US3423504A - N-benzyl higher fatty alkyl diloweralkyl quaternary ammonium halide hair rinse - Google Patents

N-benzyl higher fatty alkyl diloweralkyl quaternary ammonium halide hair rinse Download PDF

Info

Publication number
US3423504A
US3423504A US569777A US3423504DA US3423504A US 3423504 A US3423504 A US 3423504A US 569777 A US569777 A US 569777A US 3423504D A US3423504D A US 3423504DA US 3423504 A US3423504 A US 3423504A
Authority
US
United States
Prior art keywords
reaction
higher fatty
amine
acid amide
benzyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US569777A
Inventor
Einar P Birkelo
Timothy N Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rayette Faberge Inc
Original Assignee
Rayette Faberge Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US325327A external-priority patent/US3311659A/en
Application filed by Rayette Faberge Inc filed Critical Rayette Faberge Inc
Application granted granted Critical
Publication of US3423504A publication Critical patent/US3423504A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • A61K8/416Quaternary ammonium compounds

Definitions

  • This invention relates to an improved method of formation of N-benzyl higher fatty alkyl dilower alkyl quaterlnary ammonium halides, and to improved reaction be ⁇ tween benzylhalide and higher fatty alkyl dilower alkyl lamine to form the quaternary ammonium halide by leecting this reaction in the presence of a higher fatty acid amide, and the product thereof which is useful as an improved component of a hair rinse.
  • That reaction is usually effected in the presence of a slight excess of the insoluble amine and, consequently, the reaction, despite the ultimate conversion of all of the benzylchloride to quaternary which, by its high surfaceactive character, would be expected to exert a solubilizing effect upon the excess amine, nevertheless results in a continuouslly opalescent or 4milky emulsion type aqueous reaction product which makes it difficult to observe the visible progress of the reaction since there are always some insoluble components present. Moreover, there are no other useful chemical quick-test properties of such reaction such as with color or pH, since both are relatively invariable. Hence, the progress of this reaction is not only uneconomically slow, requiring large lbatchwise equipment, it is also only laboriously controlled, by extensive time-consuming tests to determine reaction conditions and the progress thereof.
  • a second important property of the amide is the slight formation of acidic byproducts, not certainly identified, but which are possibly of the nature of an N-benzyl fatty acid amide derivative. Such byproducts are theoretically present in small quantity and maintain a desirably 'buffered pH. That buffering of pH is a valuable property in the quaternary compound composition produced for use in a hair creme rinse because it provides a control over 3,423,504 Patented Jan. 2l, 1969 the pH in use dilutions.
  • the presence in the reaction mixture of the higher fatty acid amide also has a solubilizing effect upon unreacted components long before endpoint is reached which is apparent at raised temperatures of the reaction, whereby it establishes soon after reaction initiation a transparency of the solution despite the presence of any usually used excess of insoluble amine. That transparency is a useful control to exhibit a rapid approaching endpoint in large batch reactions.
  • reaction rate increases progressively with increasing quantities of the fatty acid amide ⁇ up to about 20% of the amine, and while even larger quantities could be used, corresponding advantage is not present. Consequently, a practical range of the fatty acid amide used is about 1 to 20% of the amine present in the reaction.
  • the tertiary amine itself may comprise a higher fatty alkyl dilower alkyl amine wherein the fatty alkyl may range from about 10 to 22 carbon atoms and the lower alkyl component is methyl, ethyl, propyl or mixed lower alkyls.
  • Typical amine examples are dodecyl dimethyl amine, tetradecyl ethyl methylamine, hexadecyl diethyl amine and octadecyl dimethyl amine.
  • the fatty acid amide may ⁇ be derived from the same fixed oil source as the higher fatty alkyl for commercial feasibility, but not necessarily so.
  • Typical higher fatty acid amides are, therefore, arachidyl acid amide, behenyl acid amide, tallow acid amide, coconut oil acid amide and the like.
  • the fatty hydrocarbon chain may be hydrogenated.
  • the higher fatty acid amide too, may range from 10 to 22 carbon atoms.
  • the high fatty alkyl dilower alkyl amine in slight excess, Vand preferably with a small quantity of the high fatty alkyl amine unsubstituted (primary amine) and fatty acid amide are heated to about the boiling point in water and agitated to a uniform emulsion or dispersion, the mixture being cooled to an intermediate temperature usually about 50 to 75 C. and the benzyl chloride is then added with continued agitation while the temperature is held constant and the agitation continued until the reaction is complete.
  • C amine denotes the concentration of the amine in meq./grn. amine is the reaction rate assuming a first order reaction with respect to the amine. CCH2C1 is the concentration of the benzyl chloride in meq./ gm. KCH2C1 is the reaction rate assuming a first order reaction with respect to the benzyl chloride.
  • EXAMPLE II Heat 1100 grams of water, 206 grams of stearyl dimethylamine, 2.06 grams of stearylamide and 16 grams of stearylamine to from 90 to 100 C. Mix until homogeneous and cool the amine-amide mixture to from 62 to 65 C., add 76.5 grams of benzyl chloride and react for sixty minutes at from 62 to 65 C.
  • Reaction Time (Min.) 0 10 20 30 40 50 60 EXAMPLE IV Reaction Time (Min.) 0 10 20 30 40 50 60 C amine meqJgm .525 .286 160 .130 11G K 61 057 O47 038 Kecnzei .084 .094 .004 .091
  • the reaction is usually carried out in the presence of a small quantity of a primary amine, preferably a higher fatty alkyl primary amine. It is most feasible to use a primary amine corresponding to the higher fatty alkyl component of the tertiary amine and, in any case, one having from 10 to 22 carbon atoms in the fatty alkyl group. That primary amine component is usually used in quantity of about to by weight of the tertiary amine.
  • the several examples illustrate the progress of the benzyl halide-higher fatty alkyl dilower alkyl tertiary amine quaternizing reaction using, for example, as reaction components, benzyl chloride and stearyl dimethyl amine.
  • the columns list both analyses of the reaction mixture as well as computed reaction rate indicated by the reaction constant K, at regular time intervals.
  • Each of the reaction mixtures contain an excess of primary stearyl amine.
  • the reaction to form the quaternary compound is apparently self-catalyzing.
  • the quaternary compound formed, stearyl dimethyl benzyl ammonium chloride has surface-active properties.
  • the curve plotting the concentration Of the quaternary compound formed against the reaction time has an S- shape, illustrated by curve A of FlG. l, as would be expected from that type of reaction.
  • the second series of curves of FIG. 2 are plots of the logr of the concentration of the unreacted component, benzyl chloride, against the reaction time. If that reaction of the benzyl chloride with the stearyl dimethyl amine were an ordinary second order reaction, as might be expected from the simple equation to form the quaternary by admixture of the two reaction components, the curves should be entirely linear. However, the first reaction without the stearyl amide, according to Example I, curve D, has a long induction period of about 30 minutes before the rate of reaction indicates approach to a linear function, the initial curved portion indicating this induction period delay to form a solubilizing quantity of quaternary.
  • the initial reaction rate accelerating effect of the higher fatty acid amide upon this reaction is noticeable in quantity as low as 1% as illustrated in Example II and curve E. That is, the induction period is slightly reduced from curve D even by such small quantity of fatty acid amide solubilizing component present in the initial reaction mixture.
  • a substantially larger quantity of 5% of solubilizing stearyl amide very greatly further reduces the induction period as will be noted from Example III and curve F.
  • the reaction rate becomes so accelerated right from the beginning, using a quantity of higher fatty acid amide of 20%, that it is substantially straight line on this logarithmic plot. That is, the induction period is substantially eliminated and the reaction proceeds at a high rate substantially from the beginning.
  • Percent benzyl chloride Percent amide reacted after 20 minutes It is quite surprsing to find that of the benzyl chloride has reacted in twenty minutes when the concentration of the amide is 20% of the amine, more than twice the correspending quantity of reacted benzyl chloride when there is no stearyl amide present in the reaction mixture. The saving in time by the reaction and the equipment needed to produce a given output of the endproduct is well illustrated.
  • the higher fatty acid amide further, as pointed out above, has a second desirable effect in stabilizing the pH of a concentrate as Well as a dilution product of the reaction mixture.
  • a dilution product is usual for a creme type hair rinse and would usually contain from 0.5 to 2.0% of the reaction mixture (0.2 to 0.5% on a solids basis).
  • the pH of the dilution product is more variable an-d must often be adjusted to obtain the desirable pH range of 3.0 to 4.5 of a hair rinse. This undesirable variation of pH of the dilution product results in a pH outside of the acceptable range.
  • Percent Amido added pH Concentrate pH 0.5% solids
  • a nonionic emollient hair conditioning substance for example a higher fatty alcohol, cetyl alcohol higher fatty esters, and a small quantity of salt such as sodium chloride or sodium sulfate.
  • the following example illustrates the forming of a hair rinse.
  • a quaternary ammonium compound mixture comprising an aqueous solution of higher fatty alkyl dilower alkyl benzyl ammonium halide and from 1 to 20% by weight of said quaternary compound of a higher fatty acid amide, each of said higher fatty components having 10 to 22 carbon atoms.
  • a quaternary ammonium compound mixture comprising an aqueous solution of a higher fatty alkyl dilower al-kyl benzyl ammonium halide, from about 1 to 20% by -weight of said quaternary compound of higher fatty acid amide, and from 5 to 10% by weight of the tertiary amine component of said quaternary ammonium compound of a higher fatty alkyl primary amine, each of said higher fatty components having 10 to 22 carbon atoms.
  • a quaternary ammonium compound mixture comprising an aqueous solution of a higher fatty alkyl dilower alkyl benzyl ammonium chloride, and from about 1 to 20% by weight of the amine component of said quaternary component of a higher fatty acid amide, the fatty alkyl component of said quaternary ammonium compound and the higher fatty acid component of said amide having from l0 to 22 carbon atoms.
  • a quaternary ammonium composition useful as a hair rinse comprising a diluted aqueous solution of higher alkyl dilower alkyl benzyl ammonium chloride, about 1 to 20% by weight of the amine component of said quaternary ammonium compound of a higher fatty acid amide, and about 0.1 to 0.8% by weight of a higher fatty alcohol, each of said higher fatty components having 10 to 22 carbon atoms and about 0.1 to 0.8% salt, the remainder of said composition being substantially water, said composition being stabilized in a pH range of from about 3 to 4.5.

Description

3,423,504 ALKYL INSE ySheefll "Y of 5 E. P. B|RKELO- ETAL R FATTY ALKYL DILOWER MMONIUM HALTDE HAIR R von.
N-BENZYL HIGHE QUATERNARY A 2l,` 4196,5
Jan. 21, 1969 original mie@ Nov.
United States Patent C 3,423,504 N-BENZYL HIGHER FATTY ALKYL DILOWER- ALKYL QUATERNARY AMMONIUM HLIDE HAIR RINSE Einar P. Brkelo, Minneapolis, and Timothy N. Johnson, St. Paul, Minn., assignors to Rayette-Faberge, Inc., a corporation of Minnesota Original application Nov. 21, 1963, Ser. No. 325,327, now Patent No. 3,311,659, dated Mar. 23, 1967. Divided and this application May 27, 1966, Ser. No. 569,777 U.S. Cl. 424--70 4 Claims Int. Cl. A61k 7/06, 7/08; C07c 87/30 This is a division of application Ser. No. 325,327, filed Nov. l21, 1963 and now U.S. Patent 3,311,659 of Mar. 28, 1967. This invention relates to an improved method of formation of N-benzyl higher fatty alkyl dilower alkyl quaterlnary ammonium halides, and to improved reaction be` tween benzylhalide and higher fatty alkyl dilower alkyl lamine to form the quaternary ammonium halide by leecting this reaction in the presence of a higher fatty acid amide, and the product thereof which is useful as an improved component of a hair rinse.
The quaternizing reaction between a higher fatty alkyl dilower alkyl amine, typically stearyl dimethyl amine, and ya benzylating agent, typically benzylchloride, in water, `might be regarded as a second order action; that is, rst order with respect to each of the components and a plot of the log of the concentration of either of the reactants vs. reaction time, should be linear, but it is not. Rather, the curve is nonlinear as shown in FIG. 2 plotting the data of Example l below. This type of curve probably results from an apparently necessary initial induction period to elapse in the forming of some solubilizing quaternary compound from the initial reaction components, both of which are insoluble in the aqueous reaction medium before the ultimate solnbilizing thereof increases their reaction rate substantially. That reaction, moreover, is usually effected in the presence of a slight excess of the insoluble amine and, consequently, the reaction, despite the ultimate conversion of all of the benzylchloride to quaternary which, by its high surfaceactive character, would be expected to exert a solubilizing effect upon the excess amine, nevertheless results in a continuouslly opalescent or 4milky emulsion type aqueous reaction product which makes it difficult to observe the visible progress of the reaction since there are always some insoluble components present. Moreover, there are no other useful chemical quick-test properties of such reaction such as with color or pH, since both are relatively invariable. Hence, the progress of this reaction is not only uneconomically slow, requiring large lbatchwise equipment, it is also only laboriously controlled, by extensive time-consuming tests to determine reaction conditions and the progress thereof.
According to the present invention, we have found that the addition of a minor quantity of higher fatty acid amides, such as to 22 carbon fatty acid amides, greatly accelerates the initial reaction mixture to a substantially immediate reaction rate at least as high as would be available from the substantial presence of quaternary in the later reaction stages. That higher fatty acid amide, moreover, has several other valuable properties.
A second important property of the amide is the slight formation of acidic byproducts, not certainly identified, but which are possibly of the nature of an N-benzyl fatty acid amide derivative. Such byproducts are theoretically present in small quantity and maintain a desirably 'buffered pH. That buffering of pH is a valuable property in the quaternary compound composition produced for use in a hair creme rinse because it provides a control over 3,423,504 Patented Jan. 2l, 1969 the pH in use dilutions. The presence in the reaction mixture of the higher fatty acid amide also has a solubilizing effect upon unreacted components long before endpoint is reached which is apparent at raised temperatures of the reaction, whereby it establishes soon after reaction initiation a transparency of the solution despite the presence of any usually used excess of insoluble amine. That transparency is a useful control to exhibit a rapid approaching endpoint in large batch reactions.
Most important is the property of the higher fatty acid amide to greatly accelerate the initial quaternizing reaction, allowing completion of the reaction in about one quarter the usual reaction time. Thus there results a substantial saving in both the time needed for commercial processing of large batches as well as equipment necessary therefor.
A substantial acceleration of the reaction rate is noticeable when the fatty acid amide is present in quantity as low as 1% of the higher alkyl tertiary amine. The reaction rate increases progressively with increasing quantities of the fatty acid amide `up to about 20% of the amine, and while even larger quantities could be used, corresponding advantage is not present. Consequently, a practical range of the fatty acid amide used is about 1 to 20% of the amine present in the reaction.
The tertiary amine itself may comprise a higher fatty alkyl dilower alkyl amine wherein the fatty alkyl may range from about 10 to 22 carbon atoms and the lower alkyl component is methyl, ethyl, propyl or mixed lower alkyls. Typical amine examples are dodecyl dimethyl amine, tetradecyl ethyl methylamine, hexadecyl diethyl amine and octadecyl dimethyl amine. The fatty acid amide may `be derived from the same fixed oil source as the higher fatty alkyl for commercial feasibility, but not necessarily so. Typical higher fatty acid amides are, therefore, arachidyl acid amide, behenyl acid amide, tallow acid amide, coconut oil acid amide and the like. When derived from natural oil, the fatty hydrocarbon chain may be hydrogenated. Thus, the higher fatty acid amide, too, may range from 10 to 22 carbon atoms.
In carrying out the reaction, the high fatty alkyl dilower alkyl amine in slight excess, Vand preferably with a small quantity of the high fatty alkyl amine unsubstituted (primary amine) and fatty acid amide are heated to about the boiling point in water and agitated to a uniform emulsion or dispersion, the mixture being cooled to an intermediate temperature usually about 50 to 75 C. and the benzyl chloride is then added with continued agitation while the temperature is held constant and the agitation continued until the reaction is complete.
The following examples illustrate the effect of the amide upon the reaction rate. In each of the tables, the rate constants were calculated.
EXAMPLE I Reaction Time (Mln). 0 l0 20 30 40 50 60 C amine meqJgm 0. 385 0. 202 0. 168 0. 128 0. 113 K 0. 009 0. 017 0. 024 0. 029 0. 020 0. 026 0. 450 0. 385 0. 275 0. 0. 058 0. 018 0. 003 K t 0. 011 0. 022 0. 035 0. 050 0. 063 0. O83
C amine denotes the concentration of the amine in meq./grn. amine is the reaction rate assuming a first order reaction with respect to the amine. CCH2C1 is the concentration of the benzyl chloride in meq./ gm. KCH2C1 is the reaction rate assuming a first order reaction with respect to the benzyl chloride.
The rate constants were calculated by the following expression:
K=03 log QJ where CO=initial concentration of the reactant and C=the concentration of that reactant at time T.
EXAMPLE II Heat 1100 grams of water, 206 grams of stearyl dimethylamine, 2.06 grams of stearylamide and 16 grams of stearylamine to from 90 to 100 C. Mix until homogeneous and cool the amine-amide mixture to from 62 to 65 C., add 76.5 grams of benzyl chloride and react for sixty minutes at from 62 to 65 C.
Reaction Time (Min.) vvvv 10 20 30 40 50 60 C amino mcq./gm 0. 54() .400 .355 .220 151 127 118 K 0.016 020 030 037 020 025 Ccri2c1meq./gm- O. 430 350 245 110 041 017 00S K 021 028 O45 050 066 006 EXAMPLE III Heat 1100 grams of water, 206 grams of stearyl dimethylamine, 10.2 grams stearylamide and 16 grams of stearylamine to from 90 to 100 C. Mix until the amineamide mixture is homogeneous and cool to from 62 to 65 C. Add 76.5 grams of benzyl chloride and react sixty minutes at from 62 to 65 C.
Reaction Time (Min.) 0 10 20 30 40 50 60 EXAMPLE IV Reaction Time (Min.) 0 10 20 30 40 50 60 C amine meqJgm .525 .286 160 .130 11G K 61 057 O47 038 Kecnzei .084 .094 .004 .091
As will be noted from the examples, the reaction is usually carried out in the presence of a small quantity of a primary amine, preferably a higher fatty alkyl primary amine. It is most feasible to use a primary amine corresponding to the higher fatty alkyl component of the tertiary amine and, in any case, one having from 10 to 22 carbon atoms in the fatty alkyl group. That primary amine component is usually used in quantity of about to by weight of the tertiary amine.
The several examples illustrate the progress of the benzyl halide-higher fatty alkyl dilower alkyl tertiary amine quaternizing reaction using, for example, as reaction components, benzyl chloride and stearyl dimethyl amine. The columns list both analyses of the reaction mixture as well as computed reaction rate indicated by the reaction constant K, at regular time intervals. Each of the reaction mixtures contain an excess of primary stearyl amine. The reaction to form the quaternary compound is apparently self-catalyzing. The quaternary compound formed, stearyl dimethyl benzyl ammonium chloride, has surface-active properties. It therefore apparently tends to solubilize the initially very insoluble reaction components, the unreacted benzyl chloride and the tertiary amine, making them soluble, and thus more readily available for interaction. Consequently, the reaction starts off very slowly, there being no solubilizing reaction product initially available, and after what may be termed an induction period to form substantial solubilizing quantities of the surface-active product accelerates to a quite rapid rate. It is the initial induction period needed to produce such solubilizing quantity of reaction product which long delays the potentially rapid reaction.
The curve plotting the concentration Of the quaternary compound formed against the reaction time has an S- shape, illustrated by curve A of FlG. l, as would be expected from that type of reaction. The curves B and C, FIG. 1, respectively reect the reaction using 10.2 grams (5%) and 41.2 grams (20%) based on the amine of the stearyl amide of Examples III and IV. Since the induction periods are progressively less, they are initially much steeper, the slope thus illustrating the tar greater reaction rate in the early stages below about 20 minutes of reaction time.
The second series of curves of FIG. 2 are plots of the logr of the concentration of the unreacted component, benzyl chloride, against the reaction time. If that reaction of the benzyl chloride with the stearyl dimethyl amine were an ordinary second order reaction, as might be expected from the simple equation to form the quaternary by admixture of the two reaction components, the curves should be entirely linear. However, the first reaction without the stearyl amide, according to Example I, curve D, has a long induction period of about 30 minutes before the rate of reaction indicates approach to a linear function, the initial curved portion indicating this induction period delay to form a solubilizing quantity of quaternary.
The initial reaction rate accelerating effect of the higher fatty acid amide upon this reaction is noticeable in quantity as low as 1% as illustrated in Example II and curve E. That is, the induction period is slightly reduced from curve D even by such small quantity of fatty acid amide solubilizing component present in the initial reaction mixture. A substantially larger quantity of 5% of solubilizing stearyl amide very greatly further reduces the induction period as will be noted from Example III and curve F. However, the reaction rate becomes so accelerated right from the beginning, using a quantity of higher fatty acid amide of 20%, that it is substantially straight line on this logarithmic plot. That is, the induction period is substantially eliminated and the reaction proceeds at a high rate substantially from the beginning.
That series of curves of FIG. 2 are only incidentally based upon one of the reaction components, benzyl chloride. Substantially the same curves are developed when logarithmic concentrations of the tertiary amine are plotted against the time, according to FIG. 3. Inasmuch as an excess of amine is always present in the examples, at about the endpoint of the reaction the curves bend asymptotically towards the limiting concentrations of the excess of the amine used.
The several curves illustrate that at about 20% concentration of the high fatty acid amide based on the tertiary amine, the reaction rate becomes constant immediately, but requires about 30 minutes of reaction time when no fatty acid amide is present. For instance, comparing the quantity of stearyl amide used as percent of the amine with the percent of benzyl chloride reacted after 20 minutes, the data sums up as follows:
Percent benzyl chloride Percent amide: reacted after 20 minutes It is quite surprsing to find that of the benzyl chloride has reacted in twenty minutes when the concentration of the amide is 20% of the amine, more than twice the correspending quantity of reacted benzyl chloride when there is no stearyl amide present in the reaction mixture. The saving in time by the reaction and the equipment needed to produce a given output of the endproduct is well illustrated.
While we do not wish to be limited to a theory of reaction, it would appear that the effect of the fatty acid amide, either of itself or through a possible intermediate, exerts a solubilizing effect upon the otherwise insoluble reacting components such as would possibly be produced by the yquaternized endproduct after, for example, 85% reaction had taken place. That is, the solubilizing effect gives results which are noticeable only during the 'first twenty minutes of the reaction.
Another important result of using higher fatty acid amide is that the reaction mixture becomes perfectly clear, transparently clear, before the reaction is completed. This is true despite the fact that there is always present an excess of water insoluble amine according to the examples above. It would be expected the excess unreacted waterinsoluble amine still present, even when the reaction is completed, would produce a cloudy effect. This clarity of the reaction mixture, on the other hand, is never present when the amide is not used. The same transparency effect was produced by other fatty acid amides such as cocoa acid amide and arachidyl-behenyl acid amide. Again, that effect was also produced when different higher fatty alkyl dilower alkyl amines -were used; for instance, dodecyl dimethyl amine, tetradecyl dimethyl amine, hexadecyl dimethyl amine and octadecyl dimethyl amine in the pres- `ence of a fatty acid amide.
The higher fatty acid amide further, as pointed out above, has a second desirable effect in stabilizing the pH of a concentrate as Well as a dilution product of the reaction mixture. Such a dilution product is usual for a creme type hair rinse and would usually contain from 0.5 to 2.0% of the reaction mixture (0.2 to 0.5% on a solids basis). Without the higher fatty acid amide, the pH of the dilution product is more variable an-d must often be adjusted to obtain the desirable pH range of 3.0 to 4.5 of a hair rinse. This undesirable variation of pH of the dilution product results in a pH outside of the acceptable range. On the other hand, where the higher fatty acid amide is present in the quaternary reaction product, its dilution product is mildly buffered and remains stabilized in the desired pH range of 3 to 4.5. The following table illustrates the pH of both the concentrate and the dilution product of the examples as set forth above.
Percent Amido added pH Concentrate pH 0.5% solids In forming the quaternary product hereof into a creme hair rinse, it is usual to dilute one of the reaction mixtures, as stated above, about 8 to 15 times with water and add small quantities from 0.1 to 2.0% of a nonionic emollient hair conditioning substance, for example a higher fatty alcohol, cetyl alcohol higher fatty esters, and a small quantity of salt such as sodium chloride or sodium sulfate.
The following example illustrates the forming of a hair rinse.
6 EXAMPLE V Parts Mixture in Example IV 20 Cetyl alcohol 1 Sodium chloride 1 Water HCl sufficient to adjust pH to 3.0 to 4.5.
Various modifications will occur to those skilled in the art. Accordingly, it is intended that the description contained in the drawings and the examples given above be regarded as illustrative and not limiting except as defined in the claims appended hereto.
We claim:
1. A quaternary ammonium compound mixture comprising an aqueous solution of higher fatty alkyl dilower alkyl benzyl ammonium halide and from 1 to 20% by weight of said quaternary compound of a higher fatty acid amide, each of said higher fatty components having 10 to 22 carbon atoms.
2. A quaternary ammonium compound mixture comprising an aqueous solution of a higher fatty alkyl dilower al-kyl benzyl ammonium halide, from about 1 to 20% by -weight of said quaternary compound of higher fatty acid amide, and from 5 to 10% by weight of the tertiary amine component of said quaternary ammonium compound of a higher fatty alkyl primary amine, each of said higher fatty components having 10 to 22 carbon atoms.
3. A quaternary ammonium compound mixture comprising an aqueous solution of a higher fatty alkyl dilower alkyl benzyl ammonium chloride, and from about 1 to 20% by weight of the amine component of said quaternary component of a higher fatty acid amide, the fatty alkyl component of said quaternary ammonium compound and the higher fatty acid component of said amide having from l0 to 22 carbon atoms.
4. A quaternary ammonium composition useful as a hair rinse, comprising a diluted aqueous solution of higher alkyl dilower alkyl benzyl ammonium chloride, about 1 to 20% by weight of the amine component of said quaternary ammonium compound of a higher fatty acid amide, and about 0.1 to 0.8% by weight of a higher fatty alcohol, each of said higher fatty components having 10 to 22 carbon atoms and about 0.1 to 0.8% salt, the remainder of said composition being substantially water, said composition being stabilized in a pH range of from about 3 to 4.5.
References Cited UNITED STATES PATENTS OTHER REFERENCES Schimmel Briefs No. 241, Schimmel & Co., New Yonk,
N.Y., April 1955.
ALBERT T. MEYERS, Primary Examiner.
V. C. CLARKE, Assistant Examiner.
U.S. Cl. X.R.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3 ,423,504 January 2l 1969 Einar P. Birkelo et al.
It is certified that error appears in the above identified patent and that said Letters Patent are hereby corrected as shown below:
Column 2, line 70, before "amine" insert K --L Signed and sealed this 24th day of March 1970.
(SEAL) Edward M. Fletcher, J r.
Commissioner of Patents Attestingr Officer

Claims (1)

1. A QUATERNARY AMMONIUM COMPOUND MIXTURE COMPRISING AN AQUEOUS SOLUTION OF HIGHER FATTY ALKYL DILOWER ALKYL BENZYL AMMONIUM HALIDE AND FROM 1 TO 20% BY WEIGHT OF SAID QUATERNARY COMPOUND OF A HIGHER FATTY ACID AMIDE, EACH OF SAID HIGHER FATTY COMPONENTS HAVING 10 TO 22 CARBONS ATOMS.
US569777A 1963-11-21 1966-05-27 N-benzyl higher fatty alkyl diloweralkyl quaternary ammonium halide hair rinse Expired - Lifetime US3423504A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US325327A US3311659A (en) 1963-11-21 1963-11-21 Process for preparing higher fatty alkyl diloweralkyl benzyl ammonium halides
US56977766A 1966-05-27 1966-05-27

Publications (1)

Publication Number Publication Date
US3423504A true US3423504A (en) 1969-01-21

Family

ID=26984886

Family Applications (1)

Application Number Title Priority Date Filing Date
US569777A Expired - Lifetime US3423504A (en) 1963-11-21 1966-05-27 N-benzyl higher fatty alkyl diloweralkyl quaternary ammonium halide hair rinse

Country Status (1)

Country Link
US (1) US3423504A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959461A (en) * 1974-05-28 1976-05-25 The United States Of America As Represented By The Secretary Of Agriculture Hair cream rinse formulations containing quaternary ammonium salts
DE2639467A1 (en) * 1975-09-11 1977-03-24 Kao Corp HAIR CONDITIONER
US4035478A (en) * 1976-03-08 1977-07-12 American Cyanamid Company Clear, water-white hair conditioning composition
US4165369A (en) * 1975-09-11 1979-08-21 Kao Soap Co., Ltd. Liquid hair rinse containing quaternary ammonium salts and a synthetic secondary alcohol
US4252695A (en) * 1978-07-31 1981-02-24 Kao Soap Co., Ltd. Hair rinse composition
US4421740A (en) * 1976-07-09 1983-12-20 S. C. Johnson & Son, Inc. Hair conditioning composition and process for producing the same
US5034219A (en) * 1989-03-13 1991-07-23 Sterling Drug Inc. Pre-perm hair conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1776534A (en) * 1935-05-28 1935-06-06 IG. Farbenindusthie Aktiengesellschaft Preserving and disinfecting media
US2666010A (en) * 1950-09-05 1954-01-12 California Research Corp Quaternary ammonium germicidal compositions
US2951787A (en) * 1960-09-06 Table i
US3155591A (en) * 1961-12-06 1964-11-03 Witco Chemical Corp Hair rinse compostions of polyoxypropylene quaternary ammonium compounds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2951787A (en) * 1960-09-06 Table i
AU1776534A (en) * 1935-05-28 1935-06-06 IG. Farbenindusthie Aktiengesellschaft Preserving and disinfecting media
US2666010A (en) * 1950-09-05 1954-01-12 California Research Corp Quaternary ammonium germicidal compositions
US3155591A (en) * 1961-12-06 1964-11-03 Witco Chemical Corp Hair rinse compostions of polyoxypropylene quaternary ammonium compounds

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959461A (en) * 1974-05-28 1976-05-25 The United States Of America As Represented By The Secretary Of Agriculture Hair cream rinse formulations containing quaternary ammonium salts
DE2639467A1 (en) * 1975-09-11 1977-03-24 Kao Corp HAIR CONDITIONER
US4165369A (en) * 1975-09-11 1979-08-21 Kao Soap Co., Ltd. Liquid hair rinse containing quaternary ammonium salts and a synthetic secondary alcohol
US4035478A (en) * 1976-03-08 1977-07-12 American Cyanamid Company Clear, water-white hair conditioning composition
US4421740A (en) * 1976-07-09 1983-12-20 S. C. Johnson & Son, Inc. Hair conditioning composition and process for producing the same
US4252695A (en) * 1978-07-31 1981-02-24 Kao Soap Co., Ltd. Hair rinse composition
US5034219A (en) * 1989-03-13 1991-07-23 Sterling Drug Inc. Pre-perm hair conditioner

Similar Documents

Publication Publication Date Title
US4717501A (en) Pearl luster dispersion
CA2094267A1 (en) Use of fatty alcohol based composition for preparing emulsions, method of preparing emulsions and emulsions so obtained
US3423504A (en) N-benzyl higher fatty alkyl diloweralkyl quaternary ammonium halide hair rinse
CA2131452A1 (en) Extra Low Fat Spread and Process of Preparing the Spread
DE3781381D1 (en) FERRIERITE, METHOD FOR THEIR PRODUCTION AND THEIR USE.
Iwasaki et al. Purification and properties of a new polypeptide chain elongation factor, EF-1beta, from pig liver.
US4892728A (en) Pumpable cationic fatty alcohol despersion
ES300059A1 (en) Procedure for the preparation of amines and their additional derivatives (Machine-translation by Google Translate, not legally binding)
US4537762A (en) Hair compositions containing mixtures of quaternary ammonium compounds and tertiary amine salts of long-chain acids
US3311659A (en) Process for preparing higher fatty alkyl diloweralkyl benzyl ammonium halides
EP0937124B1 (en) Concentrated aqueous betaine-type surfactant compositions and process for their preparation
DK357482A (en) PROCEDURE FOR PREPARING 4-METHYL-6-PHENYL-PYRIDAZINE DERIVATIVES
GB1492104A (en) Paper sizing composition and method of sizing paper
US4959206A (en) Pearling agent dispersion
DE2050484A1 (en) Guanidinocapronate and process for their preparation
GB1132306A (en) s-triazine plant growth regulating agents
DE2501622C2 (en)
US4885112A (en) Surface active secondary amidoamino acid or salt compounds
GB1521984A (en) Process for the manufacture of a detergent
US3399953A (en) Dye assistant for polyamides containing alkylene polyamines diamidated with fatty acids, polyethylene glycol fatty acid ester and an alkyl quaternary ammonium compound
GB1213361A (en) Quaternary ammonium compounds
GB966822A (en) New quaternary ammonium derivatives and process for their preparation
SE7408648L (en)
JPH10182343A (en) Iridescent composition and its production
US2362894A (en) Wetting-out compositions