.
Assigned to MISSISSIPPI, UNIVERSITY OF THE reassignment MISSISSIPPI, UNIVERSITY OF THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FELLER, DENNIS RUDOLPH
Assigned to AGRICULTURE, UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF, THE reassignment AGRICULTURE, UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YOKOYAMA, WALLACE H., RIMANDO, AGNES M.
Publication of US20060057231A1 publication Critical patent/US20060057231A1/en
Priority to US12/911,376 priority patent/US8133917B2/en
Priority to US13/363,959 priority patent/US8252845B1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/45Ericaceae or Vacciniaceae (Heath or Blueberry family), e.g. blueberry, cranberry or bilberry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/87Vitaceae or Ampelidaceae (Vine or Grape family), e.g. wine grapes, muscadine or peppervine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • This invention relates to pterostilbene, an analog of resveratrol, found in grapes, wine, peanuts and other berries.
  • Pterostilbene activates the peroxisome proliferator-activated receptor alpha (PPAR ⁇ ) isoform, a receptor proposed to mediate the activity of lipid-lowering drugs.
  • PPAR ⁇ peroxisome proliferator-activated receptor alpha
  • pterostilbene is capable of acting as an effective hypolipidemic agent.
  • the peroxisome proliferator-activated receptor (PPAR) isoforms are members of the nuclear receptor superfamily of ligand-activated transcription factors. They were first identified in Xenopus frogs as receptors that induce the proliferation of peroxisomes (Dreyer et al., 1992. Cell 68: 879-887). Three PPAR isoforms are known: PPAR ⁇ , PPAR ⁇ , and PPAR ⁇ . The PPARs control gene expression by interaction with specific response elements in the promoter region of target genes (Tugwood et al. 1996. Ann. New York Acad. Sci. 804: 252-265).
  • the PPARs play a central role in carbohydrate and lipid homeostasis, and govern other biological processes such as energy metabolism, cell proliferation and differentiation, and inflammation (Chakrabarti and Rajagopalan. 2004. Curr. Med. Chem.: Immunol. Endocr. Metab. Agents 4: 67-73; Escher and Wahli. 2000. Mutation Res. 448:121-138; Gilde and Van Bilsen. 2003. Acta Physiol. Scand. 178: 425-434; Kersten, S. 2002. Eur. J. Pharmacol. 440: 223-234; Mudaliar and Henry. 2002. Curr. Opin. Endocrinol. Diabetes 9: 285-302).
  • the PPARs are also suggested to play a role in the pathogenesis and proliferation of colorectal (Jackson et al. 2003. Gut 52: 1317-1322) and lung (Inoue et al. 2001. Anticancer Res. 21: 2471-2476) tumor progression possibly via inhibition of proliferation.
  • the PPAR ⁇ isoform predominantly involved in fatty acid and lipid catabolism and import, activates genes involved in fatty acid oxidation in the liver, heart, kidney, and skeletal muscles (Fruchart et al. 2003. Prog. Exper. Cardiol. 8: 3-16; Gilde and Van Bilsen, supra).
  • PPAR ⁇ activation leads to increased ⁇ -oxidation of fatty acids and decreased triglyceride-VLDL synthesis (Fruchart and Duriez. 2004. Ann. Pharmaceut. Franc. 62: 3-18). Activation of PPAR ⁇ also leads to the reduction of triglyceride because of repression of hepatic apolipoprotein C-III and to the increase in lipoprotein lipase gene expression (Gervois et al. 2000. Clin. Chem. Lab. Med. 38: 3-11). Furthermore, PPAR ⁇ activation causes induction of hepatic apolipoprotein A-I and A-II expression, in humans, leading to increased plasma HDL cholesterol.
  • PPAR ⁇ agonists also slow down the progression of premature coronary atherosclerosis (Fruchart et al. 2003, supra) and have been demonstrated to regulate metabolism of amino acids in the liver (Kersten et al. 2001. FASEB J. 15: 1971-1978).
  • Resveratrol is a well-known antioxidant (Stivala et al. 2001. J. Biol. Chem. 276: 22586-22594; Teguo et al. 1998. J. Nat. Prod. 61: 655-657) and cancer chemopreventive compound (Jang et al. 1997. Science 275: 218-220) present in grapes and wine. Its occurrence in wine has been linked to low incidence of fatal coronary heart disease among populations consuming wine moderately (Hegsted and Aussman. 1988. J. Nutr. 118: 1184-1189; Renaud and De Lorgeril. 1992. Lancet 339:1523).
  • Pterostilbene is another grape compound that also was found to have antioxidant (Rimando et al. 2002. J. Agric. Food Chem. 50: 3453-3457; Stivala et al., supra) and cancer chemopreventive property similar to resveratrol (Rimando et al., supra).
  • Pterostilbene has antidiabetic (Manickam et al. 1997. J. Nat. Prod. 60: 609-610) properties, and inhibits the enzymes cyclooxygenase-1 (COX-1) and COX-2, inferring anti-inflammatory properties (Likhitwitayawuid et al. 2002. Planta Medica 68: 841-843).
  • pterostilbene is cytotoxic to a number of cancer cell lines in vitro (Rimando et al., 1994. Nat. Prod. Lett. 4: 267-272).
  • the cytochrome P450 enzyme CYP1B1 metabolizes resveratrol to piceatannol, demonstrating that a natural cancer chemopreventive agent can be converted to an anticancer compound by an enzyme which is over expressed in a wide variety of human tumors (Potter et al. 2002. Brit. J. Cancer 86: 774-778).
  • Piceatannol showed anti-allergic effects in experimental models of type I allergy (Matsuda et al. 2001. Biol. Pharm. Bull. 24: 264-267). It has also been shown to induce apoptotic cell death in BJAB lymphoma cells with activity equal to resveratrol.
  • Piceatannol also induced apoptosis in ex vivo assays with leukemic lymphoblasts, whereas resveratrol did not (Wieder et al. 2001. Leukemia 15: 1735-1742).
  • Resveratrol trimethylether was found to be more cytotoxic than resveratrol in cultured human lung and colon cancer cells (Lee et al. 2003. Arch. Pharm. Res. 26: 253-257).
  • this invention provides a method of treating dyslipidemias in individuals at risk of cardiovascular disease by administering a pharmaceutical composition containing pterostilbene.
  • kits comprising a pharmaceutical composition containing pterostilbene; and instructions for the use of the kit.
  • FIG. 1 shows the structures and formulae of resveratrol, pterostilbene, piceatannol, resveratrol trimethylether, and ciprofibrate.
  • FIG. 2 shows the effect of stilbenes on PPAR ⁇ in H4IIEC3 cells transfected with the PPRE-AB-luciferase reporter gene plasmid.
  • Cip ciprofibrate
  • Res resveratrol
  • Pic picetannol
  • Pte pterostilbene
  • Rte resveratrol trimethyl ether
  • ns not significantly different from control, p>0.05
  • **, significantly different from control, p 0.001
  • Dyslipidemias are disorders of lipoprotein metabolism, including lipoprotein overproduction or deficiency. These disorders may be manifested by elevation of the serum total cholesterol, low-density lipoprotein (LDL) cholesterol and triglyceride concentrations, and a decrease in the high-density lipoprotein (HDL) cholesterol concentration.
  • Resveratrol has been shown to have hypolipidemic properties in rat feeding studies causing lowering of triglyceride (Miura et al., supra) and serum cholesterol levels (Miura et al., supra; Kollar et al. 2000. Vnitrni Lekarstvi 46: 856-860).
  • PPAR ligands or agonists evolved as a group of structurally diverse compounds that activate these transcription factors, and emerged as an important class of therapeutic agents as PPARS have become an important molecular target to treat human metabolic disorders.
  • PPARs play a central role in lipid homeostasis in regulating fatty acid metabolism and plasma lipoproteins.
  • the fibrate drugs, such as ciprofibrate that was used in this study, were found to be ligands for PPAR ⁇ and their activation of PPAR ⁇ provided a mechanistic explanation for their clinical efficacy to treat cardiovascular diseases (Roberts and Moffat. 2001. Comments on Toxicology 7: 259-273).
  • resveratrol Three analogs of resveratrol: pterostilbene, piceatannol and resveratrol trimethylether have been shown to exhibit some of the same biological activities as resveratrol; however, these analogs also have individual activities which they do not share with resveratrol.
  • pterostilbene is an agonist for PPAR ⁇ and that it possesses an activity comparable to a clinically prescribed hypolipidemic fibrate drug, provides a possible natural source alternative for the treatment of dyslipidemias.
  • resveratrol is a cholesterol lowering agent, the mechanism by which it does so does not appear to be via activation of PPAR ⁇ , as is shown in this study.
  • Results from this study suggest that pterostilbene may be a more effective hypolipidemic agent with differing mechanisms of lipid lowering action than that of resveratrol.
  • Pterostilbene has been reported in some small fruits such as grapes (Adrian et al., 2000. J. Agric. Food Chem. 48: 6103-6105) and berries of Vaccinium (Rimando et al. 2004. J. Agric. Food Chem. 52: 4713-4719) as well as in woody plants (Maurya et al. 1984. J. Nat. Prod. 47: 179-181; Amone et al. 1977. J. Chem. Soc. Perkins Trans. 19: 2116-2118).
  • Resveratrol and piceatannol were commercial samples obtained from Sigma-Aldrich (St. Louis, Mo.) and Calbiochem (San Diego, Calif.), respectively.
  • H4IIEC3 cells were obtained from the American Type Culture Collection (Rockville, Md.).
  • the PPRE-AB luciferase gene reporter construct was obtained from Dr. Daniel J. Noonan (Department of Biochemistry, University of Kentucky, Lexington, Ky.).
  • the luciferase assay kit was obtained from Promega Corporation (Madison, Wis.).
  • NMR experiments were carried out on a Bruker Avance DRX (500 MHZ) instrument.
  • PTLC Merck Si gel F254 20 ⁇ 20 cm, 0.5 mm thick plate (VWR Scientific, Atlanta, Ga.). All solvents used were HPLC grade (Fisher Scientific, Suwanee, Ga.).
  • Pterostilbene and resveratrol trimethylether were prepared by partial methylation of resveratrol.
  • resveratrol 150 mg in 3.0 ml of MeOH
  • diazomethane a solution of resveratrol (150 mg in 3.0 ml of MeOH) diazomethane was added dropwise, and the reaction was monitored by thin layer chromatography (TLC) for the methylated products.
  • TLC thin layer chromatography
  • the reaction solution was dried under vacuum.
  • the partially methylated products were purified by preparative TLC (developing solvent, hexane: ETOAc, 8:2; Rf 0.6 and 0.8 for pterostilbene and resveratrol trimethylether, respectively). The identity and structure of these compounds were confirmed by comparison with published spectroscopic data.
  • H4IIEC3 cells a rat hepatoma cell line, were grown in a 150 mm Petri dish containing Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% (v/v) fetal bovine serum.
  • DMEM Dulbecco's Modified Eagle's Medium
  • PPRE-AB peroxisome proliferator response element with rat fatty acyl CoA ⁇ -oxidase AB promoter region sequence
  • PPRE-AB peroxisome proliferator response element with rat fatty acyl CoA ⁇ -oxidase AB promoter region sequence
  • pterostilbene demonstrated the highest induction of luciferase activity at 100 and 300 ⁇ M ( FIG. 1 ).
  • Diets were prepared by dissolving powdered cholesterol into warmed butterfat, followed by the addition of corn and fish oil. The small amounts of test ingredients were dissolved in about 50 ml of ethanol and added to the stirring dry ingredients. The liquid fat was also added to the dry ingredients while stirring. The composition is shown in Table 1. TABLE 1 Composition of Diet Ingredient Wt. (g) Butterfat, anhydrous 80 Corn Oil 100 Fish Oil, Menhaden 20 Cholesterol 1.5 Cellulose, microcrystalline 50 Casein 200 Starch, corn 497.5 Methionine 3 Choline bitartrate 3 Mineral Mix 35 Vitamin Mix 10 Test Substance 25 mg/kg
  • LDL low density lipoprotein

Abstract

Resveratrol, a stilbenoid antioxidant found in grapes, wine, peanuts and other berries, has been reported to have hypolipidemic properties. We investigated whether resveratrol and its three analogs (pterostilbene, piceatannol and resveratrol trimethyl ether) would activate the peroxisome proliferator-activated receptor alpha (PPARα) isoform. This nuclear receptor is proposed to mediate the activity of lipid-lowering drugs such as the fibrates. The four stilbenes were evaluated along with ciprofibrate (positive control) at 1, 10, 100, 300 μM concentrations, for the activation of endogenous PPARα in H4IIEC3 cells. Cells were transfected with a peroxisome proliferator response element-AB (rat fatty acyl CoA β-oxidase response element)—luciferase gene reporter construct. Of the four analogs, pterostilbene demonstrated the highest induction of PPARα showing 7- and 9-14 fold increases in luciferase activity at 100 and 300 μM, respectively, relative to control. The maximal luciferase activity responses to pterostilbene at 100 μM are similar to those obtained with the hypolipidemic drug, ciprofibrate. These results suggest that pterostilbene acts as a PPARα agonist, like that of the fibrate class, and may be a more effective hypolipidemic agent than resveratrol.

Description

    REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Application No. 60/602,784, filed Aug. 19, 2004, which is incorporated herein by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to pterostilbene, an analog of resveratrol, found in grapes, wine, peanuts and other berries. Pterostilbene activates the peroxisome proliferator-activated receptor alpha (PPARα) isoform, a receptor proposed to mediate the activity of lipid-lowering drugs. As a PPARα agonist, pterostilbene is capable of acting as an effective hypolipidemic agent.
  • 2. Description of the Relevant Art
  • The peroxisome proliferator-activated receptor (PPAR) isoforms are members of the nuclear receptor superfamily of ligand-activated transcription factors. They were first identified in Xenopus frogs as receptors that induce the proliferation of peroxisomes (Dreyer et al., 1992. Cell 68: 879-887). Three PPAR isoforms are known: PPARα, PPARγ, and PPARδ. The PPARs control gene expression by interaction with specific response elements in the promoter region of target genes (Tugwood et al. 1996. Ann. New York Acad. Sci. 804: 252-265). The PPARs play a central role in carbohydrate and lipid homeostasis, and govern other biological processes such as energy metabolism, cell proliferation and differentiation, and inflammation (Chakrabarti and Rajagopalan. 2004. Curr. Med. Chem.: Immunol. Endocr. Metab. Agents 4: 67-73; Escher and Wahli. 2000. Mutation Res. 448:121-138; Gilde and Van Bilsen. 2003. Acta Physiol. Scand. 178: 425-434; Kersten, S. 2002. Eur. J. Pharmacol. 440: 223-234; Mudaliar and Henry. 2002. Curr. Opin. Endocrinol. Diabetes 9: 285-302). The PPARs are also suggested to play a role in the pathogenesis and proliferation of colorectal (Jackson et al. 2003. Gut 52: 1317-1322) and lung (Inoue et al. 2001. Anticancer Res. 21: 2471-2476) tumor progression possibly via inhibition of proliferation. The PPARα isoform, predominantly involved in fatty acid and lipid catabolism and import, activates genes involved in fatty acid oxidation in the liver, heart, kidney, and skeletal muscles (Fruchart et al. 2003. Prog. Exper. Cardiol. 8: 3-16; Gilde and Van Bilsen, supra). In the liver, activation of PPARα leads to increased β-oxidation of fatty acids and decreased triglyceride-VLDL synthesis (Fruchart and Duriez. 2004. Ann. Pharmaceut. Franc. 62: 3-18). Activation of PPARα also leads to the reduction of triglyceride because of repression of hepatic apolipoprotein C-III and to the increase in lipoprotein lipase gene expression (Gervois et al. 2000. Clin. Chem. Lab. Med. 38: 3-11). Furthermore, PPARα activation causes induction of hepatic apolipoprotein A-I and A-II expression, in humans, leading to increased plasma HDL cholesterol. PPARα agonists also slow down the progression of premature coronary atherosclerosis (Fruchart et al. 2003, supra) and have been demonstrated to regulate metabolism of amino acids in the liver (Kersten et al. 2001. FASEB J. 15: 1971-1978).
  • Resveratrol is a well-known antioxidant (Stivala et al. 2001. J. Biol. Chem. 276: 22586-22594; Teguo et al. 1998. J. Nat. Prod. 61: 655-657) and cancer chemopreventive compound (Jang et al. 1997. Science 275: 218-220) present in grapes and wine. Its occurrence in wine has been linked to low incidence of fatal coronary heart disease among populations consuming wine moderately (Hegsted and Aussman. 1988. J. Nutr. 118: 1184-1189; Renaud and De Lorgeril. 1992. Lancet 339:1523). Dietary resveratrol at 50 ppm suppressed the blood serum lipid peroxidase levels in rats, and dose-dependently suppressed serum triglyceride and very-low-density lipoprotein- (VLDL-) and low-density-lipoprotein- (LDL-) cholesterol levels (Miura et al. 2003. Life Sci. 73: 1393-1400).
  • Pterostilbene is another grape compound that also was found to have antioxidant (Rimando et al. 2002. J. Agric. Food Chem. 50: 3453-3457; Stivala et al., supra) and cancer chemopreventive property similar to resveratrol (Rimando et al., supra). Pterostilbene has antidiabetic (Manickam et al. 1997. J. Nat. Prod. 60: 609-610) properties, and inhibits the enzymes cyclooxygenase-1 (COX-1) and COX-2, inferring anti-inflammatory properties (Likhitwitayawuid et al. 2002. Planta Medica 68: 841-843). Furthermore, pterostilbene is cytotoxic to a number of cancer cell lines in vitro (Rimando et al., 1994. Nat. Prod. Lett. 4: 267-272).
  • Like resveratrol and pterostilbene, piceatannol, has a cancer chemopreventive property (Waffo-Teguo et al. 2001. Nutrition and Cancer 40: 173-179), and is a stronger antioxidant than resveratrol and a potent anti-arrhythmic agent (Hung et al. 2001. Free Radical Biol. Med. 30: 877-883; Lee et al. 1998. Combinat. Chem. High Throughput Screen 1: 3546). The cytochrome P450 enzyme CYP1B1 metabolizes resveratrol to piceatannol, demonstrating that a natural cancer chemopreventive agent can be converted to an anticancer compound by an enzyme which is over expressed in a wide variety of human tumors (Potter et al. 2002. Brit. J. Cancer 86: 774-778). Piceatannol showed anti-allergic effects in experimental models of type I allergy (Matsuda et al. 2001. Biol. Pharm. Bull. 24: 264-267). It has also been shown to induce apoptotic cell death in BJAB lymphoma cells with activity equal to resveratrol. Piceatannol also induced apoptosis in ex vivo assays with leukemic lymphoblasts, whereas resveratrol did not (Wieder et al. 2001. Leukemia 15: 1735-1742). Resveratrol trimethylether was found to be more cytotoxic than resveratrol in cultured human lung and colon cancer cells (Lee et al. 2003. Arch. Pharm. Res. 26: 253-257).
  • Thus, in view of reports on the hypolipidemic property of resveratrol, the three analogs were of interest because their biological activity profiles are similar to that of resveratrol and in some assays are reported to be more potent than resveratrol. The goal of this work was to investigate whether these analogs are PPARα activators.
  • SUMMARY OF THE INVENTION
  • We have investigated the property of pterostilbene as an agonist of PPARα and have determined that pterostilbene can be used as a hypolipidemic agent.
  • In accordance with this discovery, it is an object of the invention to provide a pharmaceutical composition that acts as a hypolipidemic agent.
  • It is a further object of the invention to provide a pharmaceutical composition that specifically activates PPARα.
  • In particular, this invention provides a method of treating dyslipidemias in individuals at risk of cardiovascular disease by administering a pharmaceutical composition containing pterostilbene.
  • It is further part of this invention to provide a method of lowering cholesterol levels in individuals by administering a pharmaceutical composition containing pterostilbene.
  • Also part of this invention is a kit, comprising a pharmaceutical composition containing pterostilbene; and instructions for the use of the kit.
  • Other objects and advantages of this invention will become readily apparent from the ensuing description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows the structures and formulae of resveratrol, pterostilbene, piceatannol, resveratrol trimethylether, and ciprofibrate.
  • FIG. 2 shows the effect of stilbenes on PPARα in H4IIEC3 cells transfected with the PPRE-AB-luciferase reporter gene plasmid. Cip, ciprofibrate; Res, resveratrol; Pic, picetannol; Pte, pterostilbene; Rte, resveratrol trimethyl ether; ns, not significantly different from control, p>0.05; **, significantly different from control, p=0.001; ***, highly significantly different from control, p=0.0001; n=4.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Dyslipidemias are disorders of lipoprotein metabolism, including lipoprotein overproduction or deficiency. These disorders may be manifested by elevation of the serum total cholesterol, low-density lipoprotein (LDL) cholesterol and triglyceride concentrations, and a decrease in the high-density lipoprotein (HDL) cholesterol concentration. Resveratrol has been shown to have hypolipidemic properties in rat feeding studies causing lowering of triglyceride (Miura et al., supra) and serum cholesterol levels (Miura et al., supra; Kollar et al. 2000. Vnitrni Lekarstvi 46: 856-860). On the contrary, a study in rabbits showed no difference in lipoprotein-cholesterol concentration between the control group and the group that received oral resveratrol (Wilson et al. 1996. Life Sci. 59: 15-21). Additionally, resveratrol promoted atherosclerotic development in these animals. On the basis of results of studies on the effect of resveratrol in human aortic cells, it was hypothesized that it may confer cardiovascular protection by functioning as a pleiotropic cellular effector (Wu et al., 2004. In: Phytochemicals: Mechanisms of Action, Meskin, M. S., ed., CRC Press LLC, Boca Raton, Fla., pages 145-161). Results from studies in Donyu rats showed the hypocholesterolemic activity of resveratrol to be due to increased excretion of neutral sterols and bile acids in the feces (Miura et al., supra).
  • “PPAR ligands or agonists” evolved as a group of structurally diverse compounds that activate these transcription factors, and emerged as an important class of therapeutic agents as PPARS have become an important molecular target to treat human metabolic disorders. PPARs play a central role in lipid homeostasis in regulating fatty acid metabolism and plasma lipoproteins. The fibrate drugs, such as ciprofibrate that was used in this study, were found to be ligands for PPARα and their activation of PPARα provided a mechanistic explanation for their clinical efficacy to treat cardiovascular diseases (Roberts and Moffat. 2001. Comments on Toxicology 7: 259-273).
  • Three analogs of resveratrol: pterostilbene, piceatannol and resveratrol trimethylether have been shown to exhibit some of the same biological activities as resveratrol; however, these analogs also have individual activities which they do not share with resveratrol. The capability of resveratrol and the analogs: pterostilbene, piceatannol and resveratrol trimethylether to affect PPARs, in particular, PPARα, and to thus affect lipid metabolism, was examined.
  • The finding that pterostilbene is an agonist for PPARα and that it possesses an activity comparable to a clinically prescribed hypolipidemic fibrate drug, provides a possible natural source alternative for the treatment of dyslipidemias. Whether or not resveratrol is a cholesterol lowering agent, the mechanism by which it does so does not appear to be via activation of PPARα, as is shown in this study. Results from this study suggest that pterostilbene may be a more effective hypolipidemic agent with differing mechanisms of lipid lowering action than that of resveratrol.
  • Pterostilbene has been reported in some small fruits such as grapes (Adrian et al., 2000. J. Agric. Food Chem. 48: 6103-6105) and berries of Vaccinium (Rimando et al. 2004. J. Agric. Food Chem. 52: 4713-4719) as well as in woody plants (Maurya et al. 1984. J. Nat. Prod. 47: 179-181; Amone et al. 1977. J. Chem. Soc. Perkins Trans. 19: 2116-2118).
  • EXAMPLES
  • Having now generally described this invention, the same will be better understood by reference to certain specific examples, which are included herein only to further illustrate the invention and are not intended to limit the scope of the invention as defined by the claims.
  • Example 1 Analogs, Cell Lines, and Reagents
  • Resveratrol and piceatannol were commercial samples obtained from Sigma-Aldrich (St. Louis, Mo.) and Calbiochem (San Diego, Calif.), respectively. H4IIEC3 cells were obtained from the American Type Culture Collection (Rockville, Md.). The PPRE-AB luciferase gene reporter construct was obtained from Dr. Daniel J. Noonan (Department of Biochemistry, University of Kentucky, Lexington, Ky.). The luciferase assay kit was obtained from Promega Corporation (Madison, Wis.). NMR experiments were carried out on a Bruker Avance DRX (500 MHZ) instrument. PTLC, Merck Si gel F254 20×20 cm, 0.5 mm thick plate (VWR Scientific, Atlanta, Ga.). All solvents used were HPLC grade (Fisher Scientific, Suwanee, Ga.).
  • Pterostilbene and resveratrol trimethylether were prepared by partial methylation of resveratrol. To a solution of resveratrol (150 mg in 3.0 ml of MeOH) diazomethane was added dropwise, and the reaction was monitored by thin layer chromatography (TLC) for the methylated products. The reaction solution was dried under vacuum. The partially methylated products were purified by preparative TLC (developing solvent, hexane: ETOAc, 8:2; Rf 0.6 and 0.8 for pterostilbene and resveratrol trimethylether, respectively). The identity and structure of these compounds were confirmed by comparison with published spectroscopic data.
  • Example 2 Activation of PPARα in Rat Cells
  • Conditions for activation were essentially as described in Jaradat et al. (2002. Planta Medica 68: 667-671). Briefly, H4IIEC3 cells, a rat hepatoma cell line, were grown in a 150 mm Petri dish containing Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% (v/v) fetal bovine serum. Upon reaching 75% confluency, cells were transfected with PPRE-AB (peroxisome proliferator response element with rat fatty acyl CoA β-oxidase AB promoter region sequence)—luciferase gene reporter construct, by electroporation (Square electroporator model T820) at 190V for 70 msec and 1 pulse. Transfected cells along with the medium were plated in 96 well microtiter plates, at 100,000 cells/well. After 24 hr incubation, ciprofibrate at 10 and 100 μM, resveratrol and its three analogs at 1, 10, 100, and 300 μM, were added to the medium containing cells. FIG. 1 shows the structures and formulae of resveratrol, pterostilbene, piceatannol, resveratrol trimethylether, and ciprofibrate. After incubation with the test compounds for 30 hr, the cells were lysed and the luciferase activity of the supernatant was determined using a luminometer (Packard Instrument Company, Meriden, Conn.). Data were analyzed using GraphPad-Prism software.
  • Of the four stilbene analogs, pterostilbene demonstrated the highest induction of luciferase activity at 100 and 300 μM (FIG. 1). The maximal luciferase responses to pterostilbene at 100 and 300 μM were about 7 fold and 14 fold, respectively, when compared to the corresponding control values (n=4) in H4IIEC3 cells. The maximal luciferase activity responses to ciprofibrate at 100 μM was about 5 fold compared to control (n=4). These results showed that PPARα activation by pterostilbene (33910±788 relative luciferase units) is comparable to that of ciprofibrate (19460±1466 relative luciferase units) at 100 μM. Piceatannol and resveratrol trimethylether induced luciferase activity only slightly at all the concentrations tested. At 1 and 10 μM, pterostilbene, as well as resveratrol, only minimally induced luciferase activity. Resveratrol was toxic to H4IIEC3 cells at 100 and 300 μM. These results indicate that pterostilbene, like ciprofibrate, acts as an agonist of PPARα in H4IIEC3 cells, whereas the remaining stilbene analogs are not activators of PPARα.
  • Example 3 Effect of Pterostilbene and Resveratrol in In Vivo Hamster Studies
  • Male golden Syrian hamsters (Charles River, Wilmington, Mass.), initial weight ranging from 34-41 g, were fed a powdered stock diet (Rodent Lab Chow 5001, Purina Mills, St. Louis, Mo.) for 7 days. The animals were placed in individual wire-bottom cages in a room kept at 20-22° C., 60% rh and 12 h light and dark cycle. Following the initial 7 day period, 8-10 animals were randomly assigned from a weight sorted list to each of five test diets (α-cellulose control and test substance). Food intake was measured twice each week and body weights were monitored once a week. After 21 days on the treatment diets, the animals were killed, blood was collected and analyzed for total cholesterol by the cholesterol oxidase method and lipoprotein cholesterol, by size exclusion chromatography, as previously described (German et al. 1996. Nutrition Res. 16: 1239-1249). All animal procedures were approved by the Animal Care and Use Committee, Western Regional Research Center, USDA, Albany, Calif. and conformed to the principles in “Guide for the Care and Use of Laboratory Animals” (Committee on Care and Use of Laboratory Animals 1985). Plasma blood glucose was determined using a blood glucose meter (Fast Glucose Meter-Precision Xtra, MediSense, Bedford, Mass., USA).
  • Diets were prepared by dissolving powdered cholesterol into warmed butterfat, followed by the addition of corn and fish oil. The small amounts of test ingredients were dissolved in about 50 ml of ethanol and added to the stirring dry ingredients. The liquid fat was also added to the dry ingredients while stirring. The composition is shown in Table 1.
    TABLE 1
    Composition of Diet
    Ingredient Wt. (g)
    Butterfat, anhydrous 80
    Corn Oil 100
    Fish Oil, Menhaden 20
    Cholesterol 1.5
    Cellulose, microcrystalline 50
    Casein 200
    Starch, corn 497.5
    Methionine 3
    Choline bitartrate 3
    Mineral Mix 35
    Vitamin Mix 10
    Test Substance 25 mg/kg
  • Compared to the control group, plasma low density lipoprotein (LDL) cholesterol was 29% lower in the pterostilbene-fed group and 20% lower in the resveratrol-fed group, at 25 mg/kg diet (Table 2). Total plasma cholesterol was 18% lower with pterostilbene and 14% lower with resveratrol. LDL/HDL ratio was statistically significantly lower for pterostilbene but not for resveratrol, compared to control, at this diet concentration. Weight gain and HDL were similar for all groups. Compared to the control group, the plasma glucose level of only the pterostilbene-fed group was lowered.
    TABLE 2
    Effect of Pterostilbene and Resveratrol on Plasma
    Lipoprotein Cholesterol Levels in Hamsters
    Control Pterostilbene* Resveratrol*
    AVG SEM AVG SEM AVG SEM
    Plasma Lipoprotein Cholesterol (mg/dL)
    VLDL 99.3 15.3 82.7 15.7 83.6 13.0
    LDL 320.9 4.9 228.1 4.2 257.4 8.0
    HDL 127.4 1.1 137.0 2.1 127.1 20.0
    Total 547.6 6.7 447.8 5.6 468.2 8.7
    LDL/HDL 2.6 0.37 1.8 0.39 2.2 0.62
    Final Weights (g)
    Body wt 100.9 2.0 110.5 2.7 109.5 3.2
    Liver wt 6.6 0.18 7.9 0.28 7.6 0.33
    Liver/Body 6.6 0.09 7.1 0.12 6.9 0.10
    Plasma glucose 216.5 10.1 185.1 8.7 191 7.7
    N 10 8 8

    *Concentration: 25 ppm
  • In addition, at the same time the feeding experiments with pterostilbene and resveratrol were done, two tomato and five eggplant varieties were also tested. Freeze-dried plant materials were fed at about 10% of total diet. Test substances (pterostilbene and resveratrol) were found to be more effective than the plant materials for lowering the plasma cholesterol levels (data not shown).
  • Differences between treatments were tested by two-tailed t-test assuming equal variance, and were considered significant at p<0.05.
  • All publications and patents mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent was specifically and individually indicated to be incorporated by reference.
  • It is understood that the foregoing detailed description is given merely by way of illustration and that modifications and variations may be made therein without departing from the spirit and scope of the invention.

Claims (9)

1. A pharmaceutical composition comprising a therapeutically effective amount of pterostilbene and a pharmaceutically acceptable carrier.
2. The pharmaceutical composition of claim 1 wherein the therapeutically effective amount of pterostilbene is an amount sufficient to lower lipid levels in an individual.
3. A nutraceutical composition comprising an amount of pterostilbene sufficient to lower lipid levels in an individual and a nutraceutically acceptable carrier.
4. The nutraceutical composition of claim 3 wherein the composition comprises extracts of grapes or berries of Vaccinium and a nutraceutically acceptable carrier.
5. A method of lowering lipid levels in an individual comprising administering to an individual a therapeutically effective amount of the composition of claim 1.
6. A method of treating dyslipidemias in individuals at risk of cardiovascular disease by administering to an individual a therapeutically effective amount of the composition of claim 1.
7. A method of lowering lipid levels in an individual comprising administering to an individual an effective amount of the composition of claim 3 or claim 4.
8. A kit for the treatment of dyslipidemias, wherein the kit comprises:
a composition comprising an effective amount of pterostilbene according to claim 1;
and a container housing the composition.
9. A kit for lowering lipid levels in an individual, wherein the kit comprises:
a composition according claim 3 or claim 4; and a container housing the composition.
US11/207,038 2004-08-19 2005-08-18 Pterostilbene as a new agonist for the peroxisome proliferator-activated receptor alpha isoform Abandoned US20060057231A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/207,038 US20060057231A1 (en) 2004-08-19 2005-08-18 Pterostilbene as a new agonist for the peroxisome proliferator-activated receptor alpha isoform
US12/911,376 US8133917B2 (en) 2004-08-19 2010-10-25 Pterostilbene as an agonist for the peroxisome proliferator-activated receptor alpha isoform
US13/363,959 US8252845B1 (en) 2004-08-19 2012-02-01 Pterostilbene as an agonist for the peroxisome proliferator-activated receptor alpha isoform

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US60278404P 2004-08-19 2004-08-19
US11/207,038 US20060057231A1 (en) 2004-08-19 2005-08-18 Pterostilbene as a new agonist for the peroxisome proliferator-activated receptor alpha isoform

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/911,376 Division US8133917B2 (en) 2004-08-19 2010-10-25 Pterostilbene as an agonist for the peroxisome proliferator-activated receptor alpha isoform

Publications (1)

Publication Number Publication Date
US20060057231A1 true US20060057231A1 (en) 2006-03-16

Family

ID=35908241

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/207,038 Abandoned US20060057231A1 (en) 2004-08-19 2005-08-18 Pterostilbene as a new agonist for the peroxisome proliferator-activated receptor alpha isoform
US12/911,376 Expired - Fee Related US8133917B2 (en) 2004-08-19 2010-10-25 Pterostilbene as an agonist for the peroxisome proliferator-activated receptor alpha isoform
US13/363,959 Active US8252845B1 (en) 2004-08-19 2012-02-01 Pterostilbene as an agonist for the peroxisome proliferator-activated receptor alpha isoform

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/911,376 Expired - Fee Related US8133917B2 (en) 2004-08-19 2010-10-25 Pterostilbene as an agonist for the peroxisome proliferator-activated receptor alpha isoform
US13/363,959 Active US8252845B1 (en) 2004-08-19 2012-02-01 Pterostilbene as an agonist for the peroxisome proliferator-activated receptor alpha isoform

Country Status (2)

Country Link
US (3) US20060057231A1 (en)
WO (1) WO2006020999A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008070872A1 (en) * 2006-12-07 2008-06-12 Rutgers, The State University Of New Jersey Prevention and treatment of colon cancer
US20090069444A1 (en) * 2007-09-07 2009-03-12 The United States Of America, As Represented By Th E Secretary Of Agriculture Method to Ameliorate Oxidative Stress and Improve Working Memory Via Pterostilbene Administration
US20100119499A1 (en) * 2009-09-17 2010-05-13 Kneller Bruce W Stilbene-based compositions and methods of use therefor
KR101018405B1 (en) 2008-10-13 2011-02-28 한국생명공학연구원 Compositions for the prevention and treatment of obesity comprising extracts of Vaccinium oldhami Miquel leaf as an active ingredient
WO2012154956A3 (en) * 2011-05-11 2013-01-24 The United States Of America, As Represented By The Secretary Of Agriculture Anxiolytic effect of pterostilbene
US20130136778A1 (en) * 2009-10-30 2013-05-30 Green Molecular, S.L. Pterostilbene (pter) for use in the prevention and/or treatment of skin diseases, damages or injuries
US20130296441A1 (en) * 2012-05-03 2013-11-07 Agnes Rimando Anti-Obesity Properties of Pterostilbene
US8846061B1 (en) * 2011-03-08 2014-09-30 Mark S. Bezzek Multivitamin-mineral regimens for longevity and wellness

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006020999A2 (en) * 2004-08-19 2006-02-23 The United States Of America, As Represented By The Secretary Of Agriculture Pterostilbene as a new agonist for the peroxisome proliferator-activated receptor alpha isoform
US20130072509A1 (en) * 2011-09-15 2013-03-21 ChromaDex Inc. Pterostilbene and statin combination for treatment of metabolic disease, cardiovascular disease, and inflammation
US20130149277A1 (en) * 2011-12-13 2013-06-13 Cliffstar Llc Pterostilbene and pvp grape juice extract combination for treatment of metabolic, vascular, and neurodegenerative disorders
CN102936546B (en) * 2012-11-29 2013-12-11 刘淑银 Health-care wine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788183A (en) * 1987-11-30 1988-11-29 Schering Corporation Method for treatment of dyslipidemia in humans
US6190716B1 (en) * 1999-02-17 2001-02-20 Scott O. Galbreath, Jr. Method for preparing a grape derived product
US20020028852A1 (en) * 1999-09-21 2002-03-07 Geetha Ghai Resveratrol analogs for prevention of disease
US20050038125A1 (en) * 2003-08-15 2005-02-17 Smit Hobbe Friso Method for the treatment of arthritis and pain
US20050049208A1 (en) * 2003-09-03 2005-03-03 Kaufmann Doug A. Method of treating and method of preventing diabetes
US7361374B2 (en) * 2002-05-17 2008-04-22 S.S. Steiner, Inc. Application for hop acids as anti-microbial agents

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006020999A2 (en) * 2004-08-19 2006-02-23 The United States Of America, As Represented By The Secretary Of Agriculture Pterostilbene as a new agonist for the peroxisome proliferator-activated receptor alpha isoform

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788183A (en) * 1987-11-30 1988-11-29 Schering Corporation Method for treatment of dyslipidemia in humans
US6190716B1 (en) * 1999-02-17 2001-02-20 Scott O. Galbreath, Jr. Method for preparing a grape derived product
US20020028852A1 (en) * 1999-09-21 2002-03-07 Geetha Ghai Resveratrol analogs for prevention of disease
US7361374B2 (en) * 2002-05-17 2008-04-22 S.S. Steiner, Inc. Application for hop acids as anti-microbial agents
US20050038125A1 (en) * 2003-08-15 2005-02-17 Smit Hobbe Friso Method for the treatment of arthritis and pain
US20050049208A1 (en) * 2003-09-03 2005-03-03 Kaufmann Doug A. Method of treating and method of preventing diabetes

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008070872A1 (en) * 2006-12-07 2008-06-12 Rutgers, The State University Of New Jersey Prevention and treatment of colon cancer
US8426369B2 (en) 2006-12-07 2013-04-23 Rutgers, The State University Of New Jersey Prevention and treatment of colon cancer
US20090069444A1 (en) * 2007-09-07 2009-03-12 The United States Of America, As Represented By Th E Secretary Of Agriculture Method to Ameliorate Oxidative Stress and Improve Working Memory Via Pterostilbene Administration
WO2009032870A3 (en) * 2007-09-07 2009-05-22 Us Agriculture Method to ameliorate oxidative stress and improve working memory via pterostilbene administration
CN101820869A (en) * 2007-09-07 2010-09-01 美国农业部 By using the method that pterostilbene alleviates oxidative stress and improves working memory
KR101018405B1 (en) 2008-10-13 2011-02-28 한국생명공학연구원 Compositions for the prevention and treatment of obesity comprising extracts of Vaccinium oldhami Miquel leaf as an active ingredient
US20100119499A1 (en) * 2009-09-17 2010-05-13 Kneller Bruce W Stilbene-based compositions and methods of use therefor
AU2010311326B2 (en) * 2009-10-30 2016-10-06 Green Molecular, S.L Pterostilbene (PTER) for use in the prevention and/or treatment of skin diseases, damages or injures
US20130136778A1 (en) * 2009-10-30 2013-05-30 Green Molecular, S.L. Pterostilbene (pter) for use in the prevention and/or treatment of skin diseases, damages or injuries
AU2016234952B2 (en) * 2009-10-30 2018-08-16 Green Molecular, S.L Pterostilbene (PTER) for use in the prevention and/or treatment of skin diseases, damages or injures
US8846061B1 (en) * 2011-03-08 2014-09-30 Mark S. Bezzek Multivitamin-mineral regimens for longevity and wellness
US9161565B1 (en) 2011-03-08 2015-10-20 Mark S. Bezzek Multivitamin-mineral regimens for longevity and wellness
US9167839B1 (en) 2011-03-08 2015-10-27 Mark S. Bezzek Multivitamin-mineral regimens for longevity and wellness
WO2012154956A3 (en) * 2011-05-11 2013-01-24 The United States Of America, As Represented By The Secretary Of Agriculture Anxiolytic effect of pterostilbene
US20130296441A1 (en) * 2012-05-03 2013-11-07 Agnes Rimando Anti-Obesity Properties of Pterostilbene

Also Published As

Publication number Publication date
WO2006020999A2 (en) 2006-02-23
WO2006020999A3 (en) 2006-10-12
US8133917B2 (en) 2012-03-13
US8252845B1 (en) 2012-08-28
US20110060060A1 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
US8133917B2 (en) Pterostilbene as an agonist for the peroxisome proliferator-activated receptor alpha isoform
Fernandes et al. Influence of rutin treatment on biochemical alterations in experimental diabetes
Ling et al. Hypolipidemic effect of pure total flavonoids from peel of Citrus (PTFC) on hamsters of hyperlipidemia and its potential mechanism
Kwon et al. Platyconic acid, a saponin from Platycodi radix, improves glucose homeostasis by enhancing insulin sensitivity in vitro and in vivo
Airaodion et al. Effect of methanolic extract of Corchorus olitorius leaves on hypoglycemic and hypolipidaemic activities in albino rats
US20110071221A1 (en) Method for treating conditions mediated by ppar using macelignan
Itoh et al. Hypoglycemic effect of hot-water extract of adzuki (Vigna angularis) in spontaneously diabetic KK-Ay mice
Shih et al. Synergistic effect of cyanidin and PPAR agonist against nonalcoholic steatohepatitis-mediated oxidative stress-induced cytotoxicity through MAPK and Nrf2 transduction pathways
Ku et al. Hypolipidemic effect of a blue-green alga (Nostoc commune) is attributed to its nonlipid fraction by decreasing intestinal cholesterol absorption in C57BL/6J Mice
Dziadek et al. Intake of fruit and leaves of sweet cherry beneficially affects lipid metabolism, oxidative stress and inflammation in Wistar rats fed with high fat-cholesterol diet
CN101233145B (en) Agent for amelioration of insulin resistance
US20110184027A1 (en) Tissue selective stearoyl-coa desaturase 1 inhibitors and cell based screening assay for their identification
KR100830192B1 (en) Composition for preventing or treating a PPAR-mediated disease comprising macelignan or pharmaceutically acceptable salt thereof as a active ingredient
KR100314999B1 (en) Herbal Medicine for the Treatment of Antibacterial and Inflammatory Diseases
Roussel et al. Antihyperglycemic and antihyperlipidemic activities of hydroethanolic extract of the fruit of Baillonella toxisperma in streptozotocin-induced diabetic rats
JPWO2005063233A1 (en) Composition for preventing and treating liver cancer
Maharana et al. Assessment of antihyperglycaemic and antioxidant and potential of leaves of Solanum nigrum Linn. in alloxan induced diabetic rats
KR20140138275A (en) Herbal compositions for the treatment of metabolic disorders
Zhang et al. By‐Products of Zea mays L.: A Promising Source of Medicinal Properties with Phytochemistry and Pharmacological Activities: A Comprehensive Review
Yun et al. Aronia upregulates myogenic differentiation and augments muscle mass and function through muscle metabolism
Bahnasy et al. Effect of quinoa (Chenopodium quinoa) on Lipid Profile in Rats Exposed to twoSynthetic Food colors
Shafie et al. Linseed as a functional food for the management of obesity
Martial et al. Effect of aqueous extract of Linn. leaves on the onset of Clerodendrum thomsoniae hyperlipidaemia and the inhibition of gain mass on wistar rats
Hoang et al. Hypolipidaemic Effects of (24 R)-4 α-methyl-5 α-stigmasta-7, 22-dien-3 β-ol Derived from Aurantiochytrium mangrovei BT3 in the HEPG2 Cell Line
JP6306634B2 (en) Composition for food

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE UNITED STATES OF AMERICA, AS REPRESENTED BY TH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RIMANDO, AGNES M.;YOKOYAMA, WALLACE H.;REEL/FRAME:017079/0846;SIGNING DATES FROM 20051019 TO 20051025

AS Assignment

Owner name: MISSISSIPPI, UNIVERSITY OF THE, MISSISSIPPI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FELLER, DENNIS RUDOLPH;REEL/FRAME:017114/0303

Effective date: 20051028

AS Assignment

Owner name: AGRICULTURE, UNITED STATES OF AMERICA, AS REPRESEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RIMANDO, AGNES M.;YOKOYAMA, WALLACE H.;REEL/FRAME:017124/0238;SIGNING DATES FROM 20051019 TO 20051025

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION