US2908583A - Method of producing viscose rayon - Google Patents

Method of producing viscose rayon Download PDF

Info

Publication number
US2908583A
US2908583A US669418A US66941857A US2908583A US 2908583 A US2908583 A US 2908583A US 669418 A US669418 A US 669418A US 66941857 A US66941857 A US 66941857A US 2908583 A US2908583 A US 2908583A
Authority
US
United States
Prior art keywords
viscose
filaments
skin
spinning
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US669418A
Inventor
Marion R Lytton
George F Mueller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akzo Nobel UK PLC
Original Assignee
American Viscose Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US466654A priority Critical patent/US2845327A/en
Application filed by American Viscose Corp filed Critical American Viscose Corp
Priority to US669418A priority patent/US2908583A/en
Application granted granted Critical
Publication of US2908583A publication Critical patent/US2908583A/en
Anticipated expiration legal-status Critical
Assigned to WALTER E. HELLER & COMPANY, INC., A CORP. OF DEL. reassignment WALTER E. HELLER & COMPANY, INC., A CORP. OF DEL. AGREEMENT WHEREBY AETNA RELEASES AVTEX FROM ALL MORTAGES AND SECURITY INTERESTS IN SAID INVENTIONS AS OF JANUARY 11,1979, AND ASSIGNS TO ASSIGNEE THE ENTIRE INTEREST IN SAID MORTAGE AGREEMENT TO ASSIGNEE (SEE RECORDS FOR DETAILS). Assignors: AETNA BUSINESS CREDIT, INC., A CORP. OF N.Y., AVTEX FIBERS, INC, A CORP. OF NY, KELLOGG CREDIT CORP., A CORP. OF DEL.
Assigned to KELLOGG CREDIT CORPORATION A DE CORP. reassignment KELLOGG CREDIT CORPORATION A DE CORP. AGREEMENT WHEREBY SAID HELLER AND RAYONIER RELEASES ALL MORTGAGES AND SECURITY INTERESTS HELD BY AVTEX ON APRIL 28, 1978, AND JAN. 11, 1979, RESPECTIVELY AND ASSIGNS ITS ENTIRE INTEREST IN SAID MORT-AGAGE AGREEMENT TO ASSIGNEE (SEE RECORD FOR DETAILS) Assignors: AVTEX FIBERS INC., A NY CORP., ITT RAYONIER INCORPORATED, A DE CORP., WALTER E. HELLER & COMPANY, INC. A NY CORP.
Assigned to NEW ENGLAND MUTUAL LIFE INSURANCE COMPANY, PROVIDENT ALLIANCE LIFE INSURANCE COMPANY C/O THE PAUL REVERE EQUITY MANAGEMENT COMPANY, WESTERN AND SOUTHERN LIFE INSURANCE COMPANY THE C/O NEW ENGLAND MUTUAL LIFE INSURANCE COMPANY, JOHN HANCOCK MUTUAL LIFE INSURANCE COMPANY, PAUL REVERE LIFE INSURANCE COMPANY THE C/O THE PAUL REVERE EQUITY MANAGEMENT COMPANY, BALBOA INSURANCE COMPANY C/O THE PAUL REVERE EQUITY MANAGEMENT COMPANY reassignment NEW ENGLAND MUTUAL LIFE INSURANCE COMPANY AS SECURITY FOR INDEBTEDNESS RECITED ASSIGNOR GRANTS , BARGAINS, MORTGAGES, PLEDGES, SELLS AND CREATES A SECURITY INTEREST WITH A LIEN UNDER SAID PATENTS, SUBJECT TO CONDITIONS RECITED. (SEE DOCUMENT FOR DETAILS). Assignors: AVTEX FIBERS INC. A NY CORP.
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/06Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from viscose
    • D01F2/08Composition of the spinning solution or the bath
    • D01F2/10Addition to the spinning solution or spinning bath of substances which exert their effect equally well in either

Definitions

  • the cellulose xanthate is subsequently dissolved in a caustic soda solution in an amount calculated to provide a viscose of the desired cellulose and alkali content. After filtration, the viscose solution is allowed to ripen and is subsequently extruded through a shaped orifice into a suitable coagulating and regenerating bath.
  • the viscose solution is extruded through a spinneret into a coagulating and regenerating bath consisting of an aqueous acid solution containing zinc sulfate.
  • the filament may subsequently be passed through a hot aqueous bath where it is stretched to improve its properties such as tensile strength.
  • the filament may then'be passed through a dilute aqueous solution of sulfuric acid and sodium sulfate to complete the regeneration of the cellulose, in
  • the filament is subsequently subjected to washing, purification, bleaching, possibly other treating' operations and drying, being collected either before or after these treatments.
  • the filaments as formed by' the conventional'methods consist of a skin or outer shell portion and a core portion with a sharp line of demarkation between the two.
  • the cross-section of the filaments exhibits a very irregular or crenulated exterior surface when even small amounts of zinc salts or certain other polyvalent metal salts are present in the spinning bath.
  • the skin and core portions of the filament represent differences in structure and these different portions possess different swelling and staining characteristics, the latter permitting a ready identification of skin and core.
  • the sharply irregular and crenulated surface structure has a relatively low abrasion resistance and readily picks up foreign particles such as dirt.
  • the .core portion possesses a relatively high tensile strength, it has a low abrasion resistance and a low flex-life, is subject to fibrillation and is relatively stiff.
  • vegetable fats and oils such as coconut oil, cottonseed oil,
  • the derivatives as utilized for the purposesof this invention may be pure compounds wherein a pure fatty acid is employed" in preparing the derivative, or the derivative may consist of a mixture of compounds where the aliphatic radicals'of the individual compounds are obtained from the various fatty acids present in a mixture of fatty acids of a particular fat or oil such as coconut oil.
  • the derivatives may be" prepared by reacting a fatty acid, 'or a mixture of fatty acids, with aminoethylethanolamine to form ethylene cycloimido, 2-aliphatic-substituted, 1 ethanol which is.
  • a may be derived from capric, lauric, myristic, oleic and stearic acids or from a mixture of fatty acids such as ob-.
  • Y The radical R of such deriva-- tained from coconut oil. tives would be CH (CH from capric acid, CH (CH from lauric acid, CH (CH from myristic acid, CH3(CHz)7CHZCH(CHz)q-- from oleic,
  • the compounds may be conveniently added to viscose in the form of solutions in alkali or in water. These compounds may be termed ethylene cycloimido, 2-aliphatic substituted, 1 hydroxy, ethylene sodium alcoholate, methylene sodium carboxylate.
  • the amount of the cycloimidine derivative which is. incorporated in the viscose must be at least about 0.5% by weight of the cellulose in the viscose and may vary up to about 6%, preferably, the amount varies from 1% to 3%. Lesser amounts do not result in the production of products consisting entirely-of skin and greater amounts affect adversely the physical properties of the products.
  • the cycloimidine derivatives may be added at any desired stage in the production of the viscose such as in the preparation of the refined wood pulp for the 3 of the alkali cellulose, to the xanthated cellulose While it is being dissolved in the caustic solution or to the viscose solution before or after filtration.
  • the derivative is preferably added after the cellulose Xanthate has been dissolved in the cautic solution and prior to filtration.
  • the viscose may contain from about 6% to about 8% cellulose, the particular source of the cellulose being selected for the ultimate use of the regenerated cellulose product.
  • the caustic soda content may be from about 4% to about 8% and the carbon disulfide content may be from about 30% to about 50% based upon the weight of the cellulose.
  • the modified viscose that is, a viscose containing the small amount of a cycloimidine derivative, may have a salt test above about 7 and preferably above about 8 at the time of spinning or extrusion.
  • the composition of the spinning bath be maintained within a well defined range.
  • the presence of the cycloimidine derivative in the viscose combined with these limited spinning baths results in the production of yarns of improved properties such as high tenacity, high abrasion resistance, high fatigue resistance and consisting of filaments composed entirely of skin.
  • the spinning bath is a low acid-high zinc spinning bath containing from about 10% to about 25% sodium sulfate and from about 3% to about zinc sulfate, preferably from 15% to 22% sodium sulfate and from 4% to 9% zinc sulfate.
  • Other metal sulfates such as iron, manganese, nickel and the like may be present and may replace some of the zinc sulfate.
  • the temperature of the spinning bath may vary from about 25 C. to about 80 C., preferably between about 45 C. and about 70 C.
  • the temperature of the spinning bath is not critical, however, as is Well known in the conventional practice in the art, certain of the physical properties such as tensile strength vary directly with the temperature of the spinning bath.
  • the spinning bath is preferably maintained at a temperature between about 55 C. and 65 C. so as to obtain the desired high tensile strength.
  • the acid content of the spinning bath is balanced against the composition of the viscose.
  • the lower limit of the acid concentration is just above the slubbing point, that is, the concentration at which small slubs of uncoagulated viscose appear in the strand as it leaves the spinning bath.
  • the acid concentration of the spinning bath is generally maintained about 0.4% to 0.5% above the slubbing point.
  • the acid concentration of the spinning bath must be maintained above the slubbing point and below the point at which the neutralization of the caustic of the viscose is sufficiently rapid to form a filament having a skin and core.
  • the acid concentration of the spinning baths which are satisfactory for the production of the all skin products from a 7%' cellulose, 6% caustic-viscose and containing the cycloimidine derivatives lies between about 5% and about 8%.
  • the acid concentration may be increased as the amount of the derivative is increased and also as the salt test of the viscose is increased.
  • creasing the caustic soda content of the viscose beyond about 8% is uneconomical for commercial production methods.
  • the presence of the derivatives in the viscose retards the coagulation and, therefore, the amount of derivative employed must be reduced at high spinning speeds.
  • the derivative is employed in amounts within the lower portion of the range, for example, about 1%.
  • the extruded viscose must, of course, be immersed or maintained in the spinning bath for a period sufficient to effect relatively complete coagulation of the viscose, that is, the coagulation must be sufficient so that the filaments will not adhere to each other as they are brought together and withdrawn from the bath.
  • the filaments are preferably stretched after removal from the initial coagulating and regenerating bath.
  • the filaments may be passed through a hot aqueous bath which may consist of hot water or a dilute acid solution and may be stretched from about 70% to about 120%, preferably between and Yarns for other textile purposes may be stretched as low as 20%.
  • the precise amount of stretching will be dependent upon the desired tenacity and other properties and the specific type of product being produced. It is to be understood that the invention is not restricted to the production of filaments and yarns but it is also applicable to other shaped bodies such as sheets, films, tubes and the like.
  • the filaments may then be passed through a final regenerating bath which may contain from about 1% to about 5% sulfuric acid and from about 1% to about 5% sodium sulfate with or without small amounts of zinc sulfate if fegeneration has not previously been completed.
  • the treatment after regeneration will be dictated by the specific type of shaped body and the asoasss of skin have a high toughness and a greater flexing life than filaments as produced according to prior methods which may be attributed by the uniformity in skin structure throughout the filament.
  • the twisting of conventional filaments results in an appreciable loss of tensile strength, there is appreciably less loss in tensile strength in the production of twisted cords from the filaments consisting entirely of skin.
  • Filaments prepared from viscose containing the cycloimidine derivatives have a high tensile strength as compared to normal regenerated cellulose filaments, have superior abrasionand fatigue resistance characteristics and have a high flex-life. Such filaments are highly satisfactory for the production of cords for the reinforcement of rubber products such as pneumatic tire casings, but the filaments are not restricted to such uses and may be used for other textile applications.
  • the invention may be illustrated by reference to the preparation of regenerated cellulose filaments from a viscose containing about 7% cellulose, about 6% caustic soda, and having a total carbon disulfide content of about 41% based on the weight of the cellulose.
  • the viscose solutions were prepared by xanthating alkali cellulose by the introduction of 36%carbon disulfide based on the weight of the cellulose and churning for about 2% hours. The cellulose xanthate was then dissolved in caustic soda solution. An additional 5% carbon 'disulfide wasvthen added to the mixer and the mass mixed for about one hour. The desired amount of cycloimidine derivative was added to the solution and mixed for about /2 hour. The viscose was then allowed to ripen for about 30 hours at 18 C.
  • Example 1 Approximately 1% (based on the weight of the cellulose) of a cycloimidine derivative known as Miranol CM was added to and incorporated in the viscose as described above.
  • Miranol CM corresponds to the formula set forth hereinbefore wherein M is sodium and the aliphatic radicals are derived from coconut oil fatty acids.
  • the viscose employed in the spinning of filaments hada salt test of 9.7.
  • the viscose was extruded through a spinneret to form a 366 denier, 44 filament yarn at a rate of about 25 meters per minute.
  • the coagulating and regenerating bath was maintained at a temperature of about 60 C.
  • the yarn was stretched about 57% while passing through a hot water bath at 95 C. The yarn was collected in a spinning box, washed free of acids and salts and dried.
  • the individual filaments have a smooth, non-crenulated exterior surface and consist entirely of skin, no core being detectable at high magnification (e.g. 1500x).
  • Other physical properties are set forth in the table which follows the examples.
  • Example 2 To a viscose as described above, there was added 2% of the same cycloimidine derivative (Miranol CM). The viscose had a salt test of 9.6 and was spun into a 210 denier, 120 filament yarn by extrusion into a spinning bath containing 7.3% sulfuric acid, 7.6% zinc sulfate and 19% sodium sulfate. 61 C. and the extrusion rate was about 22 meters per minute. The filaments were subsequently passed through a hot water bath at 95 C. and stretched about 82% The yarn was collected in a spinning box, washed free of acids and salts and dried.
  • cycloimidine derivative Miranol CM
  • control filaments were readily distinguishable
  • the bath was maintained at 6 from control filaments in that they have a smooth, fiencrenulated surface and consist entirely of skin while the control filaments have a very irregular and serrated'surface and consist of about 80% skin and the balance core with a sharp line of demarkation between the skin and core.
  • Other physical properties are set forth in the table which follows the examples.
  • Example 3 To a viscose solution as described above, there was added 1% of acycloimidine derivative wherein the aliphatic radical was derivedfr'om capric acid (Miranol SM).
  • the viscose had a salt test of 10 and was spun into a 210 denier, 120 filament yarn by extrusion into a bath containing 7.5% sulfuric acid, 8% zinc sulfate and 18% sodium sulfate. temperature of 60 C. The extrusion rate was about 22 meters per minute. The water bath was maintained at about 95 C. and the filaments were stretched approximately 82% while passing through the hot water. The yarn was collected in a spinning box, washed free of acid and salts and dried.
  • V I acycloimidine derivative wherein the aliphatic radical was derivedfr'om capric acid
  • control filaments were readily distinguishable from control filaments prepared from viscose containing no modifier in that they have a smooth, non-crenulated surface and consist entirely of skin.
  • Control filaments .have a very irregular and serrated surface and consist of Example 4
  • Approximately 2% (based on the weight of the celu- I lose) of a cycloimidine derivative wherein the aliphatic radical was derived from lauric acid (Miranol HM) was added to and incorporated in the viscose as described above.
  • the viscose employed in the spinning of filaments had a salt test of 8.6.
  • the viscose was extruded through a spinneret to form a 210 denier, 120 filament yarn at a rate of about 22 meters per minute.
  • the coagulating and regenerating'bath was maintained at a temperature of about 60 C. and contained 7.4% sulfuric acid, 8.3% zinc sulfate and 17% sodium sulfate.
  • the yarn was passed over a godet from which it was conducted through a hot water bath maintained at about 95 C. During the travel through the hot water bath, the yarn was stretched approximately 82%. The yarn was then collected in a spinning box, washed free of acid and salts and dried.
  • the individual filaments have a smooth, non-crenulated exterior surface and consist entirely of skin, no core being detectable at high magnification (e.g. ISOOX).
  • the filaments of a control yarn spun with the same viscose but without the addition of the modifying agent and spun under the same conditions exhibit a very irregular and serrated surface and are composed of about skin and the balance core with a sharp line of demarkation between the skin and core.
  • Other physical properties are set forth in the table which follows the examples.
  • Example 5 As a control for the foregoing examples, a viscose solution, prepared as described above, having a salt test of 9.7 was spun into-a 210 denier, 120 filament yarn by extrusion into a bath containing 7.5% sulfuric acid, 7.6% zinc sulfate and 19% sodium sulfate. The bath was maintained at a temperature of about 60 C. The extrusion rate was about 22 meters per minute. The water bath was maintained at a temperature of about C.
  • tenacity and elongation are the only properties set forth, they have been chosen because of the ease and simplicity with which such properties may be determined. In some instances, products made in accordance with this invention do not exhibit large or great improvements in tenacity and elongation, however, the products consist of a smooth-surfaced, all skin structure and possess improved. abrasion resistance, flex-life and other'properties as disclosed hereinbefore.
  • the cycloimidine derivatives may be added to any desired viscose such as those normally used in industry, the specific viscose composition set forth above, being merely for illustrative purposes.
  • the derivatives may be added at any desired stage in the production of the viscose and may be present in the cellulosic raw material although it may be necessary to adjust the amount present to produce a viscose having the proper proportions of the adduct at the time of spinning.
  • the term skin is employed to designate that portion of regenerated cellulose filaments which is permanently stained or dyed by the following procedure: A microtome section of one or more of the filaments mounted'in a wax block is taken and mounted on a slide with Meyers albumin fixative. After dewaxingin xylene, the section is placed in successive baths of 60% and 30% alcohol for a few moments each, and it is then stained in 2% aqueous solution of Victoria Blue BS cone. (General Dyestuffs Corp.) for 1 to 2 hours. At this point, the entire section is blue.
  • the dye By rinsing the section first in distilled water and then in one or more baths composed of 10% water and 90% dioxane for a period varying from 5 to 30 minutes depending on the particular filament, the dye is entirely removed from the core, leaving it restricted to the skin areas.
  • a viscose spinning solution containing from about 8 0.5% to about 6%, based on the weight of, the cellulose in the viscos,'of a modifier' selected from the group consisting of cyc'loimidifie 'de'ri tives and mixtures of cycloiinidine derivatives to the general where M is an alkali metal and R is analiphatic radical containing from 5 to 23 carbon atoms.
  • a viscose spinning solution as defined in claim 1 wherein the modifier is a cycloimidine derivative in which the alkali metal, M, is sodium and the aliphatic radical, R, is CH (CH 5.
  • a viscose spinning solution as defined in claim 1 wherein the modifier is a cycloimidine derivative in which the alkali metal, M, is sodium and the aliphatic radical, i 3( 2)1o- N I I 6.
  • the modifier is a cycloimidine derivative in which the alkali metal, M, is sodium and the aliphatic radical, R, is L" 7.
  • M is an alkali metal and R is an ali hatic radical containing from 5 to 23 carbon atoms
  • said small amount of the modifier being a quantity sufiicient to impart a smooth, non-crenulated surface and a substantially all skin structure to productsformed by spinning the viscose at a sodium chloride salt test of at least 7 into an aque ous bath containing from 15% to 22% sodium sulfate, from 4% to 9% zinc sulfate and'sulfuric acid in an amount not exceeding 8%, but the quantity being insuflicient to adversely alfect the physical properties ofz such products.

Description

United States Patent METHOD OF PRODUCING VISCOSE RAYON Marion R. Lytton, West Chester, and George F. Mueller,
Villanova, Pa., assignors to American Viscose Corporation, Philadelphia, Pa., a-corporation of Delaware No Drawing. Original application November 3, 1954, Serial No. 466,654, now Patent No. 2,845,327, dated July 29, 1958. Divided and this application July 2, 1957, Serial No. 669,418 I of regenerated cellulose from viscose, a suitable cellu losic material such as purified cotton linters, wood pulp, mixtures thereof, and the like is first converted to an alkali cellulose by treatment with a caustic soda solution and after shredding the treated cellulose material, it is allowed to age. The aged alkali cellulose is then converted to a xanthate by treatment with carbon disulfide. The cellulose xanthate is subsequently dissolved in a caustic soda solution in an amount calculated to provide a viscose of the desired cellulose and alkali content. After filtration, the viscose solution is allowed to ripen and is subsequently extruded through a shaped orifice into a suitable coagulating and regenerating bath.
In the production of shaped bodies such as filaments, the viscose solution is extruded through a spinneret into a coagulating and regenerating bath consisting of an aqueous acid solution containing zinc sulfate. The filament may subsequently be passed through a hot aqueous bath where it is stretched to improve its properties such as tensile strength. The filament may then'be passed through a dilute aqueous solution of sulfuric acid and sodium sulfate to complete the regeneration of the cellulose, in
. case it is not completely regenerated upon leaving the stretching stage. The filament is subsequently subjected to washing, purification, bleaching, possibly other treating' operations and drying, being collected either before or after these treatments.
The filaments as formed by' the conventional'methods, consist of a skin or outer shell portion and a core portion with a sharp line of demarkation between the two. The cross-section of the filaments exhibits a very irregular or crenulated exterior surface when even small amounts of zinc salts or certain other polyvalent metal salts are present in the spinning bath. The skin and core portions of the filamentrepresent differences in structure and these different portions possess different swelling and staining characteristics, the latter permitting a ready identification of skin and core. The sharply irregular and crenulated surface structure has a relatively low abrasion resistance and readily picks up foreign particles such as dirt. Although the .core portion possesses a relatively high tensile strength, it has a low abrasion resistance and a low flex-life, is subject to fibrillation and is relatively stiff.
It has now been discovered that the presence of small amounst of certain alkali-soluble cycloimidine derivatives in viscose results in the production of shaped bodies of manufacture of viscose, before or during the shredding '2,9a8,58 Patented Oct. 13, 1959 where M is an alkali metal such as sodium, potassium and the like and R is 'an aliphatic radical of at least 5- carbon atoms. The aliphatic radical is a straight hydrocarbon chain containing from 5 to 23 carbon atoms and may be saturated or unsaturated. The radical may'be obtained from the fatty acids derived from animal and.
vegetable fats and oils such as coconut oil, cottonseed oil,
corn oil, soya bean oil, palm oils, peanut oil, tallow and the like and the hydrogenated fats and oils. The derivatives as utilized for the purposesof this invention may be pure compounds wherein a pure fatty acid is employed" in preparing the derivative, or the derivative may consist of a mixture of compounds where the aliphatic radicals'of the individual compounds are obtained from the various fatty acids present in a mixture of fatty acids of a particular fat or oil such as coconut oil. The derivatives may be" prepared by reacting a fatty acid, 'or a mixture of fatty acids, with aminoethylethanolamine to form ethylene cycloimido, 2-aliphatic-substituted, 1 ethanol which is.
subsequently reacted with chlorcacetic acid in the presence of an alkali such as sodium hydroxide. Derivatives which are satisfactory for the puiposes of this invention a may be derived from capric, lauric, myristic, oleic and stearic acids or from a mixture of fatty acids such as ob-. Y The radical R of such deriva-- tained from coconut oil. tives would be CH (CH from capric acid, CH (CH from lauric acid, CH (CH from myristic acid, CH3(CHz)7CHZCH(CHz)q-- from oleic,
acid and CH (CH from stearic acid because the carbon atom of the carboxyl group of the respective acid Comenters the ring between the two nitrogen atoms. merical materials of this type such as the Miranols are satisfactory for the purposes of this invention. The compounds may be conveniently added to viscose in the form of solutions in alkali or in water. These compounds may be termed ethylene cycloimido, 2-aliphatic substituted, 1 hydroxy, ethylene sodium alcoholate, methylene sodium carboxylate.
The amount of the cycloimidine derivative which is. incorporated in the viscose must be at least about 0.5% by weight of the cellulose in the viscose and may vary up to about 6%, preferably, the amount varies from 1% to 3%. Lesser amounts do not result in the production of products consisting entirely-of skin and greater amounts affect adversely the physical properties of the products.
Amounts Within the preferred range are most effective in enhancing thecharacteristics and properties of the products. The cycloimidine derivatives may be added at any desired stage in the production of the viscose such as in the preparation of the refined wood pulp for the 3 of the alkali cellulose, to the xanthated cellulose While it is being dissolved in the caustic solution or to the viscose solution before or after filtration. The derivative is preferably added after the cellulose Xanthate has been dissolved in the cautic solution and prior to filtration.
The viscose may contain from about 6% to about 8% cellulose, the particular source of the cellulose being selected for the ultimate use of the regenerated cellulose product. The caustic soda content may be from about 4% to about 8% and the carbon disulfide content may be from about 30% to about 50% based upon the weight of the cellulose. The modified viscose, that is, a viscose containing the small amount of a cycloimidine derivative, may have a salt test above about 7 and preferably above about 8 at the time of spinning or extrusion.
In order to obtain the improvements enumerated hereinbefore, it is essential that the composition of the spinning bath be maintained within a well defined range. The presence of the cycloimidine derivative in the viscose combined with these limited spinning baths results in the production of yarns of improved properties such as high tenacity, high abrasion resistance, high fatigue resistance and consisting of filaments composed entirely of skin.
Generically and in terms of the industrial art, the spinning bath is a low acid-high zinc spinning bath containing from about 10% to about 25% sodium sulfate and from about 3% to about zinc sulfate, preferably from 15% to 22% sodium sulfate and from 4% to 9% zinc sulfate. Other metal sulfates such as iron, manganese, nickel and the like may be present and may replace some of the zinc sulfate. The temperature of the spinning bath may vary from about 25 C. to about 80 C., preferably between about 45 C. and about 70 C. In the production of the all skin type filaments, the temperature of the spinning bath is not critical, however, as is Well known in the conventional practice in the art, certain of the physical properties such as tensile strength vary directly with the temperature of the spinning bath. Thus, in the production of filaments for tire cord purposes in accordance with the method of this invention, the spinning bath is preferably maintained at a temperature between about 55 C. and 65 C. so as to obtain the desired high tensile strength.
The acid content of the spinning bath is balanced against the composition of the viscose. The lower limit of the acid concentration, as is well known in the art, is just above the slubbing point, that is, the concentration at which small slubs of uncoagulated viscose appear in the strand as it leaves the spinning bath. For commercial operations, the acid concentration of the spinning bath is generally maintained about 0.4% to 0.5% above the slubbing point. For any specific viscose composition, the acid concentration of the spinning bath must be maintained above the slubbing point and below the point at which the neutralization of the caustic of the viscose is sufficiently rapid to form a filament having a skin and core.
There is a maximum acid concentration for any specific viscose composition beyond which the neutralization is sufficiently rapid to produce filaments having a skin and core. For example, in general, the acid concentration of the spinning baths which are satisfactory for the production of the all skin products from a 7%' cellulose, 6% caustic-viscose and containing the cycloimidine derivatives lies between about 5% and about 8%. The acid concentration may be increased as the amount of the derivative is increased and also as the salt test of the viscose is increased. There is an upper limit, however, for the acid concentration based upon the amount of derivative and the concentration of caustic in the viscose. All skin products cannot be obtained if the acid concentration is increased above the maximum value although the amount of the cycloimidine derivative is increased beyond about 6% while other conditions are maintained constant. In-
creasing the caustic soda content of the viscose beyond about 8% is uneconomical for commercial production methods. For example, a viscose containing about 7% cellulose, about 6% caustic soda, about 41% (based on the weight of cellulose) carbon disulfide, and 2% (based on the weight of cellulose) of a cycloimidine derivative as described in which the aliphatic substituent is obtained from the fatty acids of coconut oil and having a salt test of about 10 when extruded into spinning baths containing 16 to 20% sodium sulfate, 4 to 8% zinc sulfate and sulfuric acid not more than about 7.8% results in the production of all skin filaments. Lesser amounts of sulfuric acid may be employed. Greater amounts of sulfuric acid result in the production of products having skin and core. A lowering of the amount of the cycloimidine derivative, the lowering of the caustic soda content or the lowering of the salt test of the viscose reduces the maximum permissible acid concentration for the production of all skin filaments. It has been determined that the concentration of acid which is permissible for the production of all skin products is about 8%.
The presence of the derivatives in the viscose retards the coagulation and, therefore, the amount of derivative employed must be reduced at high spinning speeds. Thus, for optimum physical characteristics of an all skin yarn formed from a viscose as above and at a spinning speed of about 50 meters per minute, the derivative is employed in amounts within the lower portion of the range, for example, about 1%. The determination of the specific maximum and optimum concentration of acid for any specific viscose, spinning bath and spinning speed is a matter of simple experimentation for those skilled in the art. The extruded viscose must, of course, be immersed or maintained in the spinning bath for a period sufficient to effect relatively complete coagulation of the viscose, that is, the coagulation must be sufficient so that the filaments will not adhere to each other as they are brought together and withdrawn from the bath.
In the production of filaments for such purposes as the fabrication of tire cord, the filaments are preferably stretched after removal from the initial coagulating and regenerating bath. From the initial spinning bath, the filaments may be passed through a hot aqueous bath which may consist of hot water or a dilute acid solution and may be stretched from about 70% to about 120%, preferably between and Yarns for other textile purposes may be stretched as low as 20%. The precise amount of stretching will be dependent upon the desired tenacity and other properties and the specific type of product being produced. It is to be understood that the invention is not restricted to the production of filaments and yarns but it is also applicable to other shaped bodies such as sheets, films, tubes and the like. The filaments may then be passed through a final regenerating bath which may contain from about 1% to about 5% sulfuric acid and from about 1% to about 5% sodium sulfate with or without small amounts of zinc sulfate if fegeneration has not previously been completed.
The treatment following the final regenerating bath,
or the stretching operation where regeneration has been:
completed, may consist of a washing step, a desulfurizing step, the application of a finishing or plasticizing material and drying before or after collecting, or may include other desired and conventional steps such as bleaching and the like. The treatment after regeneration will be dictated by the specific type of shaped body and the asoasss of skin have a high toughness and a greater flexing life than filaments as produced according to prior methods which may be attributed by the uniformity in skin structure throughout the filament. Although the twisting of conventional filaments, as in the production of tire cord, results in an appreciable loss of tensile strength, there is appreciably less loss in tensile strength in the production of twisted cords from the filaments consisting entirely of skin. Filaments prepared from viscose containing the cycloimidine derivatives have a high tensile strength as compared to normal regenerated cellulose filaments, have superior abrasionand fatigue resistance characteristics and have a high flex-life. Such filaments are highly satisfactory for the production of cords for the reinforcement of rubber products such as pneumatic tire casings, but the filaments are not restricted to such uses and may be used for other textile applications.
The invention may be illustrated by reference to the preparation of regenerated cellulose filaments from a viscose containing about 7% cellulose, about 6% caustic soda, and having a total carbon disulfide content of about 41% based on the weight of the cellulose. The viscose solutions were prepared by xanthating alkali cellulose by the introduction of 36%carbon disulfide based on the weight of the cellulose and churning for about 2% hours. The cellulose xanthate was then dissolved in caustic soda solution. An additional 5% carbon 'disulfide wasvthen added to the mixer and the mass mixed for about one hour. The desired amount of cycloimidine derivative was added to the solution and mixed for about /2 hour. The viscose was then allowed to ripen for about 30 hours at 18 C.
Example 1 Approximately 1% (based on the weight of the cellulose) of a cycloimidine derivative known as Miranol CM was added to and incorporated in the viscose as described above. Miranol CM corresponds to the formula set forth hereinbefore wherein M is sodium and the aliphatic radicals are derived from coconut oil fatty acids. The viscose employed in the spinning of filaments hada salt test of 9.7. The viscose was extruded through a spinneret to form a 366 denier, 44 filament yarn at a rate of about 25 meters per minute. The coagulating and regenerating bath was maintained at a temperature of about 60 C. and contained 7.4% sulfuric acid, 7.6% zinc sulfate and 19% sodium sulfate. The yarn was stretched about 57% while passing through a hot water bath at 95 C. The yarn was collected in a spinning box, washed free of acids and salts and dried.
The individual filaments have a smooth, non-crenulated exterior surface and consist entirely of skin, no core being detectable at high magnification (e.g. 1500x). The filaments of a control yarn spun with the same viscose but without the addition of the modified agent and spun under the same conditions, exhibit a very irregular and serrated surface and are composed of about 80% skin and the balance core with a sharp line of demarkation between the skin and core. Other physical properties are set forth in the table which follows the examples.
Example 2 To a viscose as described above, there was added 2% of the same cycloimidine derivative (Miranol CM). The viscose had a salt test of 9.6 and was spun into a 210 denier, 120 filament yarn by extrusion into a spinning bath containing 7.3% sulfuric acid, 7.6% zinc sulfate and 19% sodium sulfate. 61 C. and the extrusion rate was about 22 meters per minute. The filaments were subsequently passed through a hot water bath at 95 C. and stretched about 82% The yarn was collected in a spinning box, washed free of acids and salts and dried.
The individual filaments were readily distinguishable The bath was maintained at 6 from control filaments in that they have a smooth, fiencrenulated surface and consist entirely of skin while the control filaments have a very irregular and serrated'surface and consist of about 80% skin and the balance core with a sharp line of demarkation between the skin and core. Other physical properties are set forth in the table which follows the examples.
Example 3 To a viscose solution as described above, there was added 1% of acycloimidine derivative wherein the aliphatic radical was derivedfr'om capric acid (Miranol SM). The viscose had a salt test of 10 and was spun into a 210 denier, 120 filament yarn by extrusion into a bath containing 7.5% sulfuric acid, 8% zinc sulfate and 18% sodium sulfate. temperature of 60 C. The extrusion rate was about 22 meters per minute. The water bath was maintained at about 95 C. and the filaments were stretched approximately 82% while passing through the hot water. The yarn was collected in a spinning box, washed free of acid and salts and dried. V I
The individual filaments were readily distinguishable from control filaments prepared from viscose containing no modifier in that they have a smooth, non-crenulated surface and consist entirely of skin. Control filaments .have a very irregular and serrated surface and consist of Example 4 Approximately 2% (based on the weight of the celu- I lose) of a cycloimidine derivative wherein the aliphatic radical was derived from lauric acid (Miranol HM) was added to and incorporated in the viscose as described above. The viscose employed in the spinning of filaments had a salt test of 8.6. The viscose was extruded through a spinneret to form a 210 denier, 120 filament yarn at a rate of about 22 meters per minute. The coagulating and regenerating'bath was maintained at a temperature of about 60 C. and contained 7.4% sulfuric acid, 8.3% zinc sulfate and 17% sodium sulfate. The yarn was passed over a godet from which it was conducted through a hot water bath maintained at about 95 C. During the travel through the hot water bath, the yarn was stretched approximately 82%. The yarn was then collected in a spinning box, washed free of acid and salts and dried.
The individual filaments have a smooth, non-crenulated exterior surface and consist entirely of skin, no core being detectable at high magnification (e.g. ISOOX). The filaments of a control yarn spun with the same viscose but without the addition of the modifying agent and spun under the same conditions, exhibit a very irregular and serrated surface and are composed of about skin and the balance core with a sharp line of demarkation between the skin and core. Other physical properties are set forth in the table which follows the examples.
' Example 5 As a control for the foregoing examples, a viscose solution, prepared as described above, having a salt test of 9.7 was spun into-a 210 denier, 120 filament yarn by extrusion into a bath containing 7.5% sulfuric acid, 7.6% zinc sulfate and 19% sodium sulfate. The bath was maintained at a temperature of about 60 C. The extrusion rate was about 22 meters per minute. The water bath was maintained at a temperature of about C.
. and the filaments were stretched 82% while passing The bath was maintained at a balance core with a sharp line of demarkation between the skin aild the core. Othericharacteristicsare set forth m leblwish aligns;
Although the tenacity and elongation are the only properties set forth, they have been chosen because of the ease and simplicity with which such properties may be determined. In some instances, products made in accordance with this invention do not exhibit large or great improvements in tenacity and elongation, however, the products consist of a smooth-surfaced, all skin structure and possess improved. abrasion resistance, flex-life and other'properties as disclosed hereinbefore.
One of the properties of viscose rayon which has limited its uses is its relatively high cross-sectional swelling when 'wet with water, this, swelling amounting to from about 65% to about 8.0% for rayon produced by conventional methods. Rayon filaments produced in accordance with the method of this invention have an appreciably lower cross-sectional swelling characteristic, the swelling amounting to from about 45% to about 60%.
The cycloimidine derivatives may be added to any desired viscose such as those normally used in industry, the specific viscose composition set forth above, being merely for illustrative purposes. The derivatives may be added at any desired stage in the production of the viscose and may be present in the cellulosic raw material although it may be necessary to adjust the amount present to produce a viscose having the proper proportions of the adduct at the time of spinning.
The term skin is employed to designate that portion of regenerated cellulose filaments which is permanently stained or dyed by the following procedure: A microtome section of one or more of the filaments mounted'in a wax block is taken and mounted on a slide with Meyers albumin fixative. After dewaxingin xylene, the section is placed in successive baths of 60% and 30% alcohol for a few moments each, and it is then stained in 2% aqueous solution of Victoria Blue BS cone. (General Dyestuffs Corp.) for 1 to 2 hours. At this point, the entire section is blue. By rinsing the section first in distilled water and then in one or more baths composed of 10% water and 90% dioxane for a period varying from 5 to 30 minutes depending on the particular filament, the dye is entirely removed from the core, leaving it restricted to the skin areas.
This application is a division of our copending application Serial No. 466,654, filed November 3, 1954, now U.S. Patent No. 2,845,327, dated July 29, 1958.
While preferred embodiments of the invention have been disclosed, the description is intended tobe illustrative and it is to be understood that changes and variations may be made without departing from the spirit and scope of the invention as defined by the appended claims.
We claim: I
1. A viscose spinning solution containing from about 8 0.5% to about 6%, based on the weight of, the cellulose in the viscos,'of a modifier' selected from the group consisting of cyc'loimidifie 'de'ri tives and mixtures of cycloiinidine derivatives to the general where M is an alkali metal and R is analiphatic radical containing from 5 to 23 carbon atoms.
2. A viscose spinning solution as defined in claim 1 wherein the modifier comprises a mixture of cycloimidine derivatives in which the alkali metal, M, is sodium and the aliphatic radicals, R, are derived from the fatty acids of natural fats and oils.
3. A viscose spinning solution as defined in claim 1 wherein the modifier comprises a mixture of cyeloimidine derivatives in which the alkali metal, M, is sodium and the aliphatic radicals R, are derived from the fatty acids of coconut oil.
4. A viscose spinning solution as defined in claim 1 wherein the modifier is a cycloimidine derivative in which the alkali metal, M, is sodium and the aliphatic radical, R, is CH (CH 5. A viscose spinning solution as defined in claim 1 wherein the modifier is a cycloimidine derivative in which the alkali metal, M, is sodium and the aliphatic radical, i 3( 2)1o- N I I 6. A viscose spinning solution as defined in claim 1 wherein the modifier is a cycloimidine derivative in which the alkali metal, M, is sodium and the aliphatic radical, R, is L" 7. A viscose spinning solution as defined in claim 1 wherein the modifier is a cycloimidine derivative in which the alkali metal, M, is sodium and the aliphatic radical, R, is CH (CH 8. A viscose spinning solution containing a small amount of a modifier selected from the group consisting of cycloimidine derivatives and mixtures of cycloimidine derivatives corresponding to the general formula CH2CH OM RC-NCHCOOM N OH: OH
where M is an alkali metal and R is an ali hatic radical containing from 5 to 23 carbon atoms, said small amount of the modifier being a quantity sufiicient to impart a smooth, non-crenulated surface and a substantially all skin structure to productsformed by spinning the viscose at a sodium chloride salt test of at least 7 into an aque ous bath containing from 15% to 22% sodium sulfate, from 4% to 9% zinc sulfate and'sulfuric acid in an amount not exceeding 8%, but the quantity being insuflicient to adversely alfect the physical properties ofz such products.
References Cited in the file of this patent UNITED STATES PATENTS

Claims (1)

1. A VISCOSE SPINNING SOLUTION CONTAINING FROM ABOUT 0.5% TO ABOUT 6%, BASED ON THE WEIGHT OF THE CELLULOSE IN THE VISCOSE, OF A MODIFIER SELECTED FROM THE GROUP CONSISTING OF CYCLOIMIDINE DERIVATIVES AND MIXTURES OF CYCLOIMIDINE DERIVATIVES CORRESPONDING TO THE GENERAL FORMULA
US669418A 1954-11-03 1957-07-02 Method of producing viscose rayon Expired - Lifetime US2908583A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US466654A US2845327A (en) 1954-11-03 1954-11-03 Method of producing viscose rayon
US669418A US2908583A (en) 1954-11-03 1957-07-02 Method of producing viscose rayon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US466654A US2845327A (en) 1954-11-03 1954-11-03 Method of producing viscose rayon
US669418A US2908583A (en) 1954-11-03 1957-07-02 Method of producing viscose rayon

Publications (1)

Publication Number Publication Date
US2908583A true US2908583A (en) 1959-10-13

Family

ID=39387093

Family Applications (2)

Application Number Title Priority Date Filing Date
US466654A Expired - Lifetime US2845327A (en) 1954-11-03 1954-11-03 Method of producing viscose rayon
US669418A Expired - Lifetime US2908583A (en) 1954-11-03 1957-07-02 Method of producing viscose rayon

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US466654A Expired - Lifetime US2845327A (en) 1954-11-03 1954-11-03 Method of producing viscose rayon

Country Status (1)

Country Link
US (2) US2845327A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE540586A (en) * 1954-11-25 1955-09-15
US2983572A (en) * 1958-06-06 1961-05-09 American Enka Corp Manufacture of viscose rayon

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB332628A (en) * 1929-02-28 1930-07-28 Franz Steimmig Improved manufacture of viscose
US2528378A (en) * 1947-09-20 1950-10-31 John J Mccabe Jr Metal salts of substituted quaternary hydroxy cycloimidinic acid metal alcoholates and process for preparation of same
US2535044A (en) * 1947-04-26 1950-12-26 Du Pont Spinning of viscose

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE419429A (en) * 1935-02-16 1900-01-01
US2312152A (en) * 1941-12-10 1943-02-23 American Viscose Corp Rayon and method of manufacturing same
US2373712A (en) * 1943-04-19 1945-04-17 Rayonier Inc Viscose production
US2593466A (en) * 1948-07-16 1952-04-22 Ind Rayon Corp Viscose spinning solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB332628A (en) * 1929-02-28 1930-07-28 Franz Steimmig Improved manufacture of viscose
US2535044A (en) * 1947-04-26 1950-12-26 Du Pont Spinning of viscose
US2528378A (en) * 1947-09-20 1950-10-31 John J Mccabe Jr Metal salts of substituted quaternary hydroxy cycloimidinic acid metal alcoholates and process for preparation of same

Also Published As

Publication number Publication date
US2845327A (en) 1958-07-29

Similar Documents

Publication Publication Date Title
US2852334A (en) Method of producing viscose rayon
US2892729A (en) Process of producing viscose rayon
US2841462A (en) Production of all skin rayon
US2895787A (en) Process of producing all skin rayon
US2908583A (en) Method of producing viscose rayon
US2853360A (en) Viscose spinning process
US2904446A (en) Process of producing viscose rayon
US2792281A (en) Viscose composition and method of spinning
US2849274A (en) Producing all skin viscose rayon
US2961329A (en) Method of preparing viscose rayon
US3010781A (en) Process of producing viscose rayon
US2890130A (en) Process of producing all skin rayon
US2898182A (en) Method of preparing viscose rayon
US2976113A (en) Process of producing viscose rayon
US2906634A (en) Method of producing viscose rayon
US2919203A (en) Producing all skin rayon
US2989410A (en) All skin viscose rayon and method of preparing same
US2977238A (en) Process of producing all skin rayon
US3031257A (en) Producing all skin rayon
US3106444A (en) Method of producing all skin rayon
US2971816A (en) Process of producing viscose rayon
US2962342A (en) Process of producing viscose rayon
US2984541A (en) Method of forming all skin viscose rayon
US2890131A (en) Method of producing all skin rayon
US2890132A (en) Producing all skin viscose rayon

Legal Events

Date Code Title Description
AS Assignment

Owner name: KELLOGG CREDIT CORPORATION A DE CORP.

Free format text: AGREEMENT WHEREBY SAID HELLER AND RAYONIER RELEASES ALL MORTGAGES AND SECURITY INTERESTS HELD BY AVTEX ON APRIL 28, 1978, AND JAN. 11, 1979, RESPECTIVELY AND ASSIGNS ITS ENTIRE INTEREST IN SAID MORT-AGAGE AGREEMENT TO ASSIGNEE;ASSIGNORS:WALTER E. HELLER & COMPANY, INC. A NY CORP.;ITT RAYONIER INCORPORATED, A DE CORP.;AVTEX FIBERS INC., A NY CORP.;REEL/FRAME:003959/0350

Effective date: 19800326

Owner name: WALTER E. HELLER & COMPANY, INC., A CORP. OF DEL.

Free format text: AGREEMENT WHEREBY AETNA RELEASES AVTEX FROM ALL MORTAGES AND SECURITY INTERESTS IN SAID INVENTIONS AS OF JANUARY 11,1979, AND ASSIGNS TO ASSIGNEE THE ENTIRE INTEREST IN SAID MORTAGE AGREEMENT TO ASSIGNEE;ASSIGNORS:AETNA BUSINESS CREDIT, INC., A CORP. OF N.Y.;AVTEX FIBERS, INC, A CORP. OF NY;KELLOGG CREDIT CORP., A CORP. OF DEL.;REEL/FRAME:003959/0250

Effective date: 19800326

Owner name: WESTERN AND SOUTHERN LIFE INSURANCE COMPANY THE C/

Free format text: AS SECURITY FOR INDEBTEDNESS RECITED ASSIGNOR GRANTS , BARGAINS, MORTGAGES, PLEDGES, SELLS AND CREATES A SECURITY INTEREST WITH A LIEN UNDER SAID PATENTS, SUBJECT TO CONDITIONS RECITED.;ASSIGNOR:AVTEX FIBERS INC. A NY CORP.;REEL/FRAME:003959/0219

Effective date: 19810301

Owner name: JOHN HANCOCK MUTUAL LIFE INSURANCE COMPANY JOHN HA

Free format text: AS SECURITY FOR INDEBTEDNESS RECITED ASSIGNOR GRANTS , BARGAINS, MORTGAGES, PLEDGES, SELLS AND CREATES A SECURITY INTEREST WITH A LIEN UNDER SAID PATENTS, SUBJECT TO CONDITIONS RECITED.;ASSIGNOR:AVTEX FIBERS INC. A NY CORP.;REEL/FRAME:003959/0219

Effective date: 19810301

Owner name: PROVIDENT ALLIANCE LIFE INSURANCE COMPANY C/O THE

Free format text: AS SECURITY FOR INDEBTEDNESS RECITED ASSIGNOR GRANTS , BARGAINS, MORTGAGES, PLEDGES, SELLS AND CREATES A SECURITY INTEREST WITH A LIEN UNDER SAID PATENTS, SUBJECT TO CONDITIONS RECITED.;ASSIGNOR:AVTEX FIBERS INC. A NY CORP.;REEL/FRAME:003959/0219

Effective date: 19810301

Owner name: BALBOA INSURANCE COMPANY C/O THE PAUL REVERE EQUIT

Free format text: AS SECURITY FOR INDEBTEDNESS RECITED ASSIGNOR GRANTS , BARGAINS, MORTGAGES, PLEDGES, SELLS AND CREATES A SECURITY INTEREST WITH A LIEN UNDER SAID PATENTS, SUBJECT TO CONDITIONS RECITED.;ASSIGNOR:AVTEX FIBERS INC. A NY CORP.;REEL/FRAME:003959/0219

Effective date: 19810301

Owner name: NEW ENGLAND MUTUAL LIFE INSURANCE COMPANY 501 BOYL

Free format text: AS SECURITY FOR INDEBTEDNESS RECITED ASSIGNOR GRANTS , BARGAINS, MORTGAGES, PLEDGES, SELLS AND CREATES A SECURITY INTEREST WITH A LIEN UNDER SAID PATENTS, SUBJECT TO CONDITIONS RECITED.;ASSIGNOR:AVTEX FIBERS INC. A NY CORP.;REEL/FRAME:003959/0219

Effective date: 19810301

Owner name: PAUL REVERE LIFE INSURANCE COMPANY THE C/O THE PAU

Free format text: AS SECURITY FOR INDEBTEDNESS RECITED ASSIGNOR GRANTS , BARGAINS, MORTGAGES, PLEDGES, SELLS AND CREATES A SECURITY INTEREST WITH A LIEN UNDER SAID PATENTS, SUBJECT TO CONDITIONS RECITED.;ASSIGNOR:AVTEX FIBERS INC. A NY CORP.;REEL/FRAME:003959/0219

Effective date: 19810301