US3173451A - Cast manifold with liner - Google Patents

Cast manifold with liner Download PDF

Info

Publication number
US3173451A
US3173451A US38188A US3818860A US3173451A US 3173451 A US3173451 A US 3173451A US 38188 A US38188 A US 38188A US 3818860 A US3818860 A US 3818860A US 3173451 A US3173451 A US 3173451A
Authority
US
United States
Prior art keywords
core
cast
liner
manifold
fibrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US38188A
Inventor
Slayter Games
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Owens Corning
Original Assignee
Owens Corning Fiberglas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Corning Fiberglas Corp filed Critical Owens Corning Fiberglas Corp
Priority to US38188A priority Critical patent/US3173451A/en
Application granted granted Critical
Publication of US3173451A publication Critical patent/US3173451A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1861Construction facilitating manufacture, assembly, or disassembly the assembly using parts formed by casting or moulding
    • F01N13/1866Construction facilitating manufacture, assembly, or disassembly the assembly using parts formed by casting or moulding the channels or tubes thereof being made integrally with the housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/102Other arrangements or adaptations of exhaust conduits of exhaust manifolds having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/26Construction of thermal reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2310/00Selection of sound absorbing or insulating material
    • F01N2310/02Mineral wool, e.g. glass wool, rock wool, asbestos or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/28Methods or apparatus for fitting, inserting or repairing different elements by using adhesive material, e.g. cement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/02Surface coverings for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction

Definitions

  • This invention relates to a technique for making lined cast bodies and more particularly to a technique for making lined cast bodies in which a fibrous liner functions as a core and also forms a part of the finished casting.
  • the principles of the invention have been found to be particularly effective in the manufacture of mufflng systems for internal combustion engines. It has been discovered that the use of an insulating, refractory liner in one or more components of an exhaust system has a beneficial effect in reducing deleterious contaminants in exhaust gases in several ways.
  • the insulating effect of the liner enables heat of the exhaust gases to be retained for a longer period of time. As a consequence, the gases will remain longer at a temperature sufficiently high for secondary combustion to occur, and the combustion of a greater portion of the hydrocarbons is enabled.
  • the liner also prevents contact between the exhaust gases and cast iron or steel components of the muifling system, and thus prevents the possibility of a reaction which would otherwise cause certain hydrocarbons in the exhaust gases to be increased.
  • the liner includes titania fiber-s, a reduction of hydrocarbons in the exhaust gases is achieved by virtue of catalysts, more complete combustion apparently being accomplished.
  • lined manifolds and similar cast bodies can be produced by employing the liner material as at least a part of a mold core and casting metal therearound.
  • the liner consists of highly refractory fibers, such as crystalline titania fibers, and a suitable binder.
  • the cast metal flows partially into interstices between portions of the fibers of such a liner and thereby forms an interlocking bond therewith.
  • the technique according to the invention can also be used for casting lined cylinder heads.
  • Such heads retain more heat and may be maintained above the ignition point of the incoming air-fuel mixture in a suitable engine to provide a continuous ignition point therefor without the continuous use of spark plugs.
  • Another object of the invention is to provide a simpler technique for producing cast bodies having at least one surface covered with a fibrous liner.
  • a further object of the invention is to provide a technique for producing cast bodies with fibrous liners effectively bonded thereto.
  • Still another object of the invention is to provide a cast component for a muffiing system in which a liner is cast into the component.
  • Still a further object of the invention is to provide a component for a muffling system, which component contains a fibrous liner effectively bonded thereto.
  • FIG. 1 is a somewhat schematic view in perspective of an engine employing a lined, cast manifold, with parts broken away and with parts in cross section, made according to the principles of the invention;
  • FIG. 2 is a view in cross section, taken along line 2-2 of FIG. 1, of a mold including a core for use according to the principles of the invention;
  • FIG. 3 is a view in cross section taken along the line 3-3 of FIG. 2;
  • FIG. 4 is a view in vertical cross section of a completed casting which includes a liner in accordance with the invention.
  • a manifold 10 made in accordance with the invention is shown connected to one bank of four cylinders of an engine 12.
  • the manifold 10 includes a liner 14 which was a core in the original mold from which the manifold 10 was cast.
  • the manifold 10 was made by pouring molten metal into the mold, around and directly in contact with the core to form an integral bond therewith. It will be readily understood that most manifolds are of such relatively complex shape that it is physically impossible for separate liner segments to be inserted therein after casting thereof.
  • the manifold 10 is made in a suitable mold 16 which is disposed within a flask l8 composed of a drag 20 and a cope 22.
  • the drag 20 includes a lower mold cavity 24 formed in foundry sand according to usual foundry practices and the cope 22 includes an upper mold cavity 26 which is also formed in foundry sand according to usual foundry techniques.
  • the cavities 24 and 26 each can be formed in several parts when dictated by sound foundry practices.
  • the lower and upper cavities 24 and 26 form the outer surfaces of the manifold 10 when molten cast iron is poured into a sprue 28 having the usual pouring basin 30.
  • a core 32 comprising highly refractory fibers, preferably of crystalline titania, and a binder.
  • the fiber core 32 is produced by forming a moldable mixture of the fibers and binder material and mold ing the mixture into the shape of the interior of the manifold 10 by means of a core mold, in a manner which is well known in the art.
  • the core 32 is preferably hollow to provide for passage through the manifold 10 of exhaust gases, although the material of which the core 32 is made can be sufiiciently porous that the entire manifold 10 can be filled therewith, the exhaust gases then passing directly through the resulting porous body. However, in most instances it is desirable to form an unobstructed passage through the core 32.
  • the core 32 with its own inner core 34 of sand and a binder.
  • An inorganic binder of montmorillonite has been found to be particularly effective for the core although the usual organic binder used in ordinary foundry practices can be employed.
  • the sand core 34 is made by usual core-molding techniques and is subsequently placed in the mold for the fibrous core 32, with the core 32 then being formed therearound.
  • the fibrous core 32 and the inner, sand core 34 can be held in the mold cavities 24 and 26 by any conventional means, the particular method of support for the cores 32 and 34 forming no part of the invention.
  • the sand core 34 can extend beyond the fibrous core 32 and be supported in recesses 36 of the mold cavities 24 and 26, or chaplets can be employed. If the fibrous core 32 is used without the sand core 34, then the core 32 can be supported by chaplets or can extend into the recesses 36 and be subsequently trimmed off when the casting is completed.
  • a mixture was prepared from, by weight, 70 parts of crystalline titania fibers at least A" long and preferably in the order of /2 long, 20 parts of montmorillonite, 10 parts of soda-lime glass, and 20 parts of wood sawdust. Enough water was added to this mixture to provide a mortar-like consistency and it was then shaped around the sand core 34, the sand core previously having been made of the same shape as the exhaust gas passage within the manifold 10. The resulting combination core was fired at 2500 F. to form a hardened body, the fibrous core being, by volume, 70% air, 20% titania crystals, and binder.
  • the fibrous core was then supported in the position in the mold recess indicated in FIGS. 2 and 3 and molten iron was poured therearound and allowed to solidify. After the cast iron had cooled, the mold was disassembled and the inner, sand core was then removed to leave the completed casting with the fibrous liner eifectively bonded to the iron by virtue of interlocking.
  • Another lined, cast body was made by the same technique set forth above except that the fibrous core and sand core were placed in the mold in their green, unfired state. The heat from the cast iron which was then poured thereover at approximately 2600 F. caused the binder of the fibrous case to harden and leave an integral liner in the resulting cast body.
  • binders such as bentonite, koalinite, or similar clays, can be used in place of the montmorillonite and soda-lime glass, and other organic particles can be used in place of the sawdust. In many instances, sufficient porosity can be obtained by reducing the amount of binder without using any organic material at all.
  • the degree of penetration of the molten cast iron into the fibrous core is excessive, additional binder can be used or the exterior of the fibrous core can be sprayed with any of a number of mold coating materials known in the art to reduce the porosity thereof. Similarly, if penetration is not sufficient, less binder can be used or a greater amount of organic material can be employed in the fibrous core mixture to increase porosity thereof. It the thickness of the inner relative to the thickness of the core is sufficiently high so that the heat of the cast iron does not fully harden the fibrous core, the completed lined casting can be fired at a temperature below the melting point of the cast iron to complete the curing of the fibrous core.
  • titania fibers are preferred in the fibrous core 32, other highly refractory fibers which will withstand the heat of the molten iron can be employed.
  • Zircon and zirconia fibers are suitable for this purpose, the titania fibers being preferred only because of a catalytic effect they have on the combustion of exhaust gases.
  • blue titania fibers made by heattreating the fibers in an oxygen deficient atmosphere or by subjecting them to an oxygen deficient atmosphere after formation, are more effective as a catalyst and are preferred where a catalytic etfect is desired.
  • the blue fibers can also be made by adding 20 parts of zinc or magnesium powder to the previously described fibrous core composition, the metal powder apparently removing oxygen from the fibers, either directly or indirectly, by removing oxygen from the atmosphere which in turn removes oxygen from the titania fibers,
  • a lined, cast metal manifold including a main chamber and a plurality of connecting passages for connecting the main chamber with exhaust ports of an internal combustion engine, said manifold comprising a layer including separate, particulate, highly refractory fibers and a refractory, inorganic binder, and a body of a cast metal effectively bonded to said layer with part of the cast metal extending partially into said layer, said binder having a melting point in excess of the melting point of the metal constituting said cast metal body.
  • a lined, cast manifold including a main chamber and a plurality of connecting passages for connecting the main chamber with exhaust ports of an internal combustion engine, said manifold comprising a porous layer inciuding separate, particulate, highly refractory fibers and a refractory, inorganic binder, and a body of a metal cast therearound and effectively bonded to said layer with part of the cast metal extending into interstices of said layer.

Description

March 16, 1965 e. SLAYTER CAST MANIFOLD WITH LINER 2 Sheets-Sheet 1 Filed June 23, 1960 INVENTOR 64,1455 5L A Wm BY g jilflw ATTORNEYS March 16, 1965 s. SLAYTER 3,173,451
CAST MANIFOLD WITH LINER Filed June 25, 1960 2 Sheets-Sheet 2 1111111111111!!!IIIIIIIIIII/ INVENTOR 614M155 Sun me Arrow/5Y5 United States Patent 3,173,451 CAST MANIFOLD WITH LINER Games Slayter, Newark, Ohio, assignor to Owens-Corning Fiberglas Corporation, a corporation of Delaware Filed June 23, 1960, Ser. No. 38,188 3 Claims. (Cl. 138-445) This invention relates to a technique for making lined cast bodies and more particularly to a technique for making lined cast bodies in which a fibrous liner functions as a core and also forms a part of the finished casting.
The principles of the invention have been found to be particularly effective in the manufacture of mufflng systems for internal combustion engines. It has been discovered that the use of an insulating, refractory liner in one or more components of an exhaust system has a beneficial effect in reducing deleterious contaminants in exhaust gases in several ways. The insulating effect of the liner enables heat of the exhaust gases to be retained for a longer period of time. As a consequence, the gases will remain longer at a temperature sufficiently high for secondary combustion to occur, and the combustion of a greater portion of the hydrocarbons is enabled. The liner also prevents contact between the exhaust gases and cast iron or steel components of the muifling system, and thus prevents the possibility of a reaction which would otherwise cause certain hydrocarbons in the exhaust gases to be increased. Finally, when the liner includes titania fiber-s, a reduction of hydrocarbons in the exhaust gases is achieved by virtue of catalysts, more complete combustion apparently being accomplished.
Because of these beneficial effects, it has been proposed to use such a liner on the interior surfaces of manifolds, exhaust pipes, and muiflers. While the liners can be used in most mufflers and exhaust pipes in the form of separate cylindrical bodies, many manifolds are of cast iron and are of rather complicated shapes which prevent the use of similar separate liner bodies therein.
In accordance with the instant invention, it has been discovered that lined manifolds and similar cast bodies can be produced by employing the liner material as at least a part of a mold core and casting metal therearound. The liner consists of highly refractory fibers, such as crystalline titania fibers, and a suitable binder. The cast metal flows partially into interstices between portions of the fibers of such a liner and thereby forms an interlocking bond therewith.
The technique according to the invention can also be used for casting lined cylinder heads. Such heads retain more heat and may be maintained above the ignition point of the incoming air-fuel mixture in a suitable engine to provide a continuous ignition point therefor without the continuous use of spark plugs.
It is, therefore, an object of the invention to provide an improved technique for producinglined castings.
Another object of the invention is to provide a simpler technique for producing cast bodies having at least one surface covered with a fibrous liner.
A further object of the invention is to provide a technique for producing cast bodies with fibrous liners effectively bonded thereto.
Still another object of the invention is to provide a cast component for a muffiing system in which a liner is cast into the component.
Still a further object of the invention is to provide a component for a muffling system, which component contains a fibrous liner effectively bonded thereto.
Other objects and advantages of the invention will be apparent from the following detailed description of a preferred embodiment thereof, reference being made to the accompanying drawings, in which:
FIG. 1 is a somewhat schematic view in perspective of an engine employing a lined, cast manifold, with parts broken away and with parts in cross section, made according to the principles of the invention;
FIG. 2 is a view in cross section, taken along line 2-2 of FIG. 1, of a mold including a core for use according to the principles of the invention;
FIG. 3 is a view in cross section taken along the line 3-3 of FIG. 2; and
FIG. 4 is a view in vertical cross section of a completed casting which includes a liner in accordance with the invention.
Referring to FIG. 1, a manifold 10 made in accordance with the invention is shown connected to one bank of four cylinders of an engine 12. The manifold 10 includes a liner 14 which was a core in the original mold from which the manifold 10 was cast. The manifold 10 was made by pouring molten metal into the mold, around and directly in contact with the core to form an integral bond therewith. It will be readily understood that most manifolds are of such relatively complex shape that it is physically impossible for separate liner segments to be inserted therein after casting thereof.
Referring to FIGS. 2 and 3, the manifold 10 is made in a suitable mold 16 which is disposed within a flask l8 composed of a drag 20 and a cope 22. The drag 20 includes a lower mold cavity 24 formed in foundry sand according to usual foundry practices and the cope 22 includes an upper mold cavity 26 which is also formed in foundry sand according to usual foundry techniques. The cavities 24 and 26 each can be formed in several parts when dictated by sound foundry practices. The lower and upper cavities 24 and 26 form the outer surfaces of the manifold 10 when molten cast iron is poured into a sprue 28 having the usual pouring basin 30.
Within the mold cavity is a core 32 comprising highly refractory fibers, preferably of crystalline titania, and a binder. The fiber core 32. is produced by forming a moldable mixture of the fibers and binder material and mold ing the mixture into the shape of the interior of the manifold 10 by means of a core mold, in a manner which is well known in the art. The core 32 is preferably hollow to provide for passage through the manifold 10 of exhaust gases, although the material of which the core 32 is made can be sufiiciently porous that the entire manifold 10 can be filled therewith, the exhaust gases then passing directly through the resulting porous body. However, in most instances it is desirable to form an unobstructed passage through the core 32. This can be accomplished by providing the core 32 with its own inner core 34 of sand and a binder. An inorganic binder of montmorillonite has been found to be particularly effective for the core although the usual organic binder used in ordinary foundry practices can be employed. The sand core 34 is made by usual core-molding techniques and is subsequently placed in the mold for the fibrous core 32, with the core 32 then being formed therearound. The fibrous core 32 and the inner, sand core 34 can be held in the mold cavities 24 and 26 by any conventional means, the particular method of support for the cores 32 and 34 forming no part of the invention. For example, the sand core 34 can extend beyond the fibrous core 32 and be supported in recesses 36 of the mold cavities 24 and 26, or chaplets can be employed. If the fibrous core 32 is used without the sand core 34, then the core 32 can be supported by chaplets or can extend into the recesses 36 and be subsequently trimmed off when the casting is completed.
According to one specific technique employed in male ing cast bodies with fibrous liners, a mixture was prepared from, by weight, 70 parts of crystalline titania fibers at least A" long and preferably in the order of /2 long, 20 parts of montmorillonite, 10 parts of soda-lime glass, and 20 parts of wood sawdust. Enough water was added to this mixture to provide a mortar-like consistency and it was then shaped around the sand core 34, the sand core previously having been made of the same shape as the exhaust gas passage within the manifold 10. The resulting combination core was fired at 2500 F. to form a hardened body, the fibrous core being, by volume, 70% air, 20% titania crystals, and binder. The fibrous core was then supported in the position in the mold recess indicated in FIGS. 2 and 3 and molten iron was poured therearound and allowed to solidify. After the cast iron had cooled, the mold was disassembled and the inner, sand core was then removed to leave the completed casting with the fibrous liner eifectively bonded to the iron by virtue of interlocking.
Another lined, cast body was made by the same technique set forth above except that the fibrous core and sand core were placed in the mold in their green, unfired state. The heat from the cast iron which was then poured thereover at approximately 2600 F. caused the binder of the fibrous case to harden and leave an integral liner in the resulting cast body.
Other binders, such as bentonite, koalinite, or similar clays, can be used in place of the montmorillonite and soda-lime glass, and other organic particles can be used in place of the sawdust. In many instances, sufficient porosity can be obtained by reducing the amount of binder without using any organic material at all.
If the degree of penetration of the molten cast iron into the fibrous core is excessive, additional binder can be used or the exterior of the fibrous core can be sprayed with any of a number of mold coating materials known in the art to reduce the porosity thereof. Similarly, if penetration is not sufficient, less binder can be used or a greater amount of organic material can be employed in the fibrous core mixture to increase porosity thereof. It the thickness of the inner relative to the thickness of the core is sufficiently high so that the heat of the cast iron does not fully harden the fibrous core, the completed lined casting can be fired at a temperature below the melting point of the cast iron to complete the curing of the fibrous core.
While titania fibers are preferred in the fibrous core 32, other highly refractory fibers which will withstand the heat of the molten iron can be employed. For example, Zircon and zirconia fibers are suitable for this purpose, the titania fibers being preferred only because of a catalytic effect they have on the combustion of exhaust gases.
It has been found that blue titania fibers, made by heattreating the fibers in an oxygen deficient atmosphere or by subjecting them to an oxygen deficient atmosphere after formation, are more effective as a catalyst and are preferred where a catalytic etfect is desired. The blue fibers can also be made by adding 20 parts of zinc or magnesium powder to the previously described fibrous core composition, the metal powder apparently removing oxygen from the fibers, either directly or indirectly, by removing oxygen from the atmosphere which in turn removes oxygen from the titania fibers,
Various modifications of the above described embodiments of the invention will be apparent to those skilled in the art and it is to be understood that such modifications are within the spirit and scope of the invention, as defined in the appended claims.
I claim:
1. A lined, cast metal manifold including a main chamber and a plurality of connecting passages for connecting the main chamber with exhaust ports of an internal combustion engine, said manifold comprising a layer including separate, particulate, highly refractory fibers and a refractory, inorganic binder, and a body of a cast metal effectively bonded to said layer with part of the cast metal extending partially into said layer, said binder having a melting point in excess of the melting point of the metal constituting said cast metal body.
2. A lined, cast manifold including a main chamber and a plurality of connecting passages for connecting the main chamber with exhaust ports of an internal combustion engine, said manifold comprising a porous layer inciuding separate, particulate, highly refractory fibers and a refractory, inorganic binder, and a body of a metal cast therearound and effectively bonded to said layer with part of the cast metal extending into interstices of said layer.
3. A body according to claim 2 wherein the pores in said porous layer are present in an amount of at least approximately by volume.
References Cited in the file of this patent UNITED STATES PATENTS 713,123 Lougee Nov. 11, 1902 889,071 Van Voorhis May 26, 1908 1,512,862 Sayre Oct, 21, 1924 1,664,296 Hamerstadt Mar. 27, 1928 1,703,417 Donaldson Feb. 26, 1929 1,909,975 Mackey et al May 23, 1933 1,961,721 Van Lautschoot June 5, 1934 2,048,247 Davis July 21, 1936 2,431,143 Schulte Nov. 18, 1947 2,459,907 Winslow et al. Jan. 25, 1949 2,728,124 Sofield Dec, 27, 1955 2,745,437 Comstock May 15, 1956 2,897,556 Chini Aug. 4, 1959 2,907,084 Wood Oct. 6, 1959 2,962,806 Stumbods Dec. 6, 1960 2,968,652 Mertes Jan. 17, 1961 2,971,251 Willemse Feb. 14, 1961 2,977,326 Nixon Mar. 28, 1961 3,002,920 Porter Oct. 3, 1961 3,043,094 Nichols July 10, 1962 3,066,365 Moore Dec, 4, 1962 FOREIGN PATENTS 496,537 Great Britain Dec. 1, 1938 OTHER REFERENCES Elam: Product Engineering, July 1954, pages 166-169.

Claims (1)

1. A LINED, CAST METAL MANIFOLD INCLUDING A MAIN CHAMBER AND A PLURALITY OF CONNECTING PASSAGES FOR CONNECTING THE MAIN CHAMBER WITH EXHAUST PORTS OF AN INTERNAL COMBUSTION ENGINE, SAID MANIFOLD COMPRISING A LAYER INCLUDING SEPARATE, PARTICULATE, HIGHLY REFRACTORY FIBERS AND A REFRACTORY, INORGANIC BINDER, AND A BODY OF A CAST METAL EFFECTIVELY BONDED TO SAID LAYER WITH PART OF THE CAST METAL EXTENDING PARTIALLY INTO SAID LAYER, SAID BINDER HAVING A CONSTITUTING SAID CAST METAL BODY.
US38188A 1960-06-23 1960-06-23 Cast manifold with liner Expired - Lifetime US3173451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US38188A US3173451A (en) 1960-06-23 1960-06-23 Cast manifold with liner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US38188A US3173451A (en) 1960-06-23 1960-06-23 Cast manifold with liner

Publications (1)

Publication Number Publication Date
US3173451A true US3173451A (en) 1965-03-16

Family

ID=21898555

Family Applications (1)

Application Number Title Priority Date Filing Date
US38188A Expired - Lifetime US3173451A (en) 1960-06-23 1960-06-23 Cast manifold with liner

Country Status (1)

Country Link
US (1) US3173451A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3292662A (en) * 1963-02-04 1966-12-20 Nishi Sunao Lance pipe for the injected oxygen in steel making
US3371794A (en) * 1966-11-28 1968-03-05 Dorr Oliver Inc Manifolded hydrocyclone unit
US3456914A (en) * 1965-10-23 1969-07-22 Johns Manville Inorganic fiber riser sleeves
US3718172A (en) * 1971-07-16 1973-02-27 Gen Motors Corp Method of forming a thermally insulated composite article
US3863701A (en) * 1972-01-17 1975-02-04 Toyota Motor Co Ltd Process for manufacturing heat-insulated castings
US3919755A (en) * 1973-03-06 1975-11-18 Toyota Motor Co Ltd Method of making a high-strength heat-insulating casting
JPS5114821A (en) * 1974-07-27 1976-02-05 Fuji Heavy Ind Ltd Nainenkikanno haikihootorainaano seizoho
US3939897A (en) * 1972-11-01 1976-02-24 Toyota Jidosha Kogyo Kabushiki Kaisha Method for producing heat-insulating casting
US4003422A (en) * 1975-04-21 1977-01-18 Schramm Buford J Process for making a composite cylinder head assembly
US4078584A (en) * 1975-09-19 1978-03-14 Coflexip Pipe system for collecting petroleum from off-shore wells located at great depths
US4168610A (en) * 1978-03-29 1979-09-25 Caterpillar Tractor Co. Exhaust manifold with reflective insulation
DE2711195C3 (en) 1977-03-15 1980-07-31 Bayerische Motoren Werke Ag, 8000 Muenchen Intake manifold for 4- to 6-cylinder in-line internal combustion engines
DE2759571C2 (en) * 1977-03-15 1982-10-07 Bayerische Motoren Werke AG, 8000 München Cast core for manufacturing an intake manifold for internal combustion engines.
US5014903A (en) * 1988-11-25 1991-05-14 Cyb Frederick F Heat-retaining exhaust components and method of preparing same
US5018661A (en) * 1988-11-25 1991-05-28 Cyb Frederick F Heat-resistant exhaust manifold and method of preparing same
US5055435A (en) * 1987-03-24 1991-10-08 Ngk Insulators, Ltd. Ceramic materials to be insert-cast
US5251683A (en) * 1991-03-11 1993-10-12 General Motors Corporation Method of making a cylinder head or other article with cast in-situ ceramic tubes
US5260116A (en) * 1987-03-24 1993-11-09 Ngk Insulators, Ltd. Ceramicm port liners
US5493859A (en) * 1993-01-21 1996-02-27 Nippondenso Co., Ltd. Engine with an adsorber
WO1997006909A1 (en) * 1995-08-16 1997-02-27 Northrop-Grumman Corporation Ceramic liner infiltrated with pre-ceramic polymer resin
WO1997007079A1 (en) * 1995-08-16 1997-02-27 Northrop-Grumman Corporation Metal coated, ceramic, fiber reinforced ceramic manifold
US5819806A (en) * 1993-12-29 1998-10-13 Daikyo Co., Ltd. Channel housing with curving channels, and a manufacturing method therefor
US20080000607A1 (en) * 2003-03-05 2008-01-03 Ishikawajima-Harima Heavy Industries Co., Ltd. Cast article utilizing mold
US20140190649A1 (en) * 2012-12-14 2014-07-10 Dresser-Rand Company Case corrosion-resistant liners in nozzles and case bodies to eliminate overlays
US20150060464A1 (en) * 2013-08-27 2015-03-05 R. Stahl Schaltgerate Gmbh Pressure release device for a housing with flameproof encapsulation and method for the production thereof
US20150060465A1 (en) * 2013-08-27 2015-03-05 R. Stahl Schaltgerate Gmbh Housing part for a housing with flameproof encapsulation comprising a porous body
USD748751S1 (en) 2014-03-28 2016-02-02 Joseph Morgan Stallings Golf tee dispenser
US9573191B2 (en) 2013-05-17 2017-02-21 Moen Incorporated Fluid dispensing apparatus and method of manufacture
US9790836B2 (en) 2012-11-20 2017-10-17 Tenneco Automotive Operating Company, Inc. Loose-fill insulation exhaust gas treatment device and methods of manufacturing

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US713123A (en) * 1901-12-02 1902-11-11 Clifton Mfg Company Electric conduit.
US889071A (en) * 1906-11-13 1908-05-26 George S Van Voorhis Method of making bushings.
US1512862A (en) * 1920-03-17 1924-10-21 American Abrasive Metals Compa Brake shoe
US1664296A (en) * 1926-07-31 1928-03-27 Rockwood Mfg Company Machine for die-casting pulleys and the like
US1703417A (en) * 1929-02-26 oxi hamilton
US1909975A (en) * 1930-11-03 1933-05-23 Globe Oil Tools Co Mounting for hard cutting material
US1961721A (en) * 1932-06-29 1934-06-05 Iowa Malleable Iron Company Casting method
US2048247A (en) * 1934-02-19 1936-07-21 Gen Motors Corp Bearing and method of making same
GB496537A (en) * 1938-05-13 1938-12-01 Birco Motor Cylinder Company L Improved method of, and means for, casting engine and like cylinders
US2431143A (en) * 1943-08-26 1947-11-18 Lummus Co Fibrous catalyst system
US2459907A (en) * 1942-09-04 1949-01-25 Nat Carbon Co Inc Method of conducting chemical reactions
US2728124A (en) * 1952-03-26 1955-12-27 Gifford Wood Co Method of forming cylindrical shell with abrasive internal linings
US2745437A (en) * 1951-09-12 1956-05-15 Norton Co Reinforced ceramic body of revolution
US2897556A (en) * 1957-09-04 1959-08-04 Sperry Rand Corp Method of coring holes in castings
US2907084A (en) * 1956-03-27 1959-10-06 Aluminum Co Of America Hollow cores for making castings
US2962806A (en) * 1955-07-18 1960-12-06 Engelhard Ind Inc Laminated thermostatic metal
US2968652A (en) * 1957-11-27 1961-01-17 Sun Oil Co Polymerization process with a catalyst prepared by subjecting ticl3 to ultrasonic vibrations and adding an aluminum alkyl
US2971251A (en) * 1954-07-01 1961-02-14 Philips Corp Semi-conductive device
US2977326A (en) * 1958-12-15 1961-03-28 Universal Oil Prod Co Activated refractory inorganic oxide
US3002920A (en) * 1958-12-10 1961-10-03 Exxon Research Engineering Co Hydroforming catalyst and process
US3043094A (en) * 1960-02-29 1962-07-10 Alco Products Inc Exhaust manifolds
US3066365A (en) * 1958-07-02 1962-12-04 Pittsburgh Plate Glass Co Destructible reinforced sand core for metal casting

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1703417A (en) * 1929-02-26 oxi hamilton
US713123A (en) * 1901-12-02 1902-11-11 Clifton Mfg Company Electric conduit.
US889071A (en) * 1906-11-13 1908-05-26 George S Van Voorhis Method of making bushings.
US1512862A (en) * 1920-03-17 1924-10-21 American Abrasive Metals Compa Brake shoe
US1664296A (en) * 1926-07-31 1928-03-27 Rockwood Mfg Company Machine for die-casting pulleys and the like
US1909975A (en) * 1930-11-03 1933-05-23 Globe Oil Tools Co Mounting for hard cutting material
US1961721A (en) * 1932-06-29 1934-06-05 Iowa Malleable Iron Company Casting method
US2048247A (en) * 1934-02-19 1936-07-21 Gen Motors Corp Bearing and method of making same
GB496537A (en) * 1938-05-13 1938-12-01 Birco Motor Cylinder Company L Improved method of, and means for, casting engine and like cylinders
US2459907A (en) * 1942-09-04 1949-01-25 Nat Carbon Co Inc Method of conducting chemical reactions
US2431143A (en) * 1943-08-26 1947-11-18 Lummus Co Fibrous catalyst system
US2745437A (en) * 1951-09-12 1956-05-15 Norton Co Reinforced ceramic body of revolution
US2728124A (en) * 1952-03-26 1955-12-27 Gifford Wood Co Method of forming cylindrical shell with abrasive internal linings
US2971251A (en) * 1954-07-01 1961-02-14 Philips Corp Semi-conductive device
US2962806A (en) * 1955-07-18 1960-12-06 Engelhard Ind Inc Laminated thermostatic metal
US2907084A (en) * 1956-03-27 1959-10-06 Aluminum Co Of America Hollow cores for making castings
US2897556A (en) * 1957-09-04 1959-08-04 Sperry Rand Corp Method of coring holes in castings
US2968652A (en) * 1957-11-27 1961-01-17 Sun Oil Co Polymerization process with a catalyst prepared by subjecting ticl3 to ultrasonic vibrations and adding an aluminum alkyl
US3066365A (en) * 1958-07-02 1962-12-04 Pittsburgh Plate Glass Co Destructible reinforced sand core for metal casting
US3002920A (en) * 1958-12-10 1961-10-03 Exxon Research Engineering Co Hydroforming catalyst and process
US2977326A (en) * 1958-12-15 1961-03-28 Universal Oil Prod Co Activated refractory inorganic oxide
US3043094A (en) * 1960-02-29 1962-07-10 Alco Products Inc Exhaust manifolds

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3292662A (en) * 1963-02-04 1966-12-20 Nishi Sunao Lance pipe for the injected oxygen in steel making
US3456914A (en) * 1965-10-23 1969-07-22 Johns Manville Inorganic fiber riser sleeves
US3371794A (en) * 1966-11-28 1968-03-05 Dorr Oliver Inc Manifolded hydrocyclone unit
US3718172A (en) * 1971-07-16 1973-02-27 Gen Motors Corp Method of forming a thermally insulated composite article
US3863701A (en) * 1972-01-17 1975-02-04 Toyota Motor Co Ltd Process for manufacturing heat-insulated castings
US3939897A (en) * 1972-11-01 1976-02-24 Toyota Jidosha Kogyo Kabushiki Kaisha Method for producing heat-insulating casting
US3919755A (en) * 1973-03-06 1975-11-18 Toyota Motor Co Ltd Method of making a high-strength heat-insulating casting
JPS5114821A (en) * 1974-07-27 1976-02-05 Fuji Heavy Ind Ltd Nainenkikanno haikihootorainaano seizoho
JPS5245293B2 (en) * 1974-07-27 1977-11-15
US4003422A (en) * 1975-04-21 1977-01-18 Schramm Buford J Process for making a composite cylinder head assembly
US4078584A (en) * 1975-09-19 1978-03-14 Coflexip Pipe system for collecting petroleum from off-shore wells located at great depths
DE2711195C3 (en) 1977-03-15 1980-07-31 Bayerische Motoren Werke Ag, 8000 Muenchen Intake manifold for 4- to 6-cylinder in-line internal combustion engines
DE2759571C2 (en) * 1977-03-15 1982-10-07 Bayerische Motoren Werke AG, 8000 München Cast core for manufacturing an intake manifold for internal combustion engines.
US4168610A (en) * 1978-03-29 1979-09-25 Caterpillar Tractor Co. Exhaust manifold with reflective insulation
US5260116A (en) * 1987-03-24 1993-11-09 Ngk Insulators, Ltd. Ceramicm port liners
US5055435A (en) * 1987-03-24 1991-10-08 Ngk Insulators, Ltd. Ceramic materials to be insert-cast
US5014903A (en) * 1988-11-25 1991-05-14 Cyb Frederick F Heat-retaining exhaust components and method of preparing same
US5018661A (en) * 1988-11-25 1991-05-28 Cyb Frederick F Heat-resistant exhaust manifold and method of preparing same
US5251683A (en) * 1991-03-11 1993-10-12 General Motors Corporation Method of making a cylinder head or other article with cast in-situ ceramic tubes
US5493859A (en) * 1993-01-21 1996-02-27 Nippondenso Co., Ltd. Engine with an adsorber
US5819806A (en) * 1993-12-29 1998-10-13 Daikyo Co., Ltd. Channel housing with curving channels, and a manufacturing method therefor
US5941284A (en) * 1993-12-29 1999-08-24 Daikyo Co., Ltd. Channel housing with curving channels, and a manufacturing method therefor
WO1997006909A1 (en) * 1995-08-16 1997-02-27 Northrop-Grumman Corporation Ceramic liner infiltrated with pre-ceramic polymer resin
WO1997007079A1 (en) * 1995-08-16 1997-02-27 Northrop-Grumman Corporation Metal coated, ceramic, fiber reinforced ceramic manifold
US20080000607A1 (en) * 2003-03-05 2008-01-03 Ishikawajima-Harima Heavy Industries Co., Ltd. Cast article utilizing mold
US9790836B2 (en) 2012-11-20 2017-10-17 Tenneco Automotive Operating Company, Inc. Loose-fill insulation exhaust gas treatment device and methods of manufacturing
US20140190649A1 (en) * 2012-12-14 2014-07-10 Dresser-Rand Company Case corrosion-resistant liners in nozzles and case bodies to eliminate overlays
US9259781B2 (en) * 2012-12-14 2016-02-16 Dresser-Rand Company Case corrosion-resistant liners in nozzles and case bodies to eliminate overlays
US9573191B2 (en) 2013-05-17 2017-02-21 Moen Incorporated Fluid dispensing apparatus and method of manufacture
US20150060465A1 (en) * 2013-08-27 2015-03-05 R. Stahl Schaltgerate Gmbh Housing part for a housing with flameproof encapsulation comprising a porous body
CN104427808A (en) * 2013-08-27 2015-03-18 R.施塔尔开关设备有限责任公司 Pressure release device for a housing with flameproof encapsulation and method for the production thereof
US9403326B2 (en) * 2013-08-27 2016-08-02 R. Stahl Schaltgeräte GmbH Pressure release device for a housing with flameproof encapsulation and method for the production thereof
US20150060464A1 (en) * 2013-08-27 2015-03-05 R. Stahl Schaltgerate Gmbh Pressure release device for a housing with flameproof encapsulation and method for the production thereof
US9908679B2 (en) * 2013-08-27 2018-03-06 R. Stahl Schaltgeräte GmbH Housing part for a housing with flameproof encapsulation comprising a porous body
CN104427808B (en) * 2013-08-27 2018-11-23 R.施塔尔开关设备有限责任公司 For having the pressure relief device and its manufacturing method of the shell of fire prevention encapsulation
USD748751S1 (en) 2014-03-28 2016-02-02 Joseph Morgan Stallings Golf tee dispenser

Similar Documents

Publication Publication Date Title
US3173451A (en) Cast manifold with liner
US4264660A (en) Thermally insulated composite article
US3919755A (en) Method of making a high-strength heat-insulating casting
US3939897A (en) Method for producing heat-insulating casting
EP0119499B1 (en) Cylinder head and manufacturing method
US5705266A (en) Core material for the casting of articles and related process
US4243093A (en) Method of making an insulated manifold with double cast walls
AU595567B2 (en) Mold core for investment casting, process for preparing the same and process for preparing mold for investment casting having therewithin said mold core
CN110102712A (en) The anti-shrinkage porosite casting method of cylinder head casting
JPH01293939A (en) Manufacture of mold for investment casting
US3718172A (en) Method of forming a thermally insulated composite article
JP2003056354A (en) Exhaust system turbine housing for automobile
JP3133407B2 (en) Manufacturing method of ceramic mold
JPS58202944A (en) Production of metallic mold
US2832112A (en) Shell mold casting and method
US3654987A (en) Gasifiable casting care
US3672918A (en) Hot tops
JPS5919064A (en) Production of insert part
JPS61139433A (en) Heat-insulating pipe body and manufacture thereof
JPH07204827A (en) Production of cast product inserting silicon nitride as cast-in
SU515568A1 (en) Foundry two-layer form
JPH074905B2 (en) Adiabatic ceramic composite and manufacturing method thereof
JP2579825B2 (en) Mold making method
JPS56134047A (en) Production of hollow steel ingot
JPS55165270A (en) Heat-insulating structure casting