US3827607A - Pressure operated container for dispensing viscous products - Google Patents

Pressure operated container for dispensing viscous products Download PDF

Info

Publication number
US3827607A
US3827607A US00290977A US29097772A US3827607A US 3827607 A US3827607 A US 3827607A US 00290977 A US00290977 A US 00290977A US 29097772 A US29097772 A US 29097772A US 3827607 A US3827607 A US 3827607A
Authority
US
United States
Prior art keywords
piston
container
flange
wall
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00290977A
Inventor
R Schultz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eyelet Specialty Co Inc
Original Assignee
Eyelet Specialty Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eyelet Specialty Co Inc filed Critical Eyelet Specialty Co Inc
Priority to US00290977A priority Critical patent/US3827607A/en
Priority to US452447A priority patent/US3901416A/en
Priority to US455892A priority patent/US3926349A/en
Application granted granted Critical
Publication of US3827607A publication Critical patent/US3827607A/en
Priority to US05/611,814 priority patent/US3981119A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/60Contents and propellant separated
    • B65D83/64Contents and propellant separated by piston

Definitions

  • dispensing valve and adjacent container contours are such as to achieve economies in UNITED STATES PATENTS piston construction and to provide precision control of 2,806,238 9/1957 Wisey, Jr. 222/394 X valve action 2,852,168 9/1958 Suellentrop 222 40222 2,892,572 6/1959 Fredette et a].
  • 222/402.22 x 30 Chums, 12 Drawing g 'PATENTEB AUG 6 I974 SHEET 1 0F 3 F1650. Fiafib Fla. 1
  • the present invention relates to a pressure packaging system for viscous products and particularly to a piston and valve construction for a pressurized container which improves the operation of the device.
  • Another object is to provide smoother discharge flow, more precisely controlled valve action, and inherently greater capacity in a given size container of the character indicated.
  • a specific object is to achieve the foregoing objects in a valved pressure container having a piston operable therein in which the viscous product is in the valved end of the container and ahead of the piston while a gas, such as nitrogen, is introduced under pressure behind the piston to urge the latter against the product and expel the product through the valved opening.
  • a gas such as nitrogen
  • Another specific object is to provide in such a container a piston and seal construction which permits the piston to operate smoothly within the container in spite of any piston expansion, as may be caused by piston absorption of oils present in the viscous product to be dispensed.
  • a further specific object is to provide an improved container of the character indicated wherein viscous product may be loaded through the bottom of the container and in direct void-free relation with the valve.
  • Another specific object is to provide an improved piston construction for a container of the character indicated wherein viscous product is loaded from the top end of the container and against the piston and yet wherein smooth piston action is not adversely affected by the fact of such top loading.
  • a general object is to achieve the foregoing objects with a construction which inherently simplifies container assembly, which operates smoothly and without piston bind even if the container has been so abused as to have side-wall indentations.
  • FIG. 1 is a longitudinal sectional view of a pressurized container of the invention
  • FIG. 2 is an enlarged fragmentary sectional view of the piston and adjacent container wall of FIG. 1, and further illustrating a modification
  • FIGS. 3a and 3b are fragmentary sectional views to illustrate another modification and showing a doubleacting piston in the container in both the unloaded (FIG. 3a) and loaded (FIG. 3b) condition thereof;
  • FIG. 4 is an enlarged fragmentary sectional view of a portion of FIG. 3;
  • FIG. 5 is a view similar to FIG. 1 to illustrate a further embodiment of the invention.
  • FIGS. 6 and 7 are enlarged fragmentary sectional views of two different parts relationships for the structure of FIG. 5;
  • FIGS. 8 and 9 are similar enlarged fragmentary sectional views of the FIG. 1 combination, to show detail of the relation of parts for the uppermost position of the piston, in application to larger (FIG. 8) and smaller (FIG. 9) container bore sizes.
  • FIGS. 10 and 1 l are respectively perspective and longitudinal sectional views of the piston in FIG. 8;
  • FIG. 12 is a view similar to FIG. 11, but for the piston of FIG. 9.
  • a pressurized container or can 10 is formed with an integral conical top-end wall and provided with a valve, referred to generally by the reference numeral 12.
  • the valve 12 is of the variety in which a valve stem 14 is pressed laterally in a well-known manner in order to release the valve seal and permit the viscous product 16, which is at super-atmospheric pressure, to be expelled to the atmosphere.
  • the container and valve per se form no part of the present invention; however, particular cooperating relationships between these and other parts are regarded as inventive.
  • a generally tubular hollow piston 18, which may be constituted of a low density polyethylene or a polypropylene material, is used to drive product 16 through the dispensing valve 12.
  • a relatively thin annular-shaped flange 20 secured to or integral with the piston 18 is a relatively thin annular-shaped flange 20 provided with a depending skirt portion.
  • the thickness of the flange 20 is less than half the thickness of the wall of tubular piston 18.
  • the thickness of the flange 20 is in the order of 0.005 to 0.015 inches.
  • the flange 20 is provided with a large surface area for dependable but light sealing contact with the inner wall 10a of the container 10.
  • the container 10 is closed by a bottom wall 22 having a central opening having a sealing grommet 24 through which a gas 26, such as nitrogen, is introduced after the viscous product 16 and the piston 18 are inserted into the container.
  • a gas 26 such as nitrogen
  • the gas 26 presses against the interior surfaces of the top of piston 18 as well as in the space A, beneath flange 20 and between the outer vertical walls of the piston and the inner wall 10a of the container 10. It will be apparent that the pressure of the gas 26 present in the space A will force the thin resilient flange 20 into light sealing contact with the inner wall 10a of the container 10.
  • the flange 20 may be separately secured or may be integral with the vertical wall of the piston 18 at various selected locations on the vertical wall of the piston; such a modified location of flange 20 is suggested by dashed outline in FIG. 2.
  • the space A which permits the easy loading and operation of piston 18 in container 10, functions to provide room for the lateral expansion of the piston 18 especially when oily type or flavored products are loaded in the container, and the piston expands due to the absorption of oils from the product.
  • the resilient flange 20 is even further flattened against the inner wall 10a of the container 10, however the light sealing pressure created by the resilient flange continues to seal the propellent from the product, but permits the piston 18 and associated structure to move smoothly in the container 10.
  • FIGS. 3 and 4 show an alternate type of piston 28 which is double-acting.
  • This piston is provided with a thin resilient, annular flange 30 provided with a depending skirt portion, as already described in connection with FIGS. 1 and 2, as well as an additional annular flange 32 provided with a depending skirt portion, which is seen, in the left-hand fragmentary view of FIG. 3a in the unloaded state of the container 10, to be vertically self-supporting.
  • the loaded condition of the piston 18 in the container 10 is depicted in the right-hand fragmentary view of FIG. 3b.
  • pressure of the product on the flange 32 of the upwardly moving piston 28 causes the flange I to bend backwardly against the inner wall 10a of the container 10.
  • the piston structure shown in FIGS. 3 and 4 results in an arrangement which double-seals the piston flanges against the container wall.
  • the vertical body wall of the piston 28 is provided with a reduced portion 19 at the top thereof which permits substantially all of the product present to be dispensed through the valve 12.
  • the nature of the thin resilient flanges 20-30-32 is to flex in and out of any indentations and over any projections or other imperfections that might be present on the interior wall surfaces of the pressurized container.
  • FIGS. 5 to 7 show another modification of the present invention in which like parts bear the same reference numerals applied to the structure shown in FIGS. 1 and 2.
  • the container 10 is the type which is loaded with the product from the top of the container since the bottom and sides of the container are integral.
  • the entire top unit with a valve assembly is inserted on the cylindrical can after the product is loaded through the top of the can.
  • the upwardly projecting thin annular flange 200 provided with a depending skirt portion is normally in a position adjacent to the inner wall surface 101: which may include an actual light engagement of this wall surface by the flange.
  • FIG. 8 provides illustrative detail for the FIG. 1 organization applied to containers of medium or relatively large diameter.
  • the conical end wall 11 is tapered, as in the range of to 55 and, preferably, at approximately 1r/4 radian to the container axis, terminating at a neck bead or shoulder 33 at the central opening. Shoulder 33 serves to frictionally retain the skirt of a removal nozzle-protecting closure cap 34, as will be understood.
  • An elastomeric grommet-like fitting or bushing 35 is locked to the reduced central end of wall 11,
  • the fitting 35 is held at a reduced circumferentially continuous groove or waist 36, between an upper shoulder portion 37 and a lower conical flange portion 38, the latter including a substantial downwardly and outwardly projecting region that is relatively free of back-up connection to the central or main generally cylindrical body portion 39.
  • the shoulder 37 is upwardly tapered to a reduced nose-end diameter at 40, well within the diameter of the opening of wall 11, the taper angle being less with respect to the central axis of the container than the slope angle of the conical end wall 11.
  • stem 14 has a central product-dispensing passage 41 which terminates at, but does not extend through, an enlarged integral head 42.
  • Head 42 and a shoulder 43 define longitudinal limits of a reduced cylindrical body 44 which is retained by the bore of fitting 35, and one or more radial passages 45 open the lower end of passage 41 within the bore of fitting 35 and adjacent head 42.
  • the lower exposed surface of head 42 is spherical, as shown, about a center which approximates the instantaneous center 53 of tilt displacement of stem 14.
  • the closed end of the body of piston 18' (FIG. 8) is characterized by a conical portion 46 conforming in slope to the taper of wall 11.
  • a spherically dished central portion 47 conforms to the exposed contour of head 42, and a flat radial annulus 48 integrally unites the portions 46-47, in close proximity to the lower limit of flange 38.
  • FIGS. 10 and 11 provide further detail, revealing the cylindrical body of the piston as a relatively thin peripheral shell or skirt 49, integrally reinforced at regular angular spacings by thin elongate and radially inward stiffening ribs 50.
  • the juncture of the still thinner suspension and seal flange 20 may be continuous with the cone which characterizes the outer surface of portion 46, as shown.
  • FIGS. 9 and 12 illustrates how precisely the same dispensing valve and its supporting structure may be made to serve containers of smaller diameter. For this reason, the same reference numbers are used, where applicable.
  • the conical upper end wall 11' is similarly limited, to the extent that flange 38 extends so near the lower (outer) end of wall 11 that it is impractical to form a conical portion in the closed end of piston 18".
  • the end-wall portions 47-48 are thus directly connected at a rounded corner 51 to the relatively thin cylindrical skirt 49', backed by ribs 50.
  • the axial extent of the waist 37 of fitting 35 preferably exceeds, as by 0.020 to 0.030 inch, the corresponding axial extent of the bore of the can opening in which it is retained, and the unstressed conical angle of flange 38 preferably slightly exceeds, as by 5, the conical slope of end wall 11; thus, for a wall 11 of 45 slope from the container axis, the unstressed slope of flange 38 is preferably substantially 50.
  • This relationship will be understood to facilitate assembly of a stem 14 and its fitting 35 to the wall 11, while assuring resiliently loaded, peripherally continuous contour-adapting fit of flange 35 to adjacent lapped areas of wall 11.
  • the fitting 35 serves as a resilient pivotal suspension, stem 14 being tilted about an instantaneous center (suggested by point 53 in FIGS. 8 and 9) within the waist region 36.
  • flange 38 can be said to have a somewhat tangential connection to body 39 (in the sense about the instantaneous pivot center 53) so that flange 38 is either locally pulled down or pushed outward along wall 11, in the course of its sliding adaptation to the magnitude of tilt actuation. Stated in other words, for normal desired extents of valve-stem tilt, there is no substantial shear-force development between body 39 and flange 38. Additionally, the employment of a small-diameter container (e.g., a 1 inch diameter container, as in FIG.
  • a conical end wall (1 1) inherently provides more extensive area, within a given limiting container diameter, to accomplish extensive resilient overlap of a seal flange, such as the flange 38 of fitting 35.
  • the employment of a conical tapering portion (for the larger sizes), and the use of the particular spherical-surface relationship described in connection with 42-47-53, means less axial draft in the formation of the piston end wall, while achieving a contour which can assuredly expel virtually all the viscous product.
  • the seal skirt or flange 20 is initially of preferably slightly less diameter (e.g., 0.002 to 0.005 inch) than the container bore and has a length B in the order of one third the piston length L (FIGS. 11 and 12), the axial extent B of the portion in contact with the container wall being in the order of one quarter of the length L.
  • the clearance C between flange 20 and the piston body shell 49 is in the order of 0.040 inch, for the 1 inch and 1.5 inch sizes thus far mentioned, wherein the ratio of overall piston length L to overall piston diameter A is less than unity, being preferably approximately 3:4; stated in other words, the radial offset of the tubular flange 20 from the body structure or shell 49 is in the order of 5 to percent of the outer radius of flange 20, being preferably no greater than substantially ten percent of this outer radius.
  • the piston advances with uniform ease and smoothness, even though it may have cause to tilt or slightly misalign, in the course of its travel.
  • the lower end of the piston body shell (49) always provides a limit to the possible tilt, and throughout the range of tilt angles, the seal flange maintains a smoothly continuous circumferential seal between the gas-pressure region 26 and the viscous-contents region 16. Also, the spherical conformity of the convex and concave surfaces 42-47 and their relation to the instantaneous center 53 for stem (14) tilt will be seen as assuring no interference with smooth control of tilt of stem 14 (with related smooth control of discharged product flow) upon approach to final discharge of the container, and
  • the bottom-fill embodiments of the invention present the advantage that the viscous product may be more accurately metered in its loading into the container.
  • the viscous product may be loaded to the extent of label-proclaimed weight, plus a safety margin in the order of l/ 10 to 1/8 02., for a 6-02. container.
  • the piston is then inserted, the container bottom 22 sealingly affixed, and the region 26 pressure-loaded.
  • the piston and valve are found to reliably dispense the full label-proclaimed weight, all with a product wastage (i.e., undispensable weight) of no more than substantially H8 02. This is to be compared to current toploaded practices wherein the necessary product wastage allowance is at least several times what my invention permits.
  • a piston for a pressurized container having a viscous product and provided with a dispensing valve said piston comprising a piston body portion of a generally tubular configuration and a resilient annular flange provided with a depending skirt portion on the outer wall of said piston body portion, said piston body portion being radially spaced from the inner wall of said skirt portion, said depending skirt portion being for contact with a container wall and being the only means of piston support, said skirt portion beingrelatively thin with respect to the space between said skirt portion and the piston body portion, said skirt portion having a large surface area of predetermined axial length; whereby, when said piston is inserted in a suitable container and when the space within said skirt portion is subjected to a predetermined charge of gas under pressure, said skirt portion will be pressure-loaded into peripheral and axially continuous light sealing and stabilizing contact with the container wall.
  • piston body portion includes reinforcement means whereby said piston body portion is relatively stiff in relation to the resilience of said skirt portion.
  • a pressure container comprising an elongate cylindrical body with a closed upper end, dispensing-valve means in said upper end, a piston having a closed upper end and integral body structure extending downwardly within a cylinder spaced from the container wall and united to the closed end of said piston, a peripherally continuous flexible tubular flange carried by said piston within the annular space between the piston body structure and the container wall and of axial extent substantially less than that of said piston, said flange being relatively thin with respect to the space between said tubular flange and the piston body and having a periphery of substantially the inner wallsurface peripheral extent of the container body, with a relatively extensive area of flange-seal contact with the container wall by reason of the tubular structure of said flange, said tubular flange being the only means of piston suspension with respect to the container wall, whereby a product chamber is defined in the container space between the flanged piston and the valved end of the container, pressure-sealing means closing the lower end of said container to
  • valve means comprises a resilient bushing having a central body and an integral conical flange generally conforming to the inner surface of the conical reduction of the container and peripherally continuously sealing said bushing to the container, and a headed dispensingvalve member having a stem portion extending through said bushing and located thereby.
  • valve means includes a resilient bushing carried at the container end-wall opening and a headed dispensing stem extending through said bushing with the head seated against the axially inner end of said bushing, said head having said convex spherical surface of radius in the order of magnitude of axial offset of said head from the instantaneous center of tilt afforded to said stem by reason of the resilient-bushing support thereof, whereby said spherical surfaces will not substantially oppose tilt of said stem even when the fully advanced piston position is reached.
  • said piston body comprises a cylindrical sheath with internal elongate stiffening ribs at angularly spaced locations.
  • a pressure container comprising an elongate cylindrical body with a closed upper end, dispensing-valve means in said upper end, a piston having a closed upper end and integral body structure extending downwardly within a cylinder spaced from the container wall and united to the closed end of said piswhereby a product chamber is defined in the container space between the flanged piston and the valved end of the container, pressure-sealing means closing the lower end of said container to define a pressure chamber beneath said piston, and a predetermined charge of gas under pressure in the pressure chamber and pressureloading said tubular flange into peripheral and axially continuous light sealing and stabilizing contact with the container wall.

Abstract

The invention contemplates a pressurized container for viscous foods or other viscous products in which the body of the piston has a substantially smaller diameter than the diameter of the container. The outer periphery of the piston is provided with a resilient flange member that maintains a light sealing pressure on the interior surfaces of the container, allowing the piston to move smoothly upwardly within the container. Also, the dispensing valve and adjacent container contours are such as to achieve economies in piston construction and to provide precision control of valve action.

Description

United States Patent 11 1 1111 3,827,607 Schultz 1451 Aug. 6, 1974 PRESSURE OPERATED CONTAINER FOR 2,992,052 7/1961 De John 92/246 DISPENSING VISCOUS PRODUCTS 2x323 #ivingsloni 321 owns [75] Invento gobert h t Old Greenwich, 3,493,147 2/1970 Ballin ZZZ/386.5 x
onn.
[73] Assignee: Eyelet Speciality Company, Primary Examiner-Stanley Touberg wallingford, Conn. Asszstant Exammer-James M. Slattery Attorney, Agent, or FirmSandoe, Hopgood and [22] F1led: Sept. 21, 1972 c li fd [2!] Appl. No.: 290,977
Related Application Data T l'1 e i vention contei n ol a t ci prcssurized container II [63] g z ggh of 17535731 for viscous foods or other viscous products in which the body of the piston has a substantially smaller di- [52] U S Cl 222/389 ameter than the diameter of the container. The outer [51] In} .Cl 83/14 periphery of the piston is provided with a resilient [58] Fieid 5 387 389 flange member that maintains a light sealing pressure 511 92/221?5 on the interior surfaces of the container, allowing the piston to move smoothly upwardly within the con- [56] References Cited tainer. Also, the dispensing valve and adjacent container contours are such as to achieve economies in UNITED STATES PATENTS piston construction and to provide precision control of 2,806,238 9/1957 Wisey, Jr. 222/394 X valve action 2,852,168 9/1958 Suellentrop 222 40222 2,892,572 6/1959 Fredette et a]. 222/402.22 x 30 Chums, 12 Drawing g 'PATENTEB AUG 6 I974 SHEET 1 0F 3 F1650. Fiafib Fla. 1
PATENTEU AUG 61974 SHEETZBFS FIG. 7
PATENTED M36 74 SHEET 3 BF 3 Plan PRESSURE OI'ERATED CONTAINER FOR DISPENSING VISCOUS PRODUCTS This application is a continuation-in-part of my copending application Ser. No. 175,253, filed Aug. 26, 1971 and now abandoned.
The present invention relates to a pressure packaging system for viscous products and particularly to a piston and valve construction for a pressurized container which improves the operation of the device.
It is an object of the invention to provide an improved container of the character indicated, for the controlled dispensing of viscous contents.
Another object is to provide smoother discharge flow, more precisely controlled valve action, and inherently greater capacity in a given size container of the character indicated.
A specific object is to achieve the foregoing objects in a valved pressure container having a piston operable therein in which the viscous product is in the valved end of the container and ahead of the piston while a gas, such as nitrogen, is introduced under pressure behind the piston to urge the latter against the product and expel the product through the valved opening.
Another specific object is to provide in such a container a piston and seal construction which permits the piston to operate smoothly within the container in spite of any piston expansion, as may be caused by piston absorption of oils present in the viscous product to be dispensed.
A further specific object is to provide an improved container of the character indicated wherein viscous product may be loaded through the bottom of the container and in direct void-free relation with the valve.
Another specific object is to provide an improved piston construction for a container of the character indicated wherein viscous product is loaded from the top end of the container and against the piston and yet wherein smooth piston action is not adversely affected by the fact of such top loading.
A general object is to achieve the foregoing objects with a construction which inherently simplifies container assembly, which operates smoothly and without piston bind even if the container has been so abused as to have side-wall indentations.
Other objects and various further features of novelty and invention will be pointed out or will occur to those skilled in the art from a reading of the following specification, in conjunction with the accompanying drawings. In said drawings:
FIG. 1 is a longitudinal sectional view of a pressurized container of the invention;
FIG. 2 is an enlarged fragmentary sectional view of the piston and adjacent container wall of FIG. 1, and further illustrating a modification;
FIGS. 3a and 3b are fragmentary sectional views to illustrate another modification and showing a doubleacting piston in the container in both the unloaded (FIG. 3a) and loaded (FIG. 3b) condition thereof;
FIG. 4 is an enlarged fragmentary sectional view of a portion of FIG. 3;
FIG. 5 is a view similar to FIG. 1 to illustrate a further embodiment of the invention;
FIGS. 6 and 7 are enlarged fragmentary sectional views of two different parts relationships for the structure of FIG. 5;
FIGS. 8 and 9 are similar enlarged fragmentary sectional views of the FIG. 1 combination, to show detail of the relation of parts for the uppermost position of the piston, in application to larger (FIG. 8) and smaller (FIG. 9) container bore sizes.
FIGS. 10 and 1 l are respectively perspective and longitudinal sectional views of the piston in FIG. 8; and
FIG. 12 is a view similar to FIG. 11, but for the piston of FIG. 9.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, a pressurized container or can 10 is formed with an integral conical top-end wall and provided with a valve, referred to generally by the reference numeral 12. The valve 12 is of the variety in which a valve stem 14 is pressed laterally in a well-known manner in order to release the valve seal and permit the viscous product 16, which is at super-atmospheric pressure, to be expelled to the atmosphere. It is to be noted that the container and valve per se form no part of the present invention; however, particular cooperating relationships between these and other parts are regarded as inventive.
In accordance with a feature of the invention, a generally tubular hollow piston 18, which may be constituted of a low density polyethylene or a polypropylene material, is used to drive product 16 through the dispensing valve 12. Secured to or integral with the piston 18 is a relatively thin annular-shaped flange 20 provided with a depending skirt portion. In fact, the thickness of the flange 20 is less than half the thickness of the wall of tubular piston 18. In this regard, the thickness of the flange 20 is in the order of 0.005 to 0.015 inches. Moreover, the flange 20 is provided with a large surface area for dependable but light sealing contact with the inner wall 10a of the container 10.
The container 10 is closed by a bottom wall 22 having a central opening having a sealing grommet 24 through which a gas 26, such as nitrogen, is introduced after the viscous product 16 and the piston 18 are inserted into the container. The gas 26 presses against the interior surfaces of the top of piston 18 as well as in the space A, beneath flange 20 and between the outer vertical walls of the piston and the inner wall 10a of the container 10. It will be apparent that the pressure of the gas 26 present in the space A will force the thin resilient flange 20 into light sealing contact with the inner wall 10a of the container 10.
The flange 20 may be separately secured or may be integral with the vertical wall of the piston 18 at various selected locations on the vertical wall of the piston; such a modified location of flange 20 is suggested by dashed outline in FIG. 2.
It will be noted that the space A, which permits the easy loading and operation of piston 18 in container 10, functions to provide room for the lateral expansion of the piston 18 especially when oily type or flavored products are loaded in the container, and the piston expands due to the absorption of oils from the product. In that event, the resilient flange 20 is even further flattened against the inner wall 10a of the container 10, however the light sealing pressure created by the resilient flange continues to seal the propellent from the product, but permits the piston 18 and associated structure to move smoothly in the container 10.
FIGS. 3 and 4 show an alternate type of piston 28 which is double-acting. This piston is provided with a thin resilient, annular flange 30 provided with a depending skirt portion, as already described in connection with FIGS. 1 and 2, as well as an additional annular flange 32 provided with a depending skirt portion, which is seen, in the left-hand fragmentary view of FIG. 3a in the unloaded state of the container 10, to be vertically self-supporting. The loaded condition of the piston 18 in the container 10 is depicted in the right-hand fragmentary view of FIG. 3b. Thus, when the loaded condition occurs, pressure of the product on the flange 32 of the upwardly moving piston 28 causes the flange I to bend backwardly against the inner wall 10a of the container 10. Consequently, the piston structure shown in FIGS. 3 and 4 results in an arrangement which double-seals the piston flanges against the container wall. Moreover, the vertical body wall of the piston 28 is provided with a reduced portion 19 at the top thereof which permits substantially all of the product present to be dispensed through the valve 12.
The nature of the thin resilient flanges 20-30-32 is to flex in and out of any indentations and over any projections or other imperfections that might be present on the interior wall surfaces of the pressurized container.
FIGS. 5 to 7 show another modification of the present invention in which like parts bear the same reference numerals applied to the structure shown in FIGS. 1 and 2. In this embodiment, the container 10 is the type which is loaded with the product from the top of the container since the bottom and sides of the container are integral. As seen in FIG. 5, the entire top unit with a valve assembly is inserted on the cylindrical can after the product is loaded through the top of the can. It will be noted that the upwardly projecting thin annular flange 200 provided with a depending skirt portion is normally in a position adjacent to the inner wall surface 101: which may include an actual light engagement of this wall surface by the flange. Thereafter, the product 16 to be dispensed forces the upwardly projecting thin annular flange 20a against the inner wall surface 10a of the container 10. In this manner, a tight seal is achieved between the piston 18 and the product 16 to be dispensed. The propellent gas 26 present within the hollow piston 18 moves the latter upwardly when the valve 12 is opened. Thus, as seen in FIG. 7, when the piston 18 reaches the end of its travel upwardly against the conical top part 11 of the container 10, the flange 20a bends laterally to engage the undersurface of the conical top part 11, and substantially all of the product in the container 10 is expelled therefrom. It will be understood that the same result is achieved for the bottom-loaded configuration of FIG. 3 by eliminating the lower annular flange 30 from the FIG. 3 construction, and thereby relying on only the additional annular flange 32 formed integral with the piston 18.
FIG. 8 provides illustrative detail for the FIG. 1 organization applied to containers of medium or relatively large diameter. The conical end wall 11 is tapered, as in the range of to 55 and, preferably, at approximately 1r/4 radian to the container axis, terminating at a neck bead or shoulder 33 at the central opening. Shoulder 33 serves to frictionally retain the skirt of a removal nozzle-protecting closure cap 34, as will be understood. An elastomeric grommet-like fitting or bushing 35 is locked to the reduced central end of wall 11,
and the dispensing stem 14 of the valve is, in turn, locked to the fitting 35. More specifically, the fitting 35 is held at a reduced circumferentially continuous groove or waist 36, between an upper shoulder portion 37 and a lower conical flange portion 38, the latter including a substantial downwardly and outwardly projecting region that is relatively free of back-up connection to the central or main generally cylindrical body portion 39. To facilitate longitudinal assembly of fitting 35 via the interior of the container, the shoulder 37 is upwardly tapered to a reduced nose-end diameter at 40, well within the diameter of the opening of wall 11, the taper angle being less with respect to the central axis of the container than the slope angle of the conical end wall 11.
To complete the description of valve structure, the
, stem 14 has a central product-dispensing passage 41 which terminates at, but does not extend through, an enlarged integral head 42. Head 42 and a shoulder 43 define longitudinal limits of a reduced cylindrical body 44 which is retained by the bore of fitting 35, and one or more radial passages 45 open the lower end of passage 41 within the bore of fitting 35 and adjacent head 42. Preferably, the lower exposed surface of head 42 is spherical, as shown, about a center which approximates the instantaneous center 53 of tilt displacement of stem 14.
The closed end of the body of piston 18' (FIG. 8) is characterized by a conical portion 46 conforming in slope to the taper of wall 11. A spherically dished central portion 47 conforms to the exposed contour of head 42, and a flat radial annulus 48 integrally unites the portions 46-47, in close proximity to the lower limit of flange 38. FIGS. 10 and 11 provide further detail, revealing the cylindrical body of the piston as a relatively thin peripheral shell or skirt 49, integrally reinforced at regular angular spacings by thin elongate and radially inward stiffening ribs 50. The juncture of the still thinner suspension and seal flange 20 may be continuous with the cone which characterizes the outer surface of portion 46, as shown.
The arrangement of FIGS. 9 and 12 illustrates how precisely the same dispensing valve and its supporting structure may be made to serve containers of smaller diameter. For this reason, the same reference numbers are used, where applicable. However, in view of the smaller container diameter, the conical upper end wall 11' is similarly limited, to the extent that flange 38 extends so near the lower (outer) end of wall 11 that it is impractical to form a conical portion in the closed end of piston 18". The end-wall portions 47-48 are thus directly connected at a rounded corner 51 to the relatively thin cylindrical skirt 49', backed by ribs 50.
In the carrying out of my invention, the axial extent of the waist 37 of fitting 35 preferably exceeds, as by 0.020 to 0.030 inch, the corresponding axial extent of the bore of the can opening in which it is retained, and the unstressed conical angle of flange 38 preferably slightly exceeds, as by 5, the conical slope of end wall 11; thus, for a wall 11 of 45 slope from the container axis, the unstressed slope of flange 38 is preferably substantially 50. This relationship will be understood to facilitate assembly of a stem 14 and its fitting 35 to the wall 11, while assuring resiliently loaded, peripherally continuous contour-adapting fit of flange 35 to adjacent lapped areas of wall 11.
Several important advantages will be seen to flow from the described cone-to-cone fit at 38-11, quite aside from the assembly feature just noted. For example, valve operation is more easily controlled, and the precision of valve actuation is enhanced. In operation, the fitting 35 serves as a resilient pivotal suspension, stem 14 being tilted about an instantaneous center (suggested by point 53 in FIGS. 8 and 9) within the waist region 36. Initial tilting movement is not stiffly opposed, since the root end of flange 38 is in slight clearance relation with the wall 11 near the central opening thereof; furthermore, flange 38 can be said to have a somewhat tangential connection to body 39 (in the sense about the instantaneous pivot center 53) so that flange 38 is either locally pulled down or pushed outward along wall 11, in the course of its sliding adaptation to the magnitude of tilt actuation. Stated in other words, for normal desired extents of valve-stem tilt, there is no substantial shear-force development between body 39 and flange 38. Additionally, the employment of a small-diameter container (e.g., a 1 inch diameter container, as in FIG. 9), or of a larger-diameter container (e.g., a 1.5-inch or larger diameter container, as in FIG. 8), both with conically tapered end walls 11 (11), means greater facility for index-finger actuation of stem 14 while grasping the container body with the remaining fingers of the same hand. Still further, the use of a conical end wall (1 1) inherently provides more extensive area, within a given limiting container diameter, to accomplish extensive resilient overlap of a seal flange, such as the flange 38 of fitting 35.
As to the piston 18 (18'-l8"), the employment of a conical tapering portion (for the larger sizes), and the use of the particular spherical-surface relationship described in connection with 42-47-53, means less axial draft in the formation of the piston end wall, while achieving a contour which can assuredly expel virtually all the viscous product. The seal skirt or flange 20 is initially of preferably slightly less diameter (e.g., 0.002 to 0.005 inch) than the container bore and has a length B in the order of one third the piston length L (FIGS. 11 and 12), the axial extent B of the portion in contact with the container wall being in the order of one quarter of the length L. The clearance C between flange 20 and the piston body shell 49 is in the order of 0.040 inch, for the 1 inch and 1.5 inch sizes thus far mentioned, wherein the ratio of overall piston length L to overall piston diameter A is less than unity, being preferably approximately 3:4; stated in other words, the radial offset of the tubular flange 20 from the body structure or shell 49 is in the order of 5 to percent of the outer radius of flange 20, being preferably no greater than substantially ten percent of this outer radius. In these circumstances, the piston advances with uniform ease and smoothness, even though it may have cause to tilt or slightly misalign, in the course of its travel. The lower end of the piston body shell (49) always provides a limit to the possible tilt, and throughout the range of tilt angles, the seal flange maintains a smoothly continuous circumferential seal between the gas-pressure region 26 and the viscous-contents region 16. Also, the spherical conformity of the convex and concave surfaces 42-47 and their relation to the instantaneous center 53 for stem (14) tilt will be seen as assuring no interference with smooth control of tilt of stem 14 (with related smooth control of discharged product flow) upon approach to final discharge of the container, and
regardless of whether or not piston 18' (18") may have been slightly tilted in the course of such approach.
Quite aside from the foregoing considerations, the bottom-fill embodiments of the invention (FIGS. 1 to 4, and 8 to 12) present the advantage that the viscous product may be more accurately metered in its loading into the container. For example, in filling an inverted can 10 of FIG. 8 (i.e., with the valve 12 and wall 11 at the bottom, and with the unclosed base end facing upwards), the viscous product may be loaded to the extent of label-proclaimed weight, plus a safety margin in the order of l/ 10 to 1/8 02., for a 6-02. container. The piston is then inserted, the container bottom 22 sealingly affixed, and the region 26 pressure-loaded. The piston and valve are found to reliably dispense the full label-proclaimed weight, all with a product wastage (i.e., undispensable weight) of no more than substantially H8 02. This is to be compared to current toploaded practices wherein the necessary product wastage allowance is at least several times what my invention permits.
While the invention has been described in detail for preferred forms, it will be understood that modifications may be made without departing from the scope of the invention.
What is claimed is:
1. A piston for a pressurized container having a viscous product and provided with a dispensing valve, said piston comprising a piston body portion of a generally tubular configuration and a resilient annular flange provided with a depending skirt portion on the outer wall of said piston body portion, said piston body portion being radially spaced from the inner wall of said skirt portion, said depending skirt portion being for contact with a container wall and being the only means of piston support, said skirt portion beingrelatively thin with respect to the space between said skirt portion and the piston body portion, said skirt portion having a large surface area of predetermined axial length; whereby, when said piston is inserted in a suitable container and when the space within said skirt portion is subjected to a predetermined charge of gas under pressure, said skirt portion will be pressure-loaded into peripheral and axially continuous light sealing and stabilizing contact with the container wall.
2. A piston as claimed in claim 1, wherein said piston body portion includes reinforcement means whereby said piston body portion is relatively stiff in relation to the resilience of said skirt portion.
3. A piston as claimed in claim 1, wherein the thickness of said skirt portion is in the range of 0.005 to 0.015 inch.
4. A piston as claimed in claim 1, wherein both said body portion and said resilient annular flange thereon are integral.
5. A piston as claimed in claim 1, wherein said piston body portion is constituted of a plastic.
6. A piston as claimed in claim 1, wherein said resilient flange projects radially outwardly from and axially away from the head end of said piston body portion.
7. In combination, a pressure container comprising an elongate cylindrical body with a closed upper end, dispensing-valve means in said upper end, a piston having a closed upper end and integral body structure extending downwardly within a cylinder spaced from the container wall and united to the closed end of said piston, a peripherally continuous flexible tubular flange carried by said piston within the annular space between the piston body structure and the container wall and of axial extent substantially less than that of said piston, said flange being relatively thin with respect to the space between said tubular flange and the piston body and having a periphery of substantially the inner wallsurface peripheral extent of the container body, with a relatively extensive area of flange-seal contact with the container wall by reason of the tubular structure of said flange, said tubular flange being the only means of piston suspension with respect to the container wall, whereby a product chamber is defined in the container space between the flanged piston and the valved end of the container, pressure-sealing means closing the lower end of said container to define a pressure chamber beneath said piston, and a predetermined charge of gas under pressure in the pressure chamber and pressureloading said tubular flange into peripheral and axially continuous light sealing and stabilizing contact with the container wall.
8. The combination of claim 7, in which said container body has a top opening, said dispensing-valve means being assembled to said body at the top opening after dispensable product is loaded through the openmg.
9. The combination of claim 7, in which said closed upper end of said container is a conical reduction from said cylindrical body to a central valve-locatingopenmg.
10. The combination of claim 9, in which the slope of the conical reduction is in the range of substantially 35 to substantially 55 off the container-body axis.
11. The combination of claim 9, in which the slope of the conical reduction is approximately 'rr/4 radian off the container-body axis.
12. The combination of claim 9, in which said valve means comprises a resilient bushing having a central body and an integral conical flange generally conforming to the inner surface of the conical reduction of the container and peripherally continuously sealing said bushing to the container, and a headed dispensingvalve member having a stem portion extending through said bushing and located thereby.
13. The combination of claim 12, in which said central body projects downwardly and radially clear of the lower end of said conical flange, said head seating against said central body and'radially clear of said conical flange, whereby said conical flange is relatively free to maintain the sealed relationship to said container while accommodating eccentric-displacement forces upon tilted actuation of said stern portion.
14. The combination of claim 12, in which said central body includes a radially outward shoulder overlapping the axially outer end of the container end-wall opening.
15. The combination of claim 14, in which said central body has a convergent taper upward of said shoulder, the diameter of said taper at the upper end thereof being less than that of the container end-wall opening, and the slope of said taper being at a lesser angle to the container axis than that of the conically reduced container end wall.
16. The combination of claim 9, in which said conically reduced end wall is integrally formed with said cylindrical body.
17. The combination of claim 7, wherein said piston body and tubular flange are parts of the same single injection-molded plastic article.
18. The combination of claim 17, wherein the wall thickness of the closed end of said piston is substantially greater than that of said tubular flange. I
19. The combination of claim 9, wherein the upper wall-surface contour of the closed end of said piston includes an outer frusto-conical annulus of slope conforming to that of said conical reduction.
20. The combination of claim 9, wherein the portion of said valve means exposed internally of said container is characterized by a central convex spherical contour, and wherein the upper surface of the closed end of said piston is characterized by a central spherical concavity substantially matching the said convex contour.
21. The combination of claim 20, wherein said valve means includes a resilient bushing carried at the container end-wall opening and a headed dispensing stem extending through said bushing with the head seated against the axially inner end of said bushing, said head having said convex spherical surface of radius in the order of magnitude of axial offset of said head from the instantaneous center of tilt afforded to said stem by reason of the resilient-bushing support thereof, whereby said spherical surfaces will not substantially oppose tilt of said stem even when the fully advanced piston position is reached.
22. The combination of claim 17, wherein said piston body comprises a cylindrical sheath with internal elongate stiffening ribs at angularly spaced locations.
23. The combination of claim 7, in which the peripheral extent of said tubular flange is slightly less than that of the adjacent cylindrical container-body wall surface, the material of said flange being sufficiently flexible to inflate into peripherally continuous containerwall contact in response to super-atmospheric pressure in said pressure chamber.
24. The combination of claim 7, in which the radial offset of said tubular flange from said body structure is in the order of 5 to 15 percent of the outer radius of said tubular flange.
25. The combination of claim 7, in which the radial offset of said tubular flange from said body structure is substantially ten percent of the outer radius of said tubular flange.
. 26. The combination of claim 7, in which the overall diameter of said tubular flange exceeds the axial length of said piston.
27. The combination of claim 26, in which the ratio of said overall diameter to said axial length is in the order of 4:3.
28. The combination of claim 26, in which said tubular flange is connected to said piston body near the upper end thereof, said tubular flange being of effective axial length less than one half the overall axial length of said piston.
29. The combination of claim 28, in which the extent to which overall axial length of said piston exceeds the effective axial length of said tubular flange is substantially threefold.
30. In combination, a pressure container comprising an elongate cylindrical body with a closed upper end, dispensing-valve means in said upper end, a piston having a closed upper end and integral body structure extending downwardly within a cylinder spaced from the container wall and united to the closed end of said piswhereby a product chamber is defined in the container space between the flanged piston and the valved end of the container, pressure-sealing means closing the lower end of said container to define a pressure chamber beneath said piston, and a predetermined charge of gas under pressure in the pressure chamber and pressureloading said tubular flange into peripheral and axially continuous light sealing and stabilizing contact with the container wall.

Claims (30)

1. A piston for a pressurized container having a viscous product and provided with a dispensing valve, said piston comprising a piston body portion of a generally tubular configuration and a resilient annular flange provided with a depending skirt portion on the outer wall of said piston body portion, said piston body portion being radially spaced from the inner wall of said skirt portion, said depending skirt portion being for contact with a container wall and being the only means of piston support, said skirt portion being relatively thin with respect to the space between said skirt portion and the piston body portion, said skirt portion having a large surface area of predetermined axial length; whereby, when said piston is inserted in a suitable container and when the space within said skirt portion is subjected to a predetermined charge of gas under pressure, said skirt portion will be pressure-loaded into peripheral and axially continuous light sealing and stabilizing contact with the container wall.
2. A piston as claimed in claim 1, wherein said piston body portion includes reinforcement means whereby said piston body portion is relatively stiff in relation to the resilience of said skirt portion.
3. A piston as claimed in claim 1, wherein the thickness of said skirt portion is in the range of 0.005 to 0.015 inch.
4. A piston as claimed in claim 1, wherein both said body portion and said resilient annular flange thereon are integral.
5. A piston as claimed in claim 1, wherein said piston body portion is constituted of a plastic.
6. A piston as claimed in claim 1, wherein said resilient flange projects radially outwardly from and axially away from the head end of said piston body portion.
7. In combination, a pressure container comprising an elongate cylindrical body with a closed upper end, dispensing-valve means in said upper end, a piston having a closed upper end and integral body structure extending downwardly within a cylinder spaced from the container wall and united to the closed end of said piston, a peripherally continuous flexible tubular flange carried by said piston within the annular space between the piston body structure and the container wall and of axial extent substantially less than that of said piston, said flange being relatively thin with respect to the space between said tubular flange and the piston body and having a periphery of substantially the inner wall-surface peripheral extent of the container body, with a relatively extensive area of flange-seal contact with the container wall by reason of the tubular structure of said flange, said tubular flange being the only means of piston suspension with respect to the container wall, whereby a product chamber is defined in the container space between the flanged piston and the valved end of the container, pressure-sealing means closing the lower end of said container to define a pressure chamber beneath said piston, and a predetermined charge of gas under pressure in the pressure chamber and pressure-loading said tubular flange into peripheral and axially continuous light sealing and stabilizing contact with the container wall.
8. The combination of claim 7, in which said container body has a top opening, said dispensing-valve means being assembled to said body at the top opening after dispensable product is loaded through the opening.
9. The combination of claim 7, in which said closed upper end of said container is a conical reduction from said cylindrical body to a central valve-locating opening.
10. The combination of claim 9, in which the slope of the conical reduction is in the range of substantially 35* to substantially 55* off the container-body axis.
11. The combination of claim 9, in which the slope of the conical reduction is apprOximately pi /4 radian off the container-body axis.
12. The combination of claim 9, in which said valve means comprises a resilient bushing having a central body and an integral conical flange generally conforming to the inner surface of the conical reduction of the container and peripherally continuously sealing said bushing to the container, and a headed dispensing-valve member having a stem portion extending through said bushing and located thereby.
13. The combination of claim 12, in which said central body projects downwardly and radially clear of the lower end of said conical flange, said head seating against said central body and radially clear of said conical flange, whereby said conical flange is relatively free to maintain the sealed relationship to said container while accommodating eccentric-displacement forces upon tilted actuation of said stem portion.
14. The combination of claim 12, in which said central body includes a radially outward shoulder overlapping the axially outer end of the container end-wall opening.
15. The combination of claim 14, in which said central body has a convergent taper upward of said shoulder, the diameter of said taper at the upper end thereof being less than that of the container end-wall opening, and the slope of said taper being at a lesser angle to the container axis than that of the conically reduced container end wall.
16. The combination of claim 9, in which said conically reduced end wall is integrally formed with said cylindrical body.
17. The combination of claim 7, wherein said piston body and tubular flange are parts of the same single injection-molded plastic article.
18. The combination of claim 17, wherein the wall thickness of the closed end of said piston is substantially greater than that of said tubular flange.
19. The combination of claim 9, wherein the upper wall-surface contour of the closed end of said piston includes an outer frusto-conical annulus of slope conforming to that of said conical reduction.
20. The combination of claim 9, wherein the portion of said valve means exposed internally of said container is characterized by a central convex spherical contour, and wherein the upper surface of the closed end of said piston is characterized by a central spherical concavity substantially matching the said convex contour.
21. The combination of claim 20, wherein said valve means includes a resilient bushing carried at the container end-wall opening and a headed dispensing stem extending through said bushing with the head seated against the axially inner end of said bushing, said head having said convex spherical surface of radius in the order of magnitude of axial offset of said head from the instantaneous center of tilt afforded to said stem by reason of the resilient-bushing support thereof, whereby said spherical surfaces will not substantially oppose tilt of said stem even when the fully advanced piston position is reached.
22. The combination of claim 17, wherein said piston body comprises a cylindrical sheath with internal elongate stiffening ribs at angularly spaced locations.
23. The combination of claim 7, in which the peripheral extent of said tubular flange is slightly less than that of the adjacent cylindrical container-body wall surface, the material of said flange being sufficiently flexible to inflate into peripherally continuous container-wall contact in response to super-atmospheric pressure in said pressure chamber.
24. The combination of claim 7, in which the radial offset of said tubular flange from said body structure is in the order of 5 to 15 percent of the outer radius of said tubular flange.
25. The combination of claim 7, in which the radial offset of said tubular flange from said body structure is substantially ten percent of the outer radius of said tubular flange.
26. The combination of claim 7, in which the overall diameter of said tubular flange exceeds the axial length of said piston.
27. The combination of claiM 26, in which the ratio of said overall diameter to said axial length is in the order of 4:3.
28. The combination of claim 26, in which said tubular flange is connected to said piston body near the upper end thereof, said tubular flange being of effective axial length less than one half the overall axial length of said piston.
29. The combination of claim 28, in which the extent to which overall axial length of said piston exceeds the effective axial length of said tubular flange is substantially threefold.
30. In combination, a pressure container comprising an elongate cylindrical body with a closed upper end, dispensing-valve means in said upper end, a piston having a closed upper end and integral body structure extending downwardly within a cylinder spaced from the container wall and united to the closed end of said piston, a peripherally continuous flexible tubular flange carried by said piston within the annular space between the piston body structure and the container wall, said flange being relatively thin with respect to the space between said piston body and the container wall and being the only means of piston suspension with respect to the container wall, said flange having a periphery of substantially the inner wall-surface peripheral extent of the container body and being of axial extent substantially less than that of said piston body structure, whereby a product chamber is defined in the container space between the flanged piston and the valved end of the container, pressure-sealing means closing the lower end of said container to define a pressure chamber beneath said piston, and a predetermined charge of gas under pressure in the pressure chamber and pressure-loading said tubular flange into peripheral and axially continuous light sealing and stabilizing contact with the container wall.
US00290977A 1971-08-26 1972-09-21 Pressure operated container for dispensing viscous products Expired - Lifetime US3827607A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US00290977A US3827607A (en) 1971-08-26 1972-09-21 Pressure operated container for dispensing viscous products
US452447A US3901416A (en) 1971-08-26 1974-03-18 Top-loaded pressure operated container for dispensing viscous products
US455892A US3926349A (en) 1971-08-26 1974-03-28 Valve construction for a pressure operated container
US05/611,814 US3981119A (en) 1971-08-26 1975-09-09 Method of making a pressure operated container for dispensing viscous products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17525371A 1971-08-26 1971-08-26
US00290977A US3827607A (en) 1971-08-26 1972-09-21 Pressure operated container for dispensing viscous products

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17525371A Continuation-In-Part 1971-08-26 1971-08-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05435472 Continuation-In-Part 1974-01-22

Publications (1)

Publication Number Publication Date
US3827607A true US3827607A (en) 1974-08-06

Family

ID=26871028

Family Applications (1)

Application Number Title Priority Date Filing Date
US00290977A Expired - Lifetime US3827607A (en) 1971-08-26 1972-09-21 Pressure operated container for dispensing viscous products

Country Status (1)

Country Link
US (1) US3827607A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023717A (en) * 1974-04-09 1977-05-17 Schultz Robert S Pressure-operated container for viscous products
DE2850714A1 (en) * 1977-11-25 1979-05-31 George Bernard Diamond AEROSOL CONTAINER WITH A STOPPING PISTON
US5127556A (en) * 1991-07-17 1992-07-07 United States Can Company Low mass piston system for necked-in aerosol cans
US5419466A (en) * 1992-09-04 1995-05-30 Scheindel; Christian T. Bowed piston for a pressure operated container
US5469701A (en) * 1993-09-10 1995-11-28 Arde, Inc. Fluid storage and expulsion system
US6513680B2 (en) * 2000-07-21 2003-02-04 Dow Corning Toray Silicone Co., Ltd. Paste dispensing container
US20060042192A1 (en) * 2002-09-19 2006-03-02 Levy Jerome J G Method of packaging a frozen dessert
US20070062977A1 (en) * 2002-10-29 2007-03-22 Enzo Ferrarin Container for fluid susbtances like pastes or creams
US20070287965A1 (en) * 2006-06-13 2007-12-13 Nordson Corporation Liquid dispensing syringe
US20100102091A1 (en) * 2008-10-24 2010-04-29 Andersen Daniel A Barrier piston with seal
WO2016205023A1 (en) 2015-06-18 2016-12-22 The Procter & Gamble Company Method of manufacturing a piston aerosol dispenser
WO2018031834A1 (en) 2016-08-12 2018-02-15 The Procter & Gamble Company Aerosol dispenser
US10301104B2 (en) 2015-06-18 2019-05-28 The Procter & Gamble Company Piston aerosol dispenser
US20190321841A1 (en) * 2016-11-28 2019-10-24 L'oreal Device for packaging and dispensing a product comprising a moveable piston
US10604332B2 (en) 2013-10-23 2020-03-31 The Procter & Gamble Company Aerosol container having valve cup with integral bag
US10729366B2 (en) * 2014-12-02 2020-08-04 Fenwal, Inc. Spherical biomedical sampling and mixing container
US11661267B2 (en) * 2018-11-23 2023-05-30 Aluair Gmbh Dispenser container, dispenser and method for manufacturing a dispenser container
EP4311794A1 (en) * 2022-07-29 2024-01-31 Nussbaum Matzingen AG Cartridge

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2806238A (en) * 1954-06-28 1957-09-17 Jr Stephen Wisey Dispensing valve
US2852168A (en) * 1956-12-12 1958-09-16 Fred F Suellentrop Dispensing valve assembly
US2892572A (en) * 1957-05-03 1959-06-30 American Can Co Tamperproof screw closure
US2992052A (en) * 1959-12-09 1961-07-11 John Charles R De Self sealing piston
US3275200A (en) * 1962-11-16 1966-09-27 American Can Co Pressurized dispensing container
US3381863A (en) * 1966-05-23 1968-05-07 Edward J. Towns Separating medium for use in pressurized dispensing containers
US3493147A (en) * 1968-02-05 1970-02-03 Gene Ballin Collapsible tube and follower

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2806238A (en) * 1954-06-28 1957-09-17 Jr Stephen Wisey Dispensing valve
US2852168A (en) * 1956-12-12 1958-09-16 Fred F Suellentrop Dispensing valve assembly
US2892572A (en) * 1957-05-03 1959-06-30 American Can Co Tamperproof screw closure
US2992052A (en) * 1959-12-09 1961-07-11 John Charles R De Self sealing piston
US3275200A (en) * 1962-11-16 1966-09-27 American Can Co Pressurized dispensing container
US3381863A (en) * 1966-05-23 1968-05-07 Edward J. Towns Separating medium for use in pressurized dispensing containers
US3493147A (en) * 1968-02-05 1970-02-03 Gene Ballin Collapsible tube and follower

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023717A (en) * 1974-04-09 1977-05-17 Schultz Robert S Pressure-operated container for viscous products
DE2850714A1 (en) * 1977-11-25 1979-05-31 George Bernard Diamond AEROSOL CONTAINER WITH A STOPPING PISTON
US5127556A (en) * 1991-07-17 1992-07-07 United States Can Company Low mass piston system for necked-in aerosol cans
EP0523606A1 (en) * 1991-07-17 1993-01-20 United States Can Company Floating piston for aerosol can
US5419466A (en) * 1992-09-04 1995-05-30 Scheindel; Christian T. Bowed piston for a pressure operated container
US5469701A (en) * 1993-09-10 1995-11-28 Arde, Inc. Fluid storage and expulsion system
US6513680B2 (en) * 2000-07-21 2003-02-04 Dow Corning Toray Silicone Co., Ltd. Paste dispensing container
US20060042192A1 (en) * 2002-09-19 2006-03-02 Levy Jerome J G Method of packaging a frozen dessert
US20070062977A1 (en) * 2002-10-29 2007-03-22 Enzo Ferrarin Container for fluid susbtances like pastes or creams
US20070287965A1 (en) * 2006-06-13 2007-12-13 Nordson Corporation Liquid dispensing syringe
US9958067B2 (en) * 2006-06-13 2018-05-01 Nordson Corporation Liquid dispensing syringe
US20100102091A1 (en) * 2008-10-24 2010-04-29 Andersen Daniel A Barrier piston with seal
US8245888B2 (en) 2008-10-24 2012-08-21 S.C. Johnson & Son, Inc. Barrier piston with seal
US10604332B2 (en) 2013-10-23 2020-03-31 The Procter & Gamble Company Aerosol container having valve cup with integral bag
US11952204B2 (en) 2013-10-23 2024-04-09 The Procter & Gamble Company Aerosol container having valve cup with integral bag
US10729366B2 (en) * 2014-12-02 2020-08-04 Fenwal, Inc. Spherical biomedical sampling and mixing container
US9975656B2 (en) 2015-06-18 2018-05-22 The Procter & Gamble Company Method of manufacturing a piston aerosol dispenser
US10301104B2 (en) 2015-06-18 2019-05-28 The Procter & Gamble Company Piston aerosol dispenser
WO2016205023A1 (en) 2015-06-18 2016-12-22 The Procter & Gamble Company Method of manufacturing a piston aerosol dispenser
WO2018031834A1 (en) 2016-08-12 2018-02-15 The Procter & Gamble Company Aerosol dispenser
US10661974B2 (en) 2016-08-12 2020-05-26 The Procter & Gamble Company Internally fitted aerosol dispenser
US20190321841A1 (en) * 2016-11-28 2019-10-24 L'oreal Device for packaging and dispensing a product comprising a moveable piston
US10906055B2 (en) * 2016-11-28 2021-02-02 L'oreal Device for packaging and dispensing a product comprising a moveable piston
US11661267B2 (en) * 2018-11-23 2023-05-30 Aluair Gmbh Dispenser container, dispenser and method for manufacturing a dispenser container
EP4311794A1 (en) * 2022-07-29 2024-01-31 Nussbaum Matzingen AG Cartridge

Similar Documents

Publication Publication Date Title
US3827607A (en) Pressure operated container for dispensing viscous products
US3901416A (en) Top-loaded pressure operated container for dispensing viscous products
US3754690A (en) Flexible container with dispensing cap
US4805807A (en) Dispensing stopper with rotating cap for pasty products
US4728006A (en) Flexible container including self-sealing dispensing valve to provide automatic shut-off and leak resistant inverted storage
US5884759A (en) Device for separately storing at least two substances, for mixing them together, and for dispensing the mixture obtained thereby, and a method of manufacture
US3738538A (en) Dispenser for flowable substances
US6152328A (en) Dispensing bottle having two openings
US2911128A (en) Spout and cap for a container
US3089624A (en) Pressure discharge container
US4232977A (en) Package for antiperspirant/deodorant
US3620420A (en) Containers
US4106674A (en) Pressure-operated container for viscous products
US4964548A (en) Dispensing closure having an interior sealing sleeve, a threaded sleeve engaging a threaded tube, and stop blocks limiting twisting of the closure cap
US5295615A (en) Refillable pump dispensing container
US4023717A (en) Pressure-operated container for viscous products
US3901410A (en) Captive tip-seal valve
US4002411A (en) Ball type dispensing package
IE43777B1 (en) Ball roll-on dispenser
US5772083A (en) Pressure relief system for pressurized container
US3981119A (en) Method of making a pressure operated container for dispensing viscous products
US4817831A (en) Dispensing cap with expandable plug
US3926349A (en) Valve construction for a pressure operated container
US2950031A (en) Liquid stream dispensing pressure package for high viscosity liquids
US20030057237A1 (en) Reversing trap container closure