US20080203115A1 - Bottle for containing and dispensing liquids - Google Patents

Bottle for containing and dispensing liquids Download PDF

Info

Publication number
US20080203115A1
US20080203115A1 US12/035,252 US3525208A US2008203115A1 US 20080203115 A1 US20080203115 A1 US 20080203115A1 US 3525208 A US3525208 A US 3525208A US 2008203115 A1 US2008203115 A1 US 2008203115A1
Authority
US
United States
Prior art keywords
bladder
fluid
exoskeleton
housing
dispensing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/035,252
Inventor
Roger J. LaFlamme
Jim F. Warner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
POLY-D LLC
Poly D LLC
Original Assignee
Poly D LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Poly D LLC filed Critical Poly D LLC
Priority to US12/035,252 priority Critical patent/US20080203115A1/en
Assigned to POLY-D, LLC reassignment POLY-D, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WARNER, JIM F., LAFLAMME, ROGER J.
Publication of US20080203115A1 publication Critical patent/US20080203115A1/en
Assigned to SEALED AIR CORPORATION (US) reassignment SEALED AIR CORPORATION (US) SECURITY AGREEMENT Assignors: POLY-D LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/1028Pumps having a pumping chamber with a deformable wall
    • B05B11/1032Pumps having a pumping chamber with a deformable wall actuated without substantial movement of the nozzle in the direction of the pressure stroke
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/02Membranes or pistons acting on the contents inside the container, e.g. follower pistons
    • B05B11/026Membranes separating the content remaining in the container from the atmospheric air to compensate underpressure inside the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Definitions

  • This invention relates generally to dispensing devices and packages. More specifically, the present invention relates to metering devices that can controllably dispense fluid media from a source of fluid media while providing an overall package configuration that remains substantially the same throughout the life of the use of the container even though the volume of the supply of media to be dispensed is being depleted.
  • fluid material and media are employed for different purposes through commerce and industry.
  • various products in the personal care, home care, air care, transportation care, and food industries that require some type of dispensing of a fluid material from a source of such material.
  • this material When this material is sold in commerce, it must be contained and stored in some type of container. When that product is used, it must be dispensed from its storage container to a location for use.
  • a flexible container body with a nozzle tip is commonly provided for such a purpose.
  • An application of such use is for the dispensing of ketchup where the container body is squeezed by the user to urge the fluid material out from the nozzle tip and accurately to a desired location.
  • the amount of fluid delivered is determined by the how much the user squeezed the container body.
  • this yields erratic results where more or less fluid material is delivered on each successive squeeze of the container body.
  • the container must be held upright to avoid leakage because no valves are employed. Therefore, there is a need for a dispensing package that can deliver the media contained therein a controlled and metered fashion.
  • a flexible container holds a volume of fluid material to be delivered.
  • a single one-way check valve is provided as an exit port from the flexible container. When the flexible body is squeezed, the material is urged out under pressure through the valve.
  • Ser. No. 11/074,817 filed on Mar. 8, 2005
  • U.S. Ser. No. 11/951,351 filed on Dec. 6, 2007
  • a dual valve construction is employed to provide for controlled metered dispensing of media from a package.
  • these known devices require that the entire package be disposed of when the supply of media to be dispensed has been depleted.
  • a fluid dispenser to be easy to operate.
  • a fluid dispenser to be capable of delivering a metered dose of fluid upon each dispensing operation for expected flow for better application of the fluid material.
  • a dispenser to be less wasteful than prior art dispensers.
  • a bottle that is capable of containing and dispensing liquid that is simple and intuitive for the user to operate.
  • the present invention preserves the advantages of prior art dispensing devices. In addition, it provides new advantages not found in currently available devices and overcomes many disadvantages of such currently available devices.
  • the invention is generally directed to a novel and unique container that is capable of storing and dispensing liquid.
  • the invention is also directed to a container that optionally can deliver a substantially equal metered dose of media fluid material upon each dispensing operation while not requiring that the entire dispenser be replaced when the media is depleted.
  • the fluid dispensing device includes a container with an independently deformable bladder therein.
  • a nozzle is in fluid communication with the bladder that contains a volume of liquid for dispensing.
  • a flexible and/or compressible outer exoskeleton is preferably provided that maintains the bladder and the overall structure of the device in an upright or desired position an configuration. When the outer flexible and/or compressible exoskeleton is squeezed, the bladder container or retained therein is compressed thereby urging liquid from the storage bladder and out through the nozzle for dispensing.
  • the nozzle may be of any configuration, such as a pin hole tip, slit, atomizer, or the like to suit the desired application at hand.
  • the bladder includes a pump and dispensing system that can deliver the media in a dosed and metered fashion.
  • the container provides a outer exoskeleton that is preferably rigid but may also be semi-rigid to receive the internal dispensing bladder.
  • the internal bladder When the internal bladder is depleted of media for dispensing, it may be simply removed and replaced with a new bladder while leaving the outer rigid exoskeleton container housing for re-use. This substantially saves on cost in that the outer housing need not be replaced entirely each time when the supply bladder is empty.
  • the internal bladder and outer housing may be in any form or configuration to suit the dispensing application at hand.
  • a pump and valve configuration may be employed to assist in moving liquid from the storage bladder and through the nozzle.
  • a flexible metering housing be disposed in fluid communication with the fluid storage region of the internal bladder with a first one-way valve disposed between the container and the flexible metering housing.
  • One way flow from the interior fluid storage region of the container fills the predetermined volume of the metering chamber with fluid by vacuum action when the flexible metering housing is depressed and then released.
  • a second valve is in fluid communication with the metering housing output port and permits one-way fluid flow from the metering chamber to the exterior outer region of the container to a desired position when the metering housing is depressed again.
  • an additional applicator layer on the outside of container such as foam, facilitates dispersion and delivery of the fluid.
  • the internal deformable bladder of the present invention may reside in the outer exoskeleton housing in many different ways with the pump dispensing mechanism exposed for manipulation by a user. For example, it may snap into the housing where the door of the housing secures the internal bladder in place during the use. The door may be easily opened to remove the bladder when it is empty and replace it with a new full bladder.
  • Another object of the present invention is to provide a bottle that can be squeezed to dispense the liquid while maintaining a consistent and aesthetically pleasing appearance at all times during use of the bottle.
  • FIG. 1 is a perspective view of the bottle for containing and dispensing liquids of the present invention when in a full condition;
  • FIG. 2 is a perspective view of the bottle for containing and dispensing liquids of the present invention when in a substantially depleted condition;
  • FIG. 3 is a perspective view of an alternative embodiment of the present invention, in a full condition, using a metering pump to assist in dispensing of the liquid;
  • FIG. 4 is a perspective view of the alternative embodiment of the present invention of FIG. 3 , in a substantially depleted condition, using a metering pump to assist in dispensing of the liquid;
  • FIG. 5 is a cross-section view through the line 5 - 5 of FIG. 1 ;
  • FIG. 6 is a cross-sectional view of a metering dispensing pump mechanism that can be employed to pull media from an internal deformable of the present invention
  • FIG. 7 is a front perspective view of another embodiment of the bladder and pump construction in accordance with the present invention.
  • FIG. 8 is a cross-sectional view through the line 8 - 8 of FIG. 7 ;
  • FIG. 9 is a cross-sectional view through the line 8 - 8 of FIG. 7 showing the pump and bladder in the process of dispensing fluid.
  • novel features of the present invention relate to a metered dosing/dispensing container wherein there is an outer shape and an inner bladder, and where the inner bladder can contract independently of the outer container housing.
  • the inner bladder can replaced, when empty, independently of the outer housing.
  • the outer housing can be rigid or semi-rigid, allowing it to maintain a form independent or partially independent from the shape of the inner bladder configuration.
  • the outer housing or exoskeleton is preferably made of a resilient foam that can return to its original shape after it is compressed or otherwise manipulated by a user.
  • FIGS. 1 and 2 a preferred embodiment 10 of the present invention is shown in detail.
  • a bottle for containing and dispensing liquid is shown.
  • the container 10 of the present invention is in the form of a bottle, such as a shampoo bottle, that has an internal yet visible rectangular-shaped bladder 14 that contains the liquid 16 to be dispensed.
  • the rectangular housing 12 Surrounding the rectangular housing 12 is a semi-rigid foamed exoskeleton providing for a stand-up structure and aesthetics.
  • the exoskeleton housing 12 is flexible and be easily compressed to, in turn, compress and collapse the bladder 14 .
  • the exoskeleton 12 is squeezed in the general direction indicated by arrows A to, in turn, collapse the bladder 14 gradually thereby urging liquid 16 contained in the bladder 14 out through the nozzle 18 . Since the exoskeleton 12 is made of a resilient material, such as foam, it quickly returns to its original shape, as seen in FIG. 1 even though the bladder 14 , that is carrying and retaining it, is being depleted of liquid 16 . As the exoskeleton housing 12 is repeatedly squeezed for each successive use, the bladder 14 becomes more and more collapsed in shape until it becomes completely or substantially empty of liquid 16 .
  • FIG. 2 shows the container 10 in an empty condition. It should be particularly noticed that the overall shape of the container 10 remains essentially the same even though the bladder 14 is completely empty. This is important as this unique construction of the present invention enables the bottle container 10 to remain aesthetically pleasing over the use and depletion of the device from liquid 16 .
  • the bladder 14 can be either respectively integrated into the exoskeleton 12 or separable so that it can be easily replaced, as discussed above. Because one surface of the rectangular bladder 14 is visible to the user, the volume of remaining fluid can be judged.
  • the housing exoskeleton 12 in the example of the preferred embodiment of FIGS. 1 and 2 , has one large cut-way 20 to serve as a window to view the bladder 14 . Because the exoskeleton 12 is preferably compressible foam, or similar material, most or all of the internal liquid 16 can be dispensed. In fact, the device 10 can even be “wrung out” like a towel to urge virtually all of the liquid 16 from the bladder 14 for use. Even after this, due to the resilient nature of the exoskeleton 12 , the overall shape of the device 10 will return to its original condition even though the bladder 14 is depleted of liquid 16 .
  • the internal bladder 14 can be constructed to specifically allow for expansion in a number of ways.
  • the internal bladder 14 is formed from an elastic or balloon like material which expands when filled, but contracts when empty. The elasticity of the bladder 14 system can actually assist in the pumping of the liquid 16 .
  • the bladder 14 can be surrounded wholly or partially with an elastic material providing for the contraction.
  • the internal bladder 14 can be elastic or non-elastic, with the elasticity of the external wrapping of the bladder 14 providing for additional force in contracting the shape of the bladder 14 .
  • the bladder 14 can be designed with pleats or other folded geometries allowing for it to expand and contract in a predetermined geometry.
  • An example of such an embodiment would be a bladder 14 formed in an accordion or bellows-like structure allowing for the bladder 14 to expand or contract in length, as seen in FIGS. 1 and 2 .
  • An accordion or otherwise pleated bladder 14 can contract into a very small shape when evacuated, but expand into a cylindrical or rectangular shape as the accordion structure expands.
  • the bladder 14 could be of any shape to provide an aesthetically pleasing appearance whether in a full condition, empty condition or any condition therebetween.
  • the exoskeleton 12 can be transparent, translucent or opaque with windows 20 to enhance the visual appeal of the product.
  • the bladder 14 itself can be a configuration that contracts in the X, Y or Z direction or any combination thereof.
  • the bladder may be a pleated balloon that collapses in the X, Y and Z directions at the same time to provide a unique visual effect as the media is depleted from the dispenser over time. It is also possible that the bladder 14 twists or rotates as it is depleted of dispensed media.
  • the device of FIGS. 1 and 2 is compressed in the general direction indicated by arrows A to urge liquid upward through the nozzle in the direction indicated by arrow B.
  • the rigid or semi-rigid housing exoskeleton 12 could be designed to have openings or holes 20 , as mentioned above, of any kind to serve as a window to allow visibility of the internal bladder structure 14 .
  • the openings is shown as one large U-shaped cut-out of open space but the housing exoskeleton 12 could be fabricated to have small windows or cut-out through which the use can monitor the volume of liquid 16 remaining the bladder 14 .
  • FIGS. 3-5 if the dispenser 100 is for dispensing shampoo 102 , in similar fashion to the bottle of FIGS. 1 an 2 , however this embodiment employs a metering dispensing pump to assist in delivering the liquid through the nozzle.
  • a metering dispensing pump it is desirable to have the liquid shampoo exit at the top of the dispenser 100 via exit port 104 .
  • an outer exoskeleton 106 contains and provides support for a bladder 108 that contains liquid 102 , such as shampoo.
  • Metering dispensing pump 110 resides between and is in fluid communication between the bladder 108 and the exit port 104 .
  • FIG. 3 shows the bladder 108 substantially full of liquid 102 .
  • FIG. 4 shows the bladder 108 in a substantially empty state as virtually all of the liquid 102 has been dispensed. It should be particularly noted that the shampoo container 100 remains upright and still substantially in its original shape and configuration even though the bladder 108 has been emptied.
  • the outer exoskeleton 106 need not be made of a compressible material as in the preferred embodiment of FIGS. 1 and 2 because the metering pump 110 is used to draw liquid 102 from the bladder 108 rather than by forcing it out through the nozzle 104 by squeezing the sides of the flexible exoskeleton outer housing 106 .
  • the construction of the bladder 14 will be discussed in detail in connection with the embodiment of FIGS. 1 and 2 .
  • the bladder of the embodiment of FIGS. 3-5 may be made in the same way.
  • the bladder 14 can be formed from bonding two sheets of thermoplastic films into a flat shape or a fixed geometry such as a rectangle or any other outlined form, and the expansion and contraction can take place within that welded flat shape. In such a case, the bladder 14 will expand or contract by becoming thicker or thinner, but the basic 2-dimensinal outline shape of the sealed bladder 14 will remain the same.
  • the inner bladder 14 can be constructed into a simple shape, but be made with sidewalls so it has some three dimensional geometry.
  • An example of a rectangular bladder with sidewalls can be seen in FIGS. 3-5 .
  • the container of the present invention is in the form of a bottle that has an internal yet visible rectangular-shaped bladder 108 that contains the liquid 102 to be dispensed.
  • a semi-rigid foamed exoskeleton 106 Surrounding the rectangular bottle is a semi-rigid foamed exoskeleton 106 providing for a stand-up structure and aesthetics.
  • FIG. 4 shows the container in an empty condition.
  • the bladder 14 , 108 can be either respectively integrated into the exoskeleton 12 , 106 or separable so that it can be easily replaced, as discussed above. Because one surface of the rectangular bladder 108 is visible to the user, the volume of remaining fluid 102 can be judged. Essentially, the housing exoskeleton 106 , in this example, has one large cut-way to serve as a window to view the bladder 108 . Because the system is preferably vacuum driven, most or all of the internal liquid 102 can be dispensed without having to turn the bottle 100 in an alternate orientation.
  • FIG. 5 shows a cross-sectional view through the line 5 - 5 of FIG. 3 to illustrate the general construction of the housing exoskeleton 106 and the bladder 102 .
  • the bladder 108 containing liquid 102 , resides between walls of the housing 106 .
  • the housing 106 retains its shape even thought the bladder 108 is gradually collapsing over time as liquid 102 is depleted from the bladder 108 .
  • the container 10 of FIGS. 1 and 2 is preferably made using the same construction.
  • FIG. 6 shows a first embodiment of a mechanism that can be used a metering dispensing pump, referred to as 218 for dispensing the liquid 16 in a device of the present invention of FIGS. 3-5 that uses a metering dispensing pump to assist in delivering the liquid.
  • Bladder 202 contains liquid 16 .
  • a flexible dome 204 pulls liquid 16 upwardly through first valve 206 to fill metering chamber 208 .
  • the first valve closes and liquid 16 is urged out through exit port 210 .
  • the exit port 210 acts as a second valve and, when liquid is not being pumped, the distance A is substantially reduced so that opposing sides of the exit port seal the dispenser to prevent accident dispensing.
  • the dome 204 is pressed and liquid 16 is urged out through the exit port 210 to expand it temporarily to permit outflow of liquid 16 , as desired.
  • FIGS. 7-9 Another embodiment of the metering dispensing pump is shown in FIGS. 7-9 .
  • FIG. 7 a perspective view of a metering dispenser 300 that employs the improved valving in accordance with the present invention.
  • An outer storage bladder 320 is provided that may be formed of two sheets of material 304 , 306 secured together, such as by welding, or a tube of material.
  • a metering pump, generally referred to as 326 pulls liquid 302 from the bladder 320 , meters it, and then dispenses it via an exit port 308 .
  • the dispending of liquid 302 is shown.
  • the user's thumb 430 can depress the flexible dome 404 and the user's index finger 432 can invert the base plate 410 from convex to concave, by application of force against the stand-off legs 424 , such that flexible dome 404 , with the assistance of the stand-off legs 422 under the flexible dome, securely seals and provides a positive lock of the flapper valve 408 over and about the aperture 412 thereby closing the liquid flow passage back into the reservoir 434 of the storage container 320 . It is also possible that the base plate 410 is concave and then is inverted to a convex configuration.
  • the only path for the liquid 302 contained within the cavity 405 of dome 404 is to exit through the one-way outlet valve 436 for intended dispensing of the product, as indicated by the arrows in FIG. 14 .
  • the stand-off legs 422 on the bottom of the flexible dome housing 404 and the stand-off legs 424 on the bottom of the base plate 410 can be modified in size, length and configuration to adjust the amount of squeezing necessary by the user's fingers 430 , 432 to effectuate sealing of the flapper valve 408 .
  • preferably four stand-off legs 422 are provided on the bottom of the flexible dome housing 404 in a 2 ⁇ 2 array and can be 1/32 of an inch in length. It is also possible that these stand-off legs 422 can be a single downwardly depending wall, such as in the shape of a circle or square. Such an array is configured to downwardly press against the one-way flapper valve 408 outside of the diameter of the aperture 412 through the base plate 410 to provide a good seal of the flapper valve 408 to the base plate 410 .
  • FIG. 8 illustrates further structure to prevent unwanted dispensing of liquid.
  • automatic shut-off of the exit port passageway 436 when pressure is exerted on the exterior of the storage container 320 , serves to prevent leakage.
  • the exit port passageway 436 when pressured is applied to the outside of the storage container or pouch 320 , as indicated by arrows referenced A, the exit port passageway 436 tends to collapse, flatten and squeeze closed. As a result, any material residing in the passageway is urged back into the cavity 405 of the flexible dome housing 404 , as indicated by arrow referenced B. As a result, unwanted leakage is prevented when accidental or unintentional pressure is placed on the storage container 320 .
  • FIG. 6 is generally shown as a vertically oriented bladder and pump construction while the construction 300 in FIGS. 7-9 shows a lateral design which may be more suitable in certain dispensing environments.
  • the design in FIGS. 7-9 also show a certain configuration of the metering capability of a pump using in the present invention.
  • the housing exoskeleton can be designed to provide many features including aesthetics and graphics, stand-up structure, hanging or positioning or attachments features etc. Since the housing exoskeleton remains upright, assembled and in its form as originally purchased, the outer appearance of the product will not degrade over time as the media therein is depleted. Also, an indicia thereon, such as product information and logos can remain prominently displayed throughout the life of the product.
  • the bladder 14 , 108 is able to expand and contract independently from the exoskeleton 12 , 106 of the container, and the exoskeleton 12 , 106 provides for external shape or appearance.
  • the exoskeleton 12 , 106 of the container 10 , 100 can be constructed from any materials that are commonly used for this purpose, including plastic such as polypropylenes, polyethylenes, polyesters, ABS, polystyrene, vinyl, metal, wood, rubber, or any other suitable material. It can also be made of more expensive durable materials such as glass, crystal, gold, silver or other metals, wood, epoxies or other materials that can be crafted into desirable shapes.
  • the exoskeleton 12 of the container 10 may have apertures 20 or openings that allow the user to see through the exoskeleton 12 into the internal bladder 14 , or may even be made of a very fine structure where most of the bladder 14 is openly visible.
  • the exoskeleton 12 may be made of fully transparent or partially transparent materials allowing the user to see the state of the inner bladder 14 .
  • the exoskeleton 12 may be completely opaque or partially opaque.
  • the exoskeleton 12 is opaque and the user cannot see the internal bladder 14 it may be beneficial to have a visual indicator or gauge visible on the exoskeleton 12 that can show the approximate level of fluid 16 remaining in the internal bladder 14 or the size of the internal bladder 14 .
  • the inner bladder 14 (and dosing pump 110 in FIGS. 3-5 ) are easily removable or replaceable individually or as a unit, so that the exoskeleton 14 can be refilled on an ongoing basis, as needed.
  • the exoskeleton 14 can be made using injection molding, blow molding, casting, milling, or any other forming or fabrication techniques, and can be made from both solid materials or foamed materials or combinations thereof.
  • a door or other containment structure is preferably used to retain the internal bladder 14 in place in the housing exoskeleton 12 during use.
  • the internal bladder 108 system with metered dosing pump 110 may be removable and replaceable within the same exoskeleton 106 so that the housing exoskeleton 106 can be re-used.
  • the exoskeleton 106 is made from more expensive or higher-grade materials, this may be highly desirable. It may also be desirable, for ecological reasons, to have the bladder 108 and pump component 110 replaceable even when the exoskeleton 106 is made from relatively less expensive materials. In such cases, the internal bladder 108 will take up less packaging and shipping materials, and can be easily made to be fully recyclable.
  • the user can purchase a completely sealed inner bladder 108 with metered dosing pump component 110 in the form of a cartridge-like unit, and replace the unit within the exoskeleton 106 when the bladder 108 is empty.
  • the exoskeleton 106 could be formed from glass or crystal allowing for a highly decorative container with the inner bladder being replaceable or refillable. Even in cases where the exoskeleton 106 is made from less expensive materials, it may still be desirable to allow for replacement or refilling of the internal bladder 108 and pump component 110 as a unit, as this method of packaging liquids may be more environmentally friendly than current methods, since the exoskeleton 106 shape will be retained and not sent to a landfill.
  • a housing exoskeleton 106 and pump mechanism 110 that are permanently attached to one another where the bladder 108 alone is replaced when empty.
  • the bladder 108 is received in the exoskeleton housing 106 for interface by the pump 110 for dispensing, such as by piercing and the like.
  • the present invention addresses the concerns found in the prior art. It can dispense almost all of the liquid 16 in the bladder 14 , since it can be “wrung out”, as in FIGS. 1 and 2 or by vacuum pump as in FIGS. 3-5 using the pumps in FIGS. 6-9 .
  • the user can conveniently refill the unit, by simply dropping in a pre-packaged filled bladder 14 . It can be designed to allow the user to see the level of fluid 16 remaining through transparency or openings in the exoskeleton 12 .
  • the metered dosing pump 18 can be part of the bladder assembly 14 itself, so it gets replaced with each refill of the product.
  • the exoskeleton 12 is preferably made from semi-rigid material such as a foamed plastic or a laminate of plastic films or foams. In such cases, the exoskeleton 12 still provides sufficient structure to maintain its shape despite the change in shape of the internal bladder 14 .
  • the exoskeleton 12 itself can be a fluid bladder for containing liquid and dispensing liquid therefrom. Also, the exoskeleton 12 can be designed to change shape as well, but the internal bladder 14 is free to move either completely independently or partially independently of the external shape.
  • the exoskeleton is preferably easily compressible so that it can be manipulated from the outside by a user to, in turn, collapse the bladder for liquid dispensing while still being rigid enough to maintain the desired resting shape of the container.
  • a compressible, rigid or semi-rigid exoskeleton can be used.
  • the present invention can be used in a variety of configurations. In many cases it would be constructed as a single use disposable consumer package, but in other cases it could be a refillable product with either a low end or high end exoskeleton package that it could be placed into.
  • the present invention may be more environmentally friendly allowing for the user to maintain the external structure while replacing the internal bladder only. Another advantage is that in the present invention the user may be able to see specifically the quantity of fluid left in the dispensing device, since the bladder 14 may be visible through openings 20 or the transparency of the exoskeleton 12 . In addition, in cases where the bladder 14 is made from an elastic material or surrounded by an elastic material, the force of the contracting elasticity on the bladder assist in the evacuation of the liquid in the pumping process. Additionally, the present invention allows for a constant pleasing shape of the external container 10 as the inner chamber is evacuated, but does allow for full evacuation of the internal liquids 16 .
  • the overall shape of the device 10 does not have to change as the liquid 16 is depleted.
  • the present invention also allows for a package 10 wherein most or all of the fluid 16 can be effectively pumped from the container without changing the orientation.
  • a more abrasive material (not shown) can be provided on one side of the device 10 for more aggressive cleaning, for example, while the opposing side has a polishing type surface.
  • a new and novel dispenser with an independently deformable internal bladder 14 is provided that can deliver consistent metered dosages of such fluid 16 media material while being replaceable when empty.

Abstract

The present invention is a fluid dispensing device that includes a flexible and compressible outer housing that defines a bladder-receiving region. An independently deformable bladder, that contains media to be dispensed therein, resides in the bladder-receiving region. Compression of the outer housing exoskeleton causes the inner bladder to collapse and urge liquid, contained therein, to exit through the nozzle dispensing. A pump, which is accessible from the outside of the housing by a user, may be installed in fluid communication with the bladder to assist in dispensing media from the bladder for use.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority from prior U.S. Provisional Application Ser. No. 60/891,316 filed on Feb. 23, 2007.
  • BACKGROUND OF THE INVENTION
  • This invention relates generally to dispensing devices and packages. More specifically, the present invention relates to metering devices that can controllably dispense fluid media from a source of fluid media while providing an overall package configuration that remains substantially the same throughout the life of the use of the container even though the volume of the supply of media to be dispensed is being depleted.
  • Various types of fluid material and media are employed for different purposes through commerce and industry. For example, there are various products in the personal care, home care, air care, transportation care, and food industries that require some type of dispensing of a fluid material from a source of such material. When this material is sold in commerce, it must be contained and stored in some type of container. When that product is used, it must be dispensed from its storage container to a location for use.
  • In the prior art, there are many different types of dispensers for delivering fluid material. For example, a flexible container body with a nozzle tip is commonly provided for such a purpose. An application of such use is for the dispensing of ketchup where the container body is squeezed by the user to urge the fluid material out from the nozzle tip and accurately to a desired location. The amount of fluid delivered is determined by the how much the user squeezed the container body. However, this yields erratic results where more or less fluid material is delivered on each successive squeeze of the container body. Also, the container must be held upright to avoid leakage because no valves are employed. Therefore, there is a need for a dispensing package that can deliver the media contained therein a controlled and metered fashion.
  • To meet this need, a flexible container holds a volume of fluid material to be delivered. A single one-way check valve is provided as an exit port from the flexible container. When the flexible body is squeezed, the material is urged out under pressure through the valve. In commonly owned Ser. No. 11/074,817, filed on Mar. 8, 2005, and U.S. Ser. No. 11/951,351, filed on Dec. 6, 2007 a dual valve construction is employed to provide for controlled metered dispensing of media from a package. However, these known devices require that the entire package be disposed of when the supply of media to be dispensed has been depleted.
  • In the prior art, there are durable containers such as liquid soap dispensers available now that contain a rigid plastic pumping mechanism as part of the container. The exterior of these types of containers can be made to have a pleasing appearance out of crystal or metal. These products do not work well for a variety of reasons. For one thing, they do not fully dispense the liquid soap, but usually cease to pump as the liquid soap level gets low. Secondly, they require the user to fill the container with liquid when it gets low. This is inconvenient. Thirdly, the user has no real method of knowing when the container is getting low on fluid. Finally, the pumping mechanism is built into the outside container, and when it breaks, the container is no longer useful.
  • In view of the foregoing, the fluid dispensing and devices of the prior art suffer from various disadvantages that make them difficult and awkward to use with unexpected results. Therefore, there is a need for a fluid dispenser to be easy to operate. There is a further need for the option for a fluid dispenser to be capable of delivering a metered dose of fluid upon each dispensing operation for expected flow for better application of the fluid material. There is also a need for such a dispenser to be less wasteful than prior art dispensers. There is also a need for a bottle that is capable of containing and dispensing liquid that is simple and intuitive for the user to operate.
  • SUMMARY OF THE INVENTION
  • The present invention preserves the advantages of prior art dispensing devices. In addition, it provides new advantages not found in currently available devices and overcomes many disadvantages of such currently available devices.
  • The invention is generally directed to a novel and unique container that is capable of storing and dispensing liquid. The invention is also directed to a container that optionally can deliver a substantially equal metered dose of media fluid material upon each dispensing operation while not requiring that the entire dispenser be replaced when the media is depleted.
  • The fluid dispensing device includes a container with an independently deformable bladder therein. A nozzle is in fluid communication with the bladder that contains a volume of liquid for dispensing. A flexible and/or compressible outer exoskeleton is preferably provided that maintains the bladder and the overall structure of the device in an upright or desired position an configuration. When the outer flexible and/or compressible exoskeleton is squeezed, the bladder container or retained therein is compressed thereby urging liquid from the storage bladder and out through the nozzle for dispensing. The nozzle may be of any configuration, such as a pin hole tip, slit, atomizer, or the like to suit the desired application at hand.
  • The bladder includes a pump and dispensing system that can deliver the media in a dosed and metered fashion. The container provides a outer exoskeleton that is preferably rigid but may also be semi-rigid to receive the internal dispensing bladder. When the internal bladder is depleted of media for dispensing, it may be simply removed and replaced with a new bladder while leaving the outer rigid exoskeleton container housing for re-use. This substantially saves on cost in that the outer housing need not be replaced entirely each time when the supply bladder is empty. The internal bladder and outer housing may be in any form or configuration to suit the dispensing application at hand.
  • It is also possible that the a pump and valve configuration may be employed to assist in moving liquid from the storage bladder and through the nozzle. For example, it is preferred that a flexible metering housing be disposed in fluid communication with the fluid storage region of the internal bladder with a first one-way valve disposed between the container and the flexible metering housing. One way flow from the interior fluid storage region of the container fills the predetermined volume of the metering chamber with fluid by vacuum action when the flexible metering housing is depressed and then released. A second valve is in fluid communication with the metering housing output port and permits one-way fluid flow from the metering chamber to the exterior outer region of the container to a desired position when the metering housing is depressed again. Each time the metering housing is depressed a substantially equal volume of fluid is dispensed from the container. Optionally, an additional applicator layer on the outside of container, such as foam, facilitates dispersion and delivery of the fluid.
  • The internal deformable bladder of the present invention may reside in the outer exoskeleton housing in many different ways with the pump dispensing mechanism exposed for manipulation by a user. For example, it may snap into the housing where the door of the housing secures the internal bladder in place during the use. The door may be easily opened to remove the bladder when it is empty and replace it with a new full bladder.
  • Therefore, it is an object of the present invention to provide a bottle that is capable of storing and dispensing liquid in a controlled fashion.
  • Another object of the present invention is to provide a bottle that can be squeezed to dispense the liquid while maintaining a consistent and aesthetically pleasing appearance at all times during use of the bottle.
  • It is also an object of the present invention to provide a fluid dispensing device that can deliver a substantially equal volume of fluid material from each dispensing operation.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The novel features which are characteristic of the present invention are set forth in the appended claims. However, the invention's preferred embodiments, together with further objects and attendant advantages, will be best understood by reference to the following detailed description taken in connection with the accompanying drawings in which:
  • FIG. 1 is a perspective view of the bottle for containing and dispensing liquids of the present invention when in a full condition;
  • FIG. 2 is a perspective view of the bottle for containing and dispensing liquids of the present invention when in a substantially depleted condition;
  • FIG. 3 is a perspective view of an alternative embodiment of the present invention, in a full condition, using a metering pump to assist in dispensing of the liquid;
  • FIG. 4 is a perspective view of the alternative embodiment of the present invention of FIG. 3, in a substantially depleted condition, using a metering pump to assist in dispensing of the liquid;
  • FIG. 5 is a cross-section view through the line 5-5 of FIG. 1;
  • FIG. 6 is a cross-sectional view of a metering dispensing pump mechanism that can be employed to pull media from an internal deformable of the present invention;
  • FIG. 7 is a front perspective view of another embodiment of the bladder and pump construction in accordance with the present invention;
  • FIG. 8 is a cross-sectional view through the line 8-8 of FIG. 7; and
  • FIG. 9 is a cross-sectional view through the line 8-8 of FIG. 7 showing the pump and bladder in the process of dispensing fluid.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • In general, the novel features of the present invention relate to a metered dosing/dispensing container wherein there is an outer shape and an inner bladder, and where the inner bladder can contract independently of the outer container housing. Optionally, the inner bladder can replaced, when empty, independently of the outer housing. The outer housing can be rigid or semi-rigid, allowing it to maintain a form independent or partially independent from the shape of the inner bladder configuration. The outer housing or exoskeleton is preferably made of a resilient foam that can return to its original shape after it is compressed or otherwise manipulated by a user.
  • Referring first to FIGS. 1 and 2, a preferred embodiment 10 of the present invention is shown in detail. A bottle for containing and dispensing liquid is shown. In this embodiment 10, as above, the container 10 of the present invention is in the form of a bottle, such as a shampoo bottle, that has an internal yet visible rectangular-shaped bladder 14 that contains the liquid 16 to be dispensed. It should be understood that any type of bottle 10 for any purpose may use the present invention. Surrounding the rectangular housing 12 is a semi-rigid foamed exoskeleton providing for a stand-up structure and aesthetics. The exoskeleton housing 12 is flexible and be easily compressed to, in turn, compress and collapse the bladder 14.
  • The exoskeleton 12 is squeezed in the general direction indicated by arrows A to, in turn, collapse the bladder 14 gradually thereby urging liquid 16 contained in the bladder 14 out through the nozzle 18. Since the exoskeleton 12 is made of a resilient material, such as foam, it quickly returns to its original shape, as seen in FIG. 1 even though the bladder 14, that is carrying and retaining it, is being depleted of liquid 16. As the exoskeleton housing 12 is repeatedly squeezed for each successive use, the bladder 14 becomes more and more collapsed in shape until it becomes completely or substantially empty of liquid 16. FIG. 2 shows the container 10 in an empty condition. It should be particularly noticed that the overall shape of the container 10 remains essentially the same even though the bladder 14 is completely empty. This is important as this unique construction of the present invention enables the bottle container 10 to remain aesthetically pleasing over the use and depletion of the device from liquid 16.
  • In general, the bladder 14 can be either respectively integrated into the exoskeleton 12 or separable so that it can be easily replaced, as discussed above. Because one surface of the rectangular bladder 14 is visible to the user, the volume of remaining fluid can be judged. Essentially, the housing exoskeleton 12, in the example of the preferred embodiment of FIGS. 1 and 2, has one large cut-way 20 to serve as a window to view the bladder 14. Because the exoskeleton 12 is preferably compressible foam, or similar material, most or all of the internal liquid 16 can be dispensed. In fact, the device 10 can even be “wrung out” like a towel to urge virtually all of the liquid 16 from the bladder 14 for use. Even after this, due to the resilient nature of the exoskeleton 12, the overall shape of the device 10 will return to its original condition even though the bladder 14 is depleted of liquid 16.
  • Still further it is envisioned, as an alternative embodiment, that the internal bladder 14 can be constructed to specifically allow for expansion in a number of ways. In one embodiment of the invention, the internal bladder 14 is formed from an elastic or balloon like material which expands when filled, but contracts when empty. The elasticity of the bladder 14 system can actually assist in the pumping of the liquid 16. In another embodiment of the invention, the bladder 14 can be surrounded wholly or partially with an elastic material providing for the contraction. In such an embodiment, the internal bladder 14 can be elastic or non-elastic, with the elasticity of the external wrapping of the bladder 14 providing for additional force in contracting the shape of the bladder 14.
  • In still another embodiment of the invention, the bladder 14 can be designed with pleats or other folded geometries allowing for it to expand and contract in a predetermined geometry. An example of such an embodiment would be a bladder 14 formed in an accordion or bellows-like structure allowing for the bladder 14 to expand or contract in length, as seen in FIGS. 1 and 2. An accordion or otherwise pleated bladder 14 can contract into a very small shape when evacuated, but expand into a cylindrical or rectangular shape as the accordion structure expands.
  • In accordance with the present invention, the bladder 14 could be of any shape to provide an aesthetically pleasing appearance whether in a full condition, empty condition or any condition therebetween. In such a case, the exoskeleton 12 can be transparent, translucent or opaque with windows 20 to enhance the visual appeal of the product. The bladder 14 itself can be a configuration that contracts in the X, Y or Z direction or any combination thereof. For example, the bladder may be a pleated balloon that collapses in the X, Y and Z directions at the same time to provide a unique visual effect as the media is depleted from the dispenser over time. It is also possible that the bladder 14 twists or rotates as it is depleted of dispensed media. As stated above, the device of FIGS. 1 and 2 is compressed in the general direction indicated by arrows A to urge liquid upward through the nozzle in the direction indicated by arrow B. However, these are only examples and any suitable configuration can be used.
  • The rigid or semi-rigid housing exoskeleton 12 could be designed to have openings or holes 20, as mentioned above, of any kind to serve as a window to allow visibility of the internal bladder structure 14. In FIGS. 1 and 2, the openings is shown as one large U-shaped cut-out of open space but the housing exoskeleton 12 could be fabricated to have small windows or cut-out through which the use can monitor the volume of liquid 16 remaining the bladder 14.
  • Turning now to FIGS. 3-5, if the dispenser 100 is for dispensing shampoo 102, in similar fashion to the bottle of FIGS. 1 an 2, however this embodiment employs a metering dispensing pump to assist in delivering the liquid through the nozzle. As with the embodiment of FIGS. 1 and 2, it is desirable to have the liquid shampoo exit at the top of the dispenser 100 via exit port 104. In this upright container example, an outer exoskeleton 106 contains and provides support for a bladder 108 that contains liquid 102, such as shampoo. Metering dispensing pump 110 resides between and is in fluid communication between the bladder 108 and the exit port 104. FIG. 3 shows the bladder 108 substantially full of liquid 102. When the pump 110 is actuated, it draws liquid 102 from the bladder 108 to dispense it through exit port 104 for use. FIG. 4 shows the bladder 108 in a substantially empty state as virtually all of the liquid 102 has been dispensed. It should be particularly noted that the shampoo container 100 remains upright and still substantially in its original shape and configuration even though the bladder 108 has been emptied.
  • If a metering pump is used, then the outer exoskeleton 106 need not be made of a compressible material as in the preferred embodiment of FIGS. 1 and 2 because the metering pump 110 is used to draw liquid 102 from the bladder 108 rather than by forcing it out through the nozzle 104 by squeezing the sides of the flexible exoskeleton outer housing 106.
  • For ease of discussion, the construction of the bladder 14 will be discussed in detail in connection with the embodiment of FIGS. 1 and 2. However, it should be understood that the bladder of the embodiment of FIGS. 3-5 may be made in the same way. The bladder 14 can be formed from bonding two sheets of thermoplastic films into a flat shape or a fixed geometry such as a rectangle or any other outlined form, and the expansion and contraction can take place within that welded flat shape. In such a case, the bladder 14 will expand or contract by becoming thicker or thinner, but the basic 2-dimensinal outline shape of the sealed bladder 14 will remain the same.
  • Alternatively, the inner bladder 14 can be constructed into a simple shape, but be made with sidewalls so it has some three dimensional geometry. An example of a rectangular bladder with sidewalls can be seen in FIGS. 3-5. In this embodiment 100, as above, the container of the present invention is in the form of a bottle that has an internal yet visible rectangular-shaped bladder 108 that contains the liquid 102 to be dispensed. Surrounding the rectangular bottle is a semi-rigid foamed exoskeleton 106 providing for a stand-up structure and aesthetics. As the internal liquid 102 is dispensed using the metered dosing pump 110, the rectangular bladder 102 collapses gradually. FIG. 4 shows the container in an empty condition. In general, the bladder 14, 108 can be either respectively integrated into the exoskeleton 12, 106 or separable so that it can be easily replaced, as discussed above. Because one surface of the rectangular bladder 108 is visible to the user, the volume of remaining fluid 102 can be judged. Essentially, the housing exoskeleton 106, in this example, has one large cut-way to serve as a window to view the bladder 108. Because the system is preferably vacuum driven, most or all of the internal liquid 102 can be dispensed without having to turn the bottle 100 in an alternate orientation.
  • FIG. 5 shows a cross-sectional view through the line 5-5 of FIG. 3 to illustrate the general construction of the housing exoskeleton 106 and the bladder 102. As can be seen the bladder 108, containing liquid 102, resides between walls of the housing 106. The housing 106 retains its shape even thought the bladder 108 is gradually collapsing over time as liquid 102 is depleted from the bladder 108. The container 10 of FIGS. 1 and 2 is preferably made using the same construction.
  • FIG. 6 shows a first embodiment of a mechanism that can be used a metering dispensing pump, referred to as 218 for dispensing the liquid 16 in a device of the present invention of FIGS. 3-5 that uses a metering dispensing pump to assist in delivering the liquid. Bladder 202 contains liquid 16. When released, a flexible dome 204 pulls liquid 16 upwardly through first valve 206 to fill metering chamber 208. When the dome 204 is depressed, the first valve closes and liquid 16 is urged out through exit port 210. The exit port 210 acts as a second valve and, when liquid is not being pumped, the distance A is substantially reduced so that opposing sides of the exit port seal the dispenser to prevent accident dispensing. When dispensing is desired, the dome 204 is pressed and liquid 16 is urged out through the exit port 210 to expand it temporarily to permit outflow of liquid 16, as desired.
  • Another embodiment of the metering dispensing pump is shown in FIGS. 7-9. In FIG. 7, a perspective view of a metering dispenser 300 that employs the improved valving in accordance with the present invention. An outer storage bladder 320 is provided that may be formed of two sheets of material 304, 306 secured together, such as by welding, or a tube of material. A metering pump, generally referred to as 326, pulls liquid 302 from the bladder 320, meters it, and then dispenses it via an exit port 308.
  • Referring to FIGS. 8 and 9, the dispending of liquid 302 is shown. When it is desired to actually dispense the liquid product 302, the user's thumb 430 can depress the flexible dome 404 and the user's index finger 432 can invert the base plate 410 from convex to concave, by application of force against the stand-off legs 424, such that flexible dome 404, with the assistance of the stand-off legs 422 under the flexible dome, securely seals and provides a positive lock of the flapper valve 408 over and about the aperture 412 thereby closing the liquid flow passage back into the reservoir 434 of the storage container 320. It is also possible that the base plate 410 is concave and then is inverted to a convex configuration. Other fingers of the user may be used to carry out this operation. Thus, the only path for the liquid 302 contained within the cavity 405 of dome 404 is to exit through the one-way outlet valve 436 for intended dispensing of the product, as indicated by the arrows in FIG. 14.
  • It should be understood that the stand-off legs 422 on the bottom of the flexible dome housing 404 and the stand-off legs 424 on the bottom of the base plate 410 can be modified in size, length and configuration to adjust the amount of squeezing necessary by the user's fingers 430, 432 to effectuate sealing of the flapper valve 408. For example, preferably four stand-off legs 422 are provided on the bottom of the flexible dome housing 404 in a 2×2 array and can be 1/32 of an inch in length. It is also possible that these stand-off legs 422 can be a single downwardly depending wall, such as in the shape of a circle or square. Such an array is configured to downwardly press against the one-way flapper valve 408 outside of the diameter of the aperture 412 through the base plate 410 to provide a good seal of the flapper valve 408 to the base plate 410.
  • FIG. 8 illustrates further structure to prevent unwanted dispensing of liquid. In addition to the improved valving, as above, automatic shut-off of the exit port passageway 436, when pressure is exerted on the exterior of the storage container 320, serves to prevent leakage. In FIG. 8, when pressured is applied to the outside of the storage container or pouch 320, as indicated by arrows referenced A, the exit port passageway 436 tends to collapse, flatten and squeeze closed. As a result, any material residing in the passageway is urged back into the cavity 405 of the flexible dome housing 404, as indicated by arrow referenced B. As a result, unwanted leakage is prevented when accidental or unintentional pressure is placed on the storage container 320.
  • The embodiment shown in FIG. 6 is generally shown as a vertically oriented bladder and pump construction while the construction 300 in FIGS. 7-9 shows a lateral design which may be more suitable in certain dispensing environments. The design in FIGS. 7-9 also show a certain configuration of the metering capability of a pump using in the present invention.
  • It can be easily seen how this basic concept can be used to improve many products. The housing exoskeleton can be designed to provide many features including aesthetics and graphics, stand-up structure, hanging or positioning or attachments features etc. Since the housing exoskeleton remains upright, assembled and in its form as originally purchased, the outer appearance of the product will not degrade over time as the media therein is depleted. Also, an indicia thereon, such as product information and logos can remain prominently displayed throughout the life of the product.
  • In all of the above embodiments, the bladder 14, 108 is able to expand and contract independently from the exoskeleton 12, 106 of the container, and the exoskeleton 12, 106 provides for external shape or appearance. The exoskeleton 12, 106 of the container 10, 100 can be constructed from any materials that are commonly used for this purpose, including plastic such as polypropylenes, polyethylenes, polyesters, ABS, polystyrene, vinyl, metal, wood, rubber, or any other suitable material. It can also be made of more expensive durable materials such as glass, crystal, gold, silver or other metals, wood, epoxies or other materials that can be crafted into desirable shapes.
  • Referring back to FIGS. 1 and 2, as to use of windows through the housing exoskeleton 12 to view the bladder 14, it is envisioned that the exoskeleton 12 of the container 10 may have apertures 20 or openings that allow the user to see through the exoskeleton 12 into the internal bladder 14, or may even be made of a very fine structure where most of the bladder 14 is openly visible. In other embodiments, the exoskeleton 12 may be made of fully transparent or partially transparent materials allowing the user to see the state of the inner bladder 14. In still other embodiments of the invention, the exoskeleton 12 may be completely opaque or partially opaque. In cases where the exoskeleton 12 is opaque and the user cannot see the internal bladder 14 it may be beneficial to have a visual indicator or gauge visible on the exoskeleton 12 that can show the approximate level of fluid 16 remaining in the internal bladder 14 or the size of the internal bladder 14.
  • It is also possible that the inner bladder 14 (and dosing pump 110 in FIGS. 3-5) are easily removable or replaceable individually or as a unit, so that the exoskeleton 14 can be refilled on an ongoing basis, as needed. The exoskeleton 14 can be made using injection molding, blow molding, casting, milling, or any other forming or fabrication techniques, and can be made from both solid materials or foamed materials or combinations thereof. A door or other containment structure is preferably used to retain the internal bladder 14 in place in the housing exoskeleton 12 during use.
  • More specifically, relating to the alternative embodiment of FIGS. 3-5, it is envisioned that the internal bladder 108 system with metered dosing pump 110 may be removable and replaceable within the same exoskeleton 106 so that the housing exoskeleton 106 can be re-used. In cases where the exoskeleton 106 is made from more expensive or higher-grade materials, this may be highly desirable. It may also be desirable, for ecological reasons, to have the bladder 108 and pump component 110 replaceable even when the exoskeleton 106 is made from relatively less expensive materials. In such cases, the internal bladder 108 will take up less packaging and shipping materials, and can be easily made to be fully recyclable. The user can purchase a completely sealed inner bladder 108 with metered dosing pump component 110 in the form of a cartridge-like unit, and replace the unit within the exoskeleton 106 when the bladder 108 is empty. The fact that the exoskeleton 106 could be made from higher end materials such as glass or crystal or gold etc, would allow for the user to have much more attractive containers with easily refillable internal components.
  • Still further, it is possible, for example, that the exoskeleton 106 could be formed from glass or crystal allowing for a highly decorative container with the inner bladder being replaceable or refillable. Even in cases where the exoskeleton 106 is made from less expensive materials, it may still be desirable to allow for replacement or refilling of the internal bladder 108 and pump component 110 as a unit, as this method of packaging liquids may be more environmentally friendly than current methods, since the exoskeleton 106 shape will be retained and not sent to a landfill.
  • It is also possible, although not preferred, to provide a housing exoskeleton 106 and pump mechanism 110 that are permanently attached to one another where the bladder 108 alone is replaced when empty. In this example, the bladder 108 is received in the exoskeleton housing 106 for interface by the pump 110 for dispensing, such as by piercing and the like.
  • The present invention addresses the concerns found in the prior art. It can dispense almost all of the liquid 16 in the bladder 14, since it can be “wrung out”, as in FIGS. 1 and 2 or by vacuum pump as in FIGS. 3-5 using the pumps in FIGS. 6-9. The user can conveniently refill the unit, by simply dropping in a pre-packaged filled bladder 14. It can be designed to allow the user to see the level of fluid 16 remaining through transparency or openings in the exoskeleton 12. Finally, the metered dosing pump 18 can be part of the bladder assembly 14 itself, so it gets replaced with each refill of the product.
  • In still other embodiments of the invention, the exoskeleton 12 is preferably made from semi-rigid material such as a foamed plastic or a laminate of plastic films or foams. In such cases, the exoskeleton 12 still provides sufficient structure to maintain its shape despite the change in shape of the internal bladder 14. The exoskeleton 12 itself can be a fluid bladder for containing liquid and dispensing liquid therefrom. Also, the exoskeleton 12 can be designed to change shape as well, but the internal bladder 14 is free to move either completely independently or partially independently of the external shape. In the preferred embodiment, the exoskeleton is preferably easily compressible so that it can be manipulated from the outside by a user to, in turn, collapse the bladder for liquid dispensing while still being rigid enough to maintain the desired resting shape of the container. In the alternative embodiment of FIGS. 3-5, a compressible, rigid or semi-rigid exoskeleton can be used.
  • As can be seen from the several embodiments enumerated above, the present invention can be used in a variety of configurations. In many cases it would be constructed as a single use disposable consumer package, but in other cases it could be a refillable product with either a low end or high end exoskeleton package that it could be placed into.
  • There are numerous advantages to the present invention over prior art. The present invention may be more environmentally friendly allowing for the user to maintain the external structure while replacing the internal bladder only. Another advantage is that in the present invention the user may be able to see specifically the quantity of fluid left in the dispensing device, since the bladder 14 may be visible through openings 20 or the transparency of the exoskeleton 12. In addition, in cases where the bladder 14 is made from an elastic material or surrounded by an elastic material, the force of the contracting elasticity on the bladder assist in the evacuation of the liquid in the pumping process. Additionally, the present invention allows for a constant pleasing shape of the external container 10 as the inner chamber is evacuated, but does allow for full evacuation of the internal liquids 16. By allowing the independent movement of the internal bladder 14 in the meter dosing device, the overall shape of the device 10 does not have to change as the liquid 16 is depleted. The present invention also allows for a package 10 wherein most or all of the fluid 16 can be effectively pumped from the container without changing the orientation.
  • Still further, a more abrasive material (not shown) can be provided on one side of the device 10 for more aggressive cleaning, for example, while the opposing side has a polishing type surface.
  • In summary, a new and novel dispenser with an independently deformable internal bladder 14 is provided that can deliver consistent metered dosages of such fluid 16 media material while being replaceable when empty.
  • It would be appreciated by those skilled in the art that various changes and modifications can be made to the illustrated embodiments without departing from the spirit of the present invention. All such modifications and changes are intended to be covered by the appended claims.

Claims (11)

1. A fluid dispensing device, comprising:
a compressible housing defining a bladder-receiving region;
a fluid bladder residing in the bladder-receiving region; media to be dispensed residing in the fluid bladder; the fluid bladder defining an exit port; and
the compressible housing being configured and arranged to urge media from the fluid bladder and through the exit port for dispensing.
2. The fluid dispensing device of FIG. 1, further comprising:
a nozzle in fluid communication with the exit port of the fluid bladder.
3. The fluid dispensing device of FIG. 1, further comprising:
a pump in fluid communication with the fluid bladder; the pump configured and arranged to deliver media through the exit port of the fluid bladder.
4. The fluid dispensing device of claim 1, wherein the housing further defines at least one aperture therethrough to enable the fluid bladder to be viewed.
5. The fluid dispensing device of claim 1, further comprising:
means for retaining the fluid bladder in the bladder-receiving region.
6. The fluid dispensing device of claim 3, wherein the pump is a metering pump.
7. The fluid dispensing device of claim 1, wherein the housing is resiliently compressible and capable of returning to its original condition after being compressed.
8. The fluid dispensing device of claim 1, wherein the housing is semi-rigid.
9. The fluid dispensing device of claim 1, wherein the pump and fluid bladder are permanently connected to one another.
10. The fluid dispensing device of claim 1, wherein the fluid dispensing device has an outer appearance that remains substantially unchanged during dispensing of media from the fluid bladder during use.
11. The fluid dispensing device of claim 1, wherein the outer housing is a bladder configured and arranged to contain liquid.
US12/035,252 2007-02-09 2008-02-21 Bottle for containing and dispensing liquids Abandoned US20080203115A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/035,252 US20080203115A1 (en) 2007-02-09 2008-02-21 Bottle for containing and dispensing liquids

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US88921807P 2007-02-09 2007-02-09
US89131607P 2007-02-23 2007-02-23
US12/035,252 US20080203115A1 (en) 2007-02-09 2008-02-21 Bottle for containing and dispensing liquids

Publications (1)

Publication Number Publication Date
US20080203115A1 true US20080203115A1 (en) 2008-08-28

Family

ID=40456528

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/026,829 Abandoned US20080190961A1 (en) 2007-02-09 2008-02-06 Metered dosing container with independently deformable internal bladder
US12/035,252 Abandoned US20080203115A1 (en) 2007-02-09 2008-02-21 Bottle for containing and dispensing liquids

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/026,829 Abandoned US20080190961A1 (en) 2007-02-09 2008-02-06 Metered dosing container with independently deformable internal bladder

Country Status (2)

Country Link
US (2) US20080190961A1 (en)
WO (2) WO2008100754A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100140203A1 (en) * 2008-12-05 2010-06-10 Theodosios Kountotsis Skeleton structure bottle with removable chambers and method of manufacturing the same
US20110248049A1 (en) * 2010-04-07 2011-10-13 Mileti Robert J Metered Dispensing System With Stepped Flange Interface
US20150122915A1 (en) * 2010-05-07 2015-05-07 Duerr Systems, Gmbh Atomizer with a lattice mixer
USD935321S1 (en) 2018-07-20 2021-11-09 Brenda J. Sowell Bottle

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8201712B2 (en) * 2008-02-06 2012-06-19 The Coca-Cola Company Carton-based packaging for a beverage dispenser
FR2935360B1 (en) * 2008-08-27 2012-12-21 Socoplan DISPENSER FOR PACKAGING AND DISPENSING FLUID CONTENT.
US20110303703A1 (en) * 2009-10-28 2011-12-15 Yeager Don F Apparatus for dispensing a controlled dose
FR2969585B1 (en) * 2010-12-22 2014-02-07 Promens Sa MULTIPARTICAL BOTTLE WITH STRUCTURE ALLOY AND METHOD FOR PRODUCING THE SAME
JP2012149996A (en) * 2011-01-19 2012-08-09 Toshiba Corp Pressurized-water reactor
US8991648B2 (en) 2011-07-12 2015-03-31 Gojo Industries, Inc. Shut-off system for a dispenser
US10603605B1 (en) * 2014-10-30 2020-03-31 Guardian Systems, LLC Float member of variable density for separation of fluid
US11332277B2 (en) * 2017-12-05 2022-05-17 Gameel Gabriel Apparatus and method for separation of air from fluids

Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US886984A (en) * 1907-11-01 1908-05-05 Kleber C Jopling Massaging device.
US1217054A (en) * 1916-06-17 1917-02-20 John Henery Pearman Cleaning device.
US1382139A (en) * 1919-08-08 1921-06-21 Benjamin E D Stafford Collapsible tube and container for the same
US1941745A (en) * 1932-12-07 1934-01-02 Higley Warren Leland Measuring dispensing bowl or receptacle
US2714475A (en) * 1951-10-29 1955-08-02 Richford Corp Dispensing container for fluids
US2855127A (en) * 1956-01-23 1958-10-07 Gillette Co Dispensing pump and check valve therefor
US3223289A (en) * 1961-11-24 1965-12-14 Bouet Bernard Dispensing devices
US3396419A (en) * 1966-06-02 1968-08-13 American Cyanamid Co Disposable surgical scrub sponge and dispenser
US3617139A (en) * 1969-03-20 1971-11-02 John C Ross Applicator for liquids
US3936334A (en) * 1971-12-25 1976-02-03 Yoshino Kogyosho Co., Ltd. Collapsable tube
US3949137A (en) * 1974-09-20 1976-04-06 Akrongold Harold S Gel-impregnated sponge
US3981106A (en) * 1975-04-29 1976-09-21 Alfredo Gallo Scrubber-sander with cleaner dispensing means
US3995772A (en) * 1975-07-07 1976-12-07 Liautaud James P Non-pressurized fluid product dispenser
US4004854A (en) * 1975-06-10 1977-01-25 Breer Ii Carl Dispenser and applicator device
US4074944A (en) * 1976-11-08 1978-02-21 Octavio Marques Xavier Dispensing device
US4098434A (en) * 1975-06-20 1978-07-04 Owens-Illinois, Inc. Fluid product dispenser
US4124316A (en) * 1976-01-09 1978-11-07 Rourke James L O Toothbrush with dentifrice attachment
US4127515A (en) * 1974-10-21 1978-11-28 Colgate-Palmolive Company Waxing sponge
US4177939A (en) * 1977-07-22 1979-12-11 Bristol-Myers Company Squeeze bottle
US4188989A (en) * 1976-08-20 1980-02-19 G. D. Searle & Co. Fluid collection receptacle
US4702397A (en) * 1984-09-18 1987-10-27 Infusion Systems Corporation Pressurized fluid dispenser
US4753006A (en) * 1985-03-01 1988-06-28 Howe James E Disposable razor with shaving cream in handle
US4760642A (en) * 1987-04-28 1988-08-02 Kwak Kyu H Device for razor and toothbrush containing shaving cream dispensers therein
US4760937A (en) * 1986-06-16 1988-08-02 Evezich Paul D Squeezable device for ejecting retained materials
US4809432A (en) * 1986-11-24 1989-03-07 Shaverd Corp. Disposable razor and emollient dispensing device
US4842165A (en) * 1987-08-28 1989-06-27 The Procter & Gamble Company Resilient squeeze bottle package for dispensing viscous products without belching
US4886388A (en) * 1987-04-13 1989-12-12 Gulker Stuart P Cleanser dispensing sponge system
US4889441A (en) * 1988-04-11 1989-12-26 Janell Tice Skin lotion dispenser and applicator
US4888868A (en) * 1988-01-21 1989-12-26 Pritchard Kevin M Disposable razor assembly with detachable packet containing shaving-associated material
US4890744A (en) * 1988-10-28 1990-01-02 W. A. Lane, Inc. Easy open product pouch
US4909416A (en) * 1986-06-16 1990-03-20 Evezich Paul D Device for containing and dispensing flowable materials
US4993594A (en) * 1989-09-27 1991-02-19 Piper Becker Multi-constituent mixing and metering dispenser
US5014427A (en) * 1990-01-28 1991-05-14 Byrne James C Disposable shaver
US5016351A (en) * 1990-03-15 1991-05-21 Drahus Denis P Disposable safety razor system
US5074765A (en) * 1990-04-13 1991-12-24 Dielectrics Industries Elastomeric air pump
US5114255A (en) * 1990-10-15 1992-05-19 Villarreal Jose R Applicator brush assembly
US5137178A (en) * 1991-04-17 1992-08-11 Elizabeth Arden Company. Division Of Conopco, Inc. Dual tube dispenser
US5168628A (en) * 1990-06-22 1992-12-08 Kai Industries Co., Ltd. Razor
US5176510A (en) * 1990-02-16 1993-01-05 Sterisol Ab Device for dispensing fluid that includes a valve which communicates with a pump
US5261570A (en) * 1991-04-22 1993-11-16 Hippely Keith A Flexible liquid dispenser
US5265772A (en) * 1992-10-19 1993-11-30 Gojo Industries, Inc. Dispensing apparatus with tube locator
US5303851A (en) * 1992-11-12 1994-04-19 Jeffrey M. Libit Spray or dispensing bottle with integral pump molded therein
US5337478A (en) * 1993-05-03 1994-08-16 Zaki Cohen Automatic shaving apparatus
US5346108A (en) * 1992-10-26 1994-09-13 Pasinski Arthur M Gaged dispensing apparatus
US5353961A (en) * 1993-01-15 1994-10-11 Reseal International Limited Partnership Dual chamber dispenser
US5356039A (en) * 1992-12-15 1994-10-18 Inpaco Corporation Pump tube and pouch
US5372487A (en) * 1993-06-10 1994-12-13 Dielectrics Industries Inlet check valve for pump mechanism
US5387207A (en) * 1991-08-12 1995-02-07 The Procter & Gamble Company Thin-unit-wet absorbent foam materials for aqueous body fluids and process for making same
US5441345A (en) * 1991-12-09 1995-08-15 Minnesota Mining And Manufacturing Company Specialized pouches for containing and controllably dispensing product
US5482980A (en) * 1994-07-14 1996-01-09 Pmc, Inc. Methods for preparing flexible, open-celled, polyester and polyether urethane foams and foams prepared thereby
US5505341A (en) * 1993-10-22 1996-04-09 L'oreal Dispensing assembly with a variable-volume compression chamber and with a diaphragm
US5555673A (en) * 1994-11-14 1996-09-17 Smith; Wayne H. Method and apparatus for applying liquid
US5564190A (en) * 1995-12-05 1996-10-15 Fleetwood; David P. Combined shaver and shaving lubricant dispenser
US5640737A (en) * 1995-07-11 1997-06-24 Foam Design, Inc. Multi-component sponge
US5700245A (en) * 1995-07-13 1997-12-23 Winfield Medical Apparatus for the generation of gas pressure for controlled fluid delivery
US5701674A (en) * 1995-10-06 1997-12-30 Venture Innovations, Inc. Shaving cream dispensing razor
US5704723A (en) * 1996-08-29 1998-01-06 Salisian; Harold W. Soap dispensing device
US5761813A (en) * 1992-10-17 1998-06-09 Frick; Hans-Ruedi Razor device, in particular a throw-away razor
US5836482A (en) * 1997-04-04 1998-11-17 Ophardt; Hermann Automated fluid dispenser
US5842607A (en) * 1996-03-29 1998-12-01 Adam & Eve Enterprises, Inc. Lather device
US5855066A (en) * 1997-12-04 1999-01-05 Manger; John J. Disposable shaving unit
US5865554A (en) * 1997-07-21 1999-02-02 Lin; Pin-Huang Portable double-brush shoe polishing device
US5921426A (en) * 1997-01-06 1999-07-13 Playtex Products, Inc. Liner holder
US5934296A (en) * 1997-06-27 1999-08-10 Clay; Julie E. Liquid applicator
US5944032A (en) * 1997-06-09 1999-08-31 Masterson; Kelly Ann Squeezable cleansing and lathering devices
US5950928A (en) * 1998-05-04 1999-09-14 Quang Giang Multi-chamber dispensing assembly
US5983500A (en) * 1997-03-12 1999-11-16 Da Silva; Jean-Pierre Disposable foaming razor with combination feed dials
US6183154B1 (en) * 1999-03-23 2001-02-06 The Gillette Company Dispenser with metering device
US6210064B1 (en) * 1998-12-28 2001-04-03 General Housewares Corp. Soap-fillable brush with sealed actuator
US6251098B1 (en) * 1992-01-24 2001-06-26 I-Flow, Corp. Fluid container for use with platen pump
US20010025860A1 (en) * 2000-04-01 2001-10-04 Gunter Auer Metering pump dispenser with at least two metering pumps
US20010025859A1 (en) * 2000-02-17 2001-10-04 Charles Dumont Mixing and dispensing container having removably attachable supply vessels
US6302607B1 (en) * 1998-11-20 2001-10-16 The Procter & Gamble Company Fluid applicators
US6394316B1 (en) * 1998-08-28 2002-05-28 Warren S. Daansen Bubble pump for dispensing particulate-ladened fluid
US6406207B1 (en) * 1997-07-10 2002-06-18 Georg Wiegner Pump for discharging doses of liquid, gel-like or viscous substances
US20020085873A1 (en) * 2000-11-07 2002-07-04 Katsandres Steven Dino Retractable belt lotion applicator
US6419118B1 (en) * 2000-07-11 2002-07-16 Blake M. Rees Containers with flexible pouch and closure member
US20030077106A1 (en) * 2000-03-07 2003-04-24 Georg Weihrauch Cleaning or application device comprising a sponge body, and method for producing the same
US6558629B1 (en) * 2000-11-13 2003-05-06 Bradley Products, Inc. Device and method for preparing tissue specimen for histologic sectioning
US20030121936A1 (en) * 2001-10-04 2003-07-03 De Laforcade Vincent Device for dispensing separately packaged products together
US6623201B2 (en) * 2000-09-08 2003-09-23 John Francois Brumlik Cleaning device and method of use
US6629799B2 (en) * 2000-07-27 2003-10-07 Eustacio R. Flores, Jr. Bristled soap dispenser
US6641307B2 (en) * 1998-05-29 2003-11-04 Toyo Seikan Kaisha, Ltd. Pouch having a branched chamber
US6715952B1 (en) * 2002-05-08 2004-04-06 Ricardo Aiken Portable toothbrush
US20040092864A1 (en) * 2002-05-10 2004-05-13 Boehm Frank H. Dual chamber syringe and dual lumen needle
US6754958B2 (en) * 1998-08-19 2004-06-29 The Gillette Company Applying fluid preparations to the skin, e.g. in connection with shaving
US20040138814A1 (en) * 2003-01-13 2004-07-15 Konkan Railway Corporation Ltd. Anti-collision device
US20040140326A1 (en) * 2003-01-22 2004-07-22 Tracy Smart Liquid soap dispensing bath brush
US6789321B2 (en) * 1999-02-15 2004-09-14 The Gillette Company Razors
US6789706B2 (en) * 2000-08-25 2004-09-14 Valois S.A.S. Integrated pump dispenser
US20040177510A1 (en) * 2003-02-12 2004-09-16 Eveready Battery Company, Inc. Apparatus and method for dispensing a shaving aid onto a user's skin during a shaving operation
US20040178284A1 (en) * 2003-03-10 2004-09-16 Fahy Cathal L. Cleaning device with universal motion quick disconnect head
US6843368B1 (en) * 1999-06-22 2005-01-18 Rocep Lusol Holdings Limited Device for introducing a predetermined dose of additive into a packaged liquid
US6883563B2 (en) * 2001-07-26 2005-04-26 Judson L. Smith Apparatus and method to monitor the usage of a network system of personal hand sanitizing dispensers
US6886254B1 (en) * 2003-12-16 2005-05-03 Eveready Battery Company, Inc. Shaving apparatus
US6910274B1 (en) * 2003-12-16 2005-06-28 Eveready Battery Company, Inc. Shaving apparatus
US20050144785A1 (en) * 2003-12-24 2005-07-07 Eveready Battery Company, Inc. Shaving apparatus
US6925716B2 (en) * 2003-12-04 2005-08-09 Eveready Battery Company, Inc. Shaving apparatus
US20060186140A1 (en) * 2005-02-24 2006-08-24 Kanfer Joseph S Fluid dispensers for personal use

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4349133A (en) * 1979-09-12 1982-09-14 Christine William C Dispenser and refill package
US6216916B1 (en) * 1999-09-16 2001-04-17 Joseph S. Kanfer Compact fluid pump
US6996908B2 (en) * 2000-02-16 2006-02-14 Eveready Battery Company, Inc. Wet shaving assembly
WO2003031270A2 (en) * 2001-10-12 2003-04-17 Gerenraich Family Trust Battery bottle
US6648244B2 (en) * 2001-12-18 2003-11-18 Lung-You Yu Atomizer with a bellows-shaped container body
EP1816083B1 (en) * 2002-11-22 2008-08-13 Toyo Seikan Kaisya, Ltd. Method for manufacturing a pouch
US6929155B1 (en) * 2003-02-11 2005-08-16 Joseph S. Kanfer Dispenser adapter
US7188749B2 (en) * 2003-10-23 2007-03-13 Ammm Patent Holdings, Llc Container adapted to hold and dispense bagged fluids
US7043841B2 (en) * 2003-12-04 2006-05-16 Eveready Battery Co., Inc. Shaving apparatus
US6964097B2 (en) * 2003-12-04 2005-11-15 Eveready Battery Company, Inc. Shaving apparatus
US7419322B2 (en) * 2004-03-10 2008-09-02 Poly-D Llc Fluid dispensing device with metered delivery

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US886984A (en) * 1907-11-01 1908-05-05 Kleber C Jopling Massaging device.
US1217054A (en) * 1916-06-17 1917-02-20 John Henery Pearman Cleaning device.
US1382139A (en) * 1919-08-08 1921-06-21 Benjamin E D Stafford Collapsible tube and container for the same
US1941745A (en) * 1932-12-07 1934-01-02 Higley Warren Leland Measuring dispensing bowl or receptacle
US2714475A (en) * 1951-10-29 1955-08-02 Richford Corp Dispensing container for fluids
US2855127A (en) * 1956-01-23 1958-10-07 Gillette Co Dispensing pump and check valve therefor
US3223289A (en) * 1961-11-24 1965-12-14 Bouet Bernard Dispensing devices
US3396419A (en) * 1966-06-02 1968-08-13 American Cyanamid Co Disposable surgical scrub sponge and dispenser
US3617139A (en) * 1969-03-20 1971-11-02 John C Ross Applicator for liquids
US3936334A (en) * 1971-12-25 1976-02-03 Yoshino Kogyosho Co., Ltd. Collapsable tube
US3949137A (en) * 1974-09-20 1976-04-06 Akrongold Harold S Gel-impregnated sponge
US4127515A (en) * 1974-10-21 1978-11-28 Colgate-Palmolive Company Waxing sponge
US3981106A (en) * 1975-04-29 1976-09-21 Alfredo Gallo Scrubber-sander with cleaner dispensing means
US4004854A (en) * 1975-06-10 1977-01-25 Breer Ii Carl Dispenser and applicator device
US4098434A (en) * 1975-06-20 1978-07-04 Owens-Illinois, Inc. Fluid product dispenser
US3995772A (en) * 1975-07-07 1976-12-07 Liautaud James P Non-pressurized fluid product dispenser
US4124316A (en) * 1976-01-09 1978-11-07 Rourke James L O Toothbrush with dentifrice attachment
US4188989A (en) * 1976-08-20 1980-02-19 G. D. Searle & Co. Fluid collection receptacle
US4074944A (en) * 1976-11-08 1978-02-21 Octavio Marques Xavier Dispensing device
US4177939A (en) * 1977-07-22 1979-12-11 Bristol-Myers Company Squeeze bottle
US4702397A (en) * 1984-09-18 1987-10-27 Infusion Systems Corporation Pressurized fluid dispenser
US4753006A (en) * 1985-03-01 1988-06-28 Howe James E Disposable razor with shaving cream in handle
US4760937A (en) * 1986-06-16 1988-08-02 Evezich Paul D Squeezable device for ejecting retained materials
US4909416A (en) * 1986-06-16 1990-03-20 Evezich Paul D Device for containing and dispensing flowable materials
US4809432A (en) * 1986-11-24 1989-03-07 Shaverd Corp. Disposable razor and emollient dispensing device
US4886388A (en) * 1987-04-13 1989-12-12 Gulker Stuart P Cleanser dispensing sponge system
US4760642A (en) * 1987-04-28 1988-08-02 Kwak Kyu H Device for razor and toothbrush containing shaving cream dispensers therein
US4842165A (en) * 1987-08-28 1989-06-27 The Procter & Gamble Company Resilient squeeze bottle package for dispensing viscous products without belching
US4888868A (en) * 1988-01-21 1989-12-26 Pritchard Kevin M Disposable razor assembly with detachable packet containing shaving-associated material
US4889441A (en) * 1988-04-11 1989-12-26 Janell Tice Skin lotion dispenser and applicator
US4890744A (en) * 1988-10-28 1990-01-02 W. A. Lane, Inc. Easy open product pouch
US4993594A (en) * 1989-09-27 1991-02-19 Piper Becker Multi-constituent mixing and metering dispenser
US5014427A (en) * 1990-01-28 1991-05-14 Byrne James C Disposable shaver
US5176510A (en) * 1990-02-16 1993-01-05 Sterisol Ab Device for dispensing fluid that includes a valve which communicates with a pump
US5016351A (en) * 1990-03-15 1991-05-21 Drahus Denis P Disposable safety razor system
US5074765A (en) * 1990-04-13 1991-12-24 Dielectrics Industries Elastomeric air pump
US5168628A (en) * 1990-06-22 1992-12-08 Kai Industries Co., Ltd. Razor
US5114255A (en) * 1990-10-15 1992-05-19 Villarreal Jose R Applicator brush assembly
US5137178A (en) * 1991-04-17 1992-08-11 Elizabeth Arden Company. Division Of Conopco, Inc. Dual tube dispenser
US5261570A (en) * 1991-04-22 1993-11-16 Hippely Keith A Flexible liquid dispenser
US5387207A (en) * 1991-08-12 1995-02-07 The Procter & Gamble Company Thin-unit-wet absorbent foam materials for aqueous body fluids and process for making same
US5441345A (en) * 1991-12-09 1995-08-15 Minnesota Mining And Manufacturing Company Specialized pouches for containing and controllably dispensing product
US6251098B1 (en) * 1992-01-24 2001-06-26 I-Flow, Corp. Fluid container for use with platen pump
US5761813A (en) * 1992-10-17 1998-06-09 Frick; Hans-Ruedi Razor device, in particular a throw-away razor
US5265772A (en) * 1992-10-19 1993-11-30 Gojo Industries, Inc. Dispensing apparatus with tube locator
US5346108A (en) * 1992-10-26 1994-09-13 Pasinski Arthur M Gaged dispensing apparatus
US5303851A (en) * 1992-11-12 1994-04-19 Jeffrey M. Libit Spray or dispensing bottle with integral pump molded therein
US5356039A (en) * 1992-12-15 1994-10-18 Inpaco Corporation Pump tube and pouch
US5353961A (en) * 1993-01-15 1994-10-11 Reseal International Limited Partnership Dual chamber dispenser
US5337478A (en) * 1993-05-03 1994-08-16 Zaki Cohen Automatic shaving apparatus
US5372487A (en) * 1993-06-10 1994-12-13 Dielectrics Industries Inlet check valve for pump mechanism
US5505341A (en) * 1993-10-22 1996-04-09 L'oreal Dispensing assembly with a variable-volume compression chamber and with a diaphragm
US5482980A (en) * 1994-07-14 1996-01-09 Pmc, Inc. Methods for preparing flexible, open-celled, polyester and polyether urethane foams and foams prepared thereby
US5555673A (en) * 1994-11-14 1996-09-17 Smith; Wayne H. Method and apparatus for applying liquid
US5640737A (en) * 1995-07-11 1997-06-24 Foam Design, Inc. Multi-component sponge
US5700245A (en) * 1995-07-13 1997-12-23 Winfield Medical Apparatus for the generation of gas pressure for controlled fluid delivery
US5701674A (en) * 1995-10-06 1997-12-30 Venture Innovations, Inc. Shaving cream dispensing razor
US5564190A (en) * 1995-12-05 1996-10-15 Fleetwood; David P. Combined shaver and shaving lubricant dispenser
US5842607A (en) * 1996-03-29 1998-12-01 Adam & Eve Enterprises, Inc. Lather device
US5704723A (en) * 1996-08-29 1998-01-06 Salisian; Harold W. Soap dispensing device
US5921426A (en) * 1997-01-06 1999-07-13 Playtex Products, Inc. Liner holder
US5983500A (en) * 1997-03-12 1999-11-16 Da Silva; Jean-Pierre Disposable foaming razor with combination feed dials
US5836482A (en) * 1997-04-04 1998-11-17 Ophardt; Hermann Automated fluid dispenser
US5944032A (en) * 1997-06-09 1999-08-31 Masterson; Kelly Ann Squeezable cleansing and lathering devices
US5934296A (en) * 1997-06-27 1999-08-10 Clay; Julie E. Liquid applicator
US6406207B1 (en) * 1997-07-10 2002-06-18 Georg Wiegner Pump for discharging doses of liquid, gel-like or viscous substances
US5865554A (en) * 1997-07-21 1999-02-02 Lin; Pin-Huang Portable double-brush shoe polishing device
US5855066A (en) * 1997-12-04 1999-01-05 Manger; John J. Disposable shaving unit
US5950928A (en) * 1998-05-04 1999-09-14 Quang Giang Multi-chamber dispensing assembly
US6641307B2 (en) * 1998-05-29 2003-11-04 Toyo Seikan Kaisha, Ltd. Pouch having a branched chamber
US6754958B2 (en) * 1998-08-19 2004-06-29 The Gillette Company Applying fluid preparations to the skin, e.g. in connection with shaving
US6394316B1 (en) * 1998-08-28 2002-05-28 Warren S. Daansen Bubble pump for dispensing particulate-ladened fluid
US6302607B1 (en) * 1998-11-20 2001-10-16 The Procter & Gamble Company Fluid applicators
US6210064B1 (en) * 1998-12-28 2001-04-03 General Housewares Corp. Soap-fillable brush with sealed actuator
US6789321B2 (en) * 1999-02-15 2004-09-14 The Gillette Company Razors
US6183154B1 (en) * 1999-03-23 2001-02-06 The Gillette Company Dispenser with metering device
US6843368B1 (en) * 1999-06-22 2005-01-18 Rocep Lusol Holdings Limited Device for introducing a predetermined dose of additive into a packaged liquid
US20010025859A1 (en) * 2000-02-17 2001-10-04 Charles Dumont Mixing and dispensing container having removably attachable supply vessels
US20030077106A1 (en) * 2000-03-07 2003-04-24 Georg Weihrauch Cleaning or application device comprising a sponge body, and method for producing the same
US20010025860A1 (en) * 2000-04-01 2001-10-04 Gunter Auer Metering pump dispenser with at least two metering pumps
US6419118B1 (en) * 2000-07-11 2002-07-16 Blake M. Rees Containers with flexible pouch and closure member
US6629799B2 (en) * 2000-07-27 2003-10-07 Eustacio R. Flores, Jr. Bristled soap dispenser
US6789706B2 (en) * 2000-08-25 2004-09-14 Valois S.A.S. Integrated pump dispenser
US6623201B2 (en) * 2000-09-08 2003-09-23 John Francois Brumlik Cleaning device and method of use
US20020085873A1 (en) * 2000-11-07 2002-07-04 Katsandres Steven Dino Retractable belt lotion applicator
US6558629B1 (en) * 2000-11-13 2003-05-06 Bradley Products, Inc. Device and method for preparing tissue specimen for histologic sectioning
US6883563B2 (en) * 2001-07-26 2005-04-26 Judson L. Smith Apparatus and method to monitor the usage of a network system of personal hand sanitizing dispensers
US20030121936A1 (en) * 2001-10-04 2003-07-03 De Laforcade Vincent Device for dispensing separately packaged products together
US6715952B1 (en) * 2002-05-08 2004-04-06 Ricardo Aiken Portable toothbrush
US20040092864A1 (en) * 2002-05-10 2004-05-13 Boehm Frank H. Dual chamber syringe and dual lumen needle
US20040138814A1 (en) * 2003-01-13 2004-07-15 Konkan Railway Corporation Ltd. Anti-collision device
US20040140326A1 (en) * 2003-01-22 2004-07-22 Tracy Smart Liquid soap dispensing bath brush
US20040177510A1 (en) * 2003-02-12 2004-09-16 Eveready Battery Company, Inc. Apparatus and method for dispensing a shaving aid onto a user's skin during a shaving operation
US20040178284A1 (en) * 2003-03-10 2004-09-16 Fahy Cathal L. Cleaning device with universal motion quick disconnect head
US6925716B2 (en) * 2003-12-04 2005-08-09 Eveready Battery Company, Inc. Shaving apparatus
US6886254B1 (en) * 2003-12-16 2005-05-03 Eveready Battery Company, Inc. Shaving apparatus
US6910274B1 (en) * 2003-12-16 2005-06-28 Eveready Battery Company, Inc. Shaving apparatus
US20050144785A1 (en) * 2003-12-24 2005-07-07 Eveready Battery Company, Inc. Shaving apparatus
US20060186140A1 (en) * 2005-02-24 2006-08-24 Kanfer Joseph S Fluid dispensers for personal use

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100140203A1 (en) * 2008-12-05 2010-06-10 Theodosios Kountotsis Skeleton structure bottle with removable chambers and method of manufacturing the same
US20110248049A1 (en) * 2010-04-07 2011-10-13 Mileti Robert J Metered Dispensing System With Stepped Flange Interface
US8919613B2 (en) * 2010-04-07 2014-12-30 Sealed Air Corporation (Us) Metered dispensing system with stepped flange interface
US20150122915A1 (en) * 2010-05-07 2015-05-07 Duerr Systems, Gmbh Atomizer with a lattice mixer
US9539594B2 (en) * 2010-05-07 2017-01-10 Duerr Systems Gmbh Atomizer with a lattice mixer
USD935321S1 (en) 2018-07-20 2021-11-09 Brenda J. Sowell Bottle

Also Published As

Publication number Publication date
WO2008103826A3 (en) 2008-10-16
US20080190961A1 (en) 2008-08-14
WO2008100754A1 (en) 2008-08-21
WO2008103826A2 (en) 2008-08-28

Similar Documents

Publication Publication Date Title
US20080203115A1 (en) Bottle for containing and dispensing liquids
US20080149666A1 (en) Dispensing stand-up pouch
US20090263176A1 (en) Replaceable Cartridge Dispenser Assembly
US8167510B2 (en) Surface scrubber with rotating pad
US8292120B2 (en) Hanging liquid dispenser
CA2685245C (en) Metering dispensing system with improved valving to prevent accidental dispensing of liquid therefrom
US7997454B2 (en) Metering dispensing system with improved valving to prevent accidental dispensing of liquid therefrom
EP2134616B1 (en) Dispenser with dual pump system
EP2451587B1 (en) Metering dispensing system with one-piece pump assembly
US20090183371A1 (en) Razor With Integrated Dispensing of Shaving Treatments
US20080205970A1 (en) Toothbrush with integrated toothpaste delivery
US20060255068A1 (en) Flexible film package with integral dosing pump
CA2677011C (en) Metering dispensing flexible pouch with spray nozzle
BG60345B2 (en) Mechanically pressurized aerosol batcher
US20080203114A1 (en) Fluid dispenser with docking station
US20050127105A1 (en) Method and apparatus to supply a viscous liquid

Legal Events

Date Code Title Description
AS Assignment

Owner name: POLY-D, LLC, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAFLAMME, ROGER J.;WARNER, JIM F.;REEL/FRAME:020625/0339;SIGNING DATES FROM 20080222 TO 20080227

Owner name: POLY-D, LLC,CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAFLAMME, ROGER J.;WARNER, JIM F.;SIGNING DATES FROM 20080222 TO 20080227;REEL/FRAME:020625/0339

AS Assignment

Owner name: SEALED AIR CORPORATION (US),NEW JERSEY

Free format text: SECURITY AGREEMENT;ASSIGNOR:POLY-D LLC;REEL/FRAME:024483/0083

Effective date: 20100525

Owner name: SEALED AIR CORPORATION (US), NEW JERSEY

Free format text: SECURITY AGREEMENT;ASSIGNOR:POLY-D LLC;REEL/FRAME:024483/0083

Effective date: 20100525

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION