US6038485A - Current-controlling electrode - Google Patents

Current-controlling electrode Download PDF

Info

Publication number
US6038485A
US6038485A US09/296,827 US29682799A US6038485A US 6038485 A US6038485 A US 6038485A US 29682799 A US29682799 A US 29682799A US 6038485 A US6038485 A US 6038485A
Authority
US
United States
Prior art keywords
conductive
user
spots
spot
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/296,827
Inventor
Jens Axelgaard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axelgaard Manufacturing Co Ltd
Original Assignee
Axelgaard Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axelgaard Manufacturing Co Ltd filed Critical Axelgaard Manufacturing Co Ltd
Priority to US09/296,827 priority Critical patent/US6038485A/en
Application granted granted Critical
Publication of US6038485A publication Critical patent/US6038485A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0456Specially adapted for transcutaneous electrical nerve stimulation [TENS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0452Specially adapted for transcutaneous muscle stimulation [TMS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0476Array electrodes (including any electrode arrangement with more than one electrode for at least one of the polarities)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0492Patch electrodes

Definitions

  • the present invention is generally related to transcutaneous electrodes and is more particularly directed to an electrode configuration for providing improved treatment of physical deficiencies such as, for example, joint swelling, tissue healing, muscle re-education, circulatory impairment, joint dysfunction, and postural disorders.
  • Nerve and muscle cells are excitable because they are able to discharge action potentials and, accordingly, electrical stimulation of nerve and muscle membranes can evoke such action potential
  • the stimulus intensity and pulse duration must be sufficient to pass a threshold.
  • muscle membranes require longer pulse durations due to their higher capacitance.
  • transcutaneous electrodes must not only be properly placed on the skin but coupled thereto in order to provide sufficient current density to a particular cross-sectional area body tissue current density. This is a very important factor in controlling the reaction of biological tissue to stimulation. As a rule, the greater the current density, the greater the resulting reaction on the tissue.
  • Electrode placement is another factor that influences current density and, accordingly, tissue response. This is due to the fact that the impedance of skin, bone, and adipose tissue vary, and, accordingly, placement of electrodes over these tissues will have significant effect on current flow in the surrounding tissues. In addition, orientation of the electrodes can also significantly affect the response of underlying tissue. For example, muscle tissue is nearly four times more conductive in the longitudinal direction of their fibers than in the transverse direction.
  • current density at the electrode-tissue interface also depends on the electrode configuration, its ability to conform to a body part, body inflexibility, and a coupling agent to provide low impedance contact between the electrode and the skin surface.
  • the present invention is directed to an electrode system which features control of current density which not only enables the electrode to be optimized for current density for a specific application to a tissue but also accommodates for inaccuracies made in placing the electrode upon a skin surface.
  • a further embodiment of the present invention enables sequential control of current density to enhance the treatment of various physical deficiencies.
  • a transcutaneous medical electrode in accordance with the present invention, generally includes an electrically conductive grid means having a plurality of arrays of electrical conductors for controlling current distribution of directed electrical pulses, along with means for establishing the electrical communication with the conductive grid means for enabling selective electrification of the electrical conductors in each array.
  • the current density of the electrode is controlled and varied over an area of the electrode. This facilitates the optimization of the current density of the electrode which can accommodate for misplacement of the electrode on the skin of a patient and maximize coupling of the pulses with the underlying tissue.
  • means are also provided for supporting the electrically conductive grid means and means for removably coupling the means for supporting the electrically conductive grid means to a body on skin tissue.
  • the electrode in accordance with the present invention, may include a flexible conductive sheet along with conductive adhesive means disposed on one side of the flexible conductive sheet for electrically coupling the flexible conductive sheet to a user's body.
  • Conductive grid means are provided and disposed on another side of the flexible conductive sheet for controlling current distribution through the conductive sheet and the conductive adhesive and into the user's body.
  • the conductive grid may comprise at least one array of conductive ink lines.
  • means are provided for establishing an electrical connection with the conductive grid means.
  • the conductive grid means may comprise a plurality of arrays of conductive ink lines, and the electrode may further comprises insulation means, disposed between the arrays, for preventing electrical communication between the arrays.
  • This feature enables isolated electrification of the arrays and provides for the layered electrode which can more effectively enable the placement of multiple electrodes on the surface than is possible with separate discrete electrodes. This combination not only is effective for controlling current density at a specific site but for progressively effecting stimulation on a progressively moving site, as will be hereinafter described in greater detail.
  • the present invention provides conductive grid means which includes a plurality of arrays with conductive ink lines, with each of the plurality of arrays, at least in part, overlapping one another, and the means for establishing electrical connection comprises at least one lead wire connected with each of the plurality of arrays for enabling selective electrification of a group of arrays, in order to change the current density through the flexible conductive sheet and the conductive adhesive.
  • the electrode in another embodiment, includes a conductive grid which is comprised of a plurality of conductive ink spots, or dots, and the means for establishing electrical communication comprises lead wire means connected with each of the conductive ink spots for enabling selective electrification of at least one conductive ink spot in order to change the current density through the flexible conductive sheet and the conductive adhesive.
  • the individual conductive ink spots make this embodiment of the present invention amenable for digital control, Le., each of the dots may be separately electrified in order to create various desired patterns to effect a desired current density suitable for specific underlying tissue.
  • the conductive grid means of the electrode includes a plurality of arrays of conductive ink lines with the arrays overlying one another in a longitudinal direction, enabling sequential electrification of each array along the longitudinal direction. This, in turn, enables electrical stimulation to be applied to the user's body to effect sequential peristaltic-like stimulation of underlying muscles.
  • the electrode includes arrays of conductive grids in a rectangular pattern for enabling sequential or simultaneous electrification of the arrays to control the current distribution in a rectilinear pattern.
  • the present invention further includes the improvement of any suitable transcutaneous medical electrode for directing pulses into a user's body with the improvement including an electrically conductive grid means having a plurality of arrays of electrical conductors for controlling current distribution of the directed electrical pulses, and means for establishing electrical communication with the electrical grid means for enabling selective electrification of the electrical conductors in each array.
  • the present invention further encompasses a method for administering electrical pulses to a user's body which includes the steps of electrically coupling an electrode having a plurality of conductive grids therein to a user's body with a conductive adhesive and thereafter sequentially electrifying the conductive grids to stimulate underlying muscles in a peristaltic-like manner.
  • Also encompassed by the present invention is a method for administering electrical pulses to a user's body which includes the steps of electrically coupling an electrode having a plurality of conductive grids therein to a user's body with a conductive adhesive and providing electrical pulses to at least one of the conductive grids to stimulate an underlying muscle. Further, the method includes sensing an electrical signal generated by the underlying muscle and in response thereto providing electrical pulses to at least another of the conductive grids. This procedure is iterated to a maximum signal strength and sent; thereafter, electrical pulses are provided to the conductive grid or grids which result in the maximum sent signal. In this manner, the present invention provides for a biofeedback method of administering electrical pulses to a user's body which is self-correcting, or self-optimizing, thereby significantly improving the efficiency of the electrodes utilized.
  • FIG. 1 is a plan view of the transcutaneous medical electrode, in accordance with the present invention, showing a representative conductive grid means disposed on a conductive sheet for controlling current distribution;
  • FIG. 2 is a cross-section of the electrode shown in FIG. 1 taken along a line 2--2, showing a flexible conductive sheet, a conductive adhesive applied on one side of the flexible conductive sheet, and a conductive grid disposed on another side of the flexible conductive sheet;
  • FIG. 3 is a representation of the current density achieved across a skin surface utilizing the electrode shown in FIG. 1;
  • FIG. 4 is a plan view of an electrode utilizing overlying arrays of conductive grids in a rectilinear pattern for enabling sequential or simultaneous electrification of the arrays to control the current distribution in a rectilinear manner;
  • FIG. 5 is a cross-sectional view of the electrode shown in FIG. 4 taken along the line 5--5;
  • FIG. 6 is another embodiment of the present invention in which conductive grid arrays are overlaid on one another in a longitudinal direction for enabling electrical stimulation to be applied to a user's body to effect sequential peristaltic-like stimulation of underlying muscles;
  • FIG. 7 illustrates an electrode in accordance with the present invention with a plurality of conductive spots for enabling selective electrification in order to change the current density across the electrode.
  • an electrode 10 in accordance with the present invention which generally includes a flexible conductive sheet 12 which may be formed from any suitable carbon loaded elastomeric film having suitable surface resistivity of between about 10 3 ohms/square and about 10 4 ohms/square, for example, about 5000 ohms/square and a transverse resistivity of between about 10 3 and about 10 5 ohms/square, for example, about 10 4 ohms/square.
  • suitable polycarbonate, polyolefin and polyvinylchloride films are available from, for example, 3-M Manufacturing Company and Rexam Graphics.
  • a conductive adhesive 14 disposed on one side 18 of the conductive sheet 12 provides a means for electrically coupling the flexible conductive sheet 12 to a user's body (not shown in FIGS. 1 and 2).
  • Any suitable conductive adhesive may be utilized such as those manufactured by Valleylab, Inca Boulder, Colorado or ProCam Medical, Chicopee, Mass.
  • a highly conductive grid 24 Disposed on another side 20 of the conductive sheet 12 is a highly conductive grid 24 which provides means for controlling current distribution through the flexible conductive sheet 12 and the conductive adhesive 14 into a user's body.
  • the conductive grid 24 may be formed with conductive ink lines 26 applied to the conductive sheet 12.
  • the conductive lines may be formed from any suitable blend of inks including carbon, metals such as silver or copper.
  • the conductivity of the conductive grid 24, i.e., ink lines 26, is much greater than the conductivity of the flexible conductive sheet 12, which is moderately conductive, in order to control the current distribution through the conductive sheet 12.
  • the resistivity of the ink lines should be about 1 to about 10 ohms/cm.
  • ink lines 26 of varied conductivity may be utilized in order to tailor the current through the conductive sheet which may have a thickness of up to about 3 mils, for example, about 1 mil.
  • a lead wire 30 which provides a means for establishing electrical connection with the conductive grid 24 and the individual conductive ink lines 26 therein
  • the electrode 10, in accordance with the present invention is clearly distinguishable over U.S. Pat. No. 4,736,752, which utilized a conductive ink grid on a non-conductive flexible backing sheet, such as polyethylene or the like.
  • the present invention utilizes a conductive sheet onto which additional conductive ink lines are disposed, or printed, in order to provide and control a current distribution through the flexible conductive sheet 12 and adhesive 14 into a user's body.
  • current distribution provided by the electrode 10 shown in FIG. 1 provides a current distribution over its 5 cm sides, as shown in FIG. 3, which illustrates in three-dimensional format the normalized current distribution and the uniformity achieved by the electrode 10 made in accordance with the present invention.
  • Utilization of the conductive sheet provides yet another element of current distribution controlled, not anticipated by the prior art such as U.S. Pat. No. 4,736,752.
  • the width and thickness of the lines 26, as shown in FIG. 2 may also be utilized to further control the current density provided by the electrode 10.
  • Strands, or filaments, 32 of lead wire 30 may be adhered or press-fit to the conductive grid 24 in any conventional manner.
  • electrode 10 provides a building block, or element, for electrode 40, for example, as illustrated in FIG. 4.
  • electrode 40 a plurality of arrays 42, 44, 46 of conductive ink lines 50, 52, 54 is provided, which lines may overlap one another and which may include insulation layers 60 disposed between arrays 42, 44, as shown in FIG. 5 disposed on a flexible conductive sheet 64.
  • the insulation layer 60 may be formed from any suitable non-conductive sheet material such as, for example, polyethylene, and the thickness of the insulation layer 60 as well as the conductive sheets, 12, 64, may be 3 mm or less in order to provide sufficient flexibility of the electrodes 40, 44 conforming to various body contours.
  • perforations, or holes, 70 may be provided in a non-conductive sheet, as necessary, in order to increase the flexibility thereof to provide desired conformity to various body parts. Both the perforation 70, and placement thereof, will of course be dependent upon electrode 10, for the size, as well as the thickness of the films involved, 64, and insulation layers 60.
  • the plurality of arrays 42, 44, 46 and conductive lines 50, 52, 54 may be disposed with each of the plurality of arrays 42, 44, 46 overlapping, at least in part, with one another.
  • the arrays 42, 44, 46 enable sequential or simultaneous electrification in a rectilinear manner.
  • one of the arrays 42 may be utilized as a sensor for electrical signals generated by an underlying muscle (not shown in FIG. 4) in order to provide a method for administering electrical pulses to a user's body, as will be hereinafter described in greater detail.
  • FIG. 6 there is shown an alternative embodiment 80, in accordance with the present invention, as it may be disposed on a leg 82 of a user, which includes a plurality of arrays, or grids, 84 disposed on a conductive film 86, as hereinabove described in connection with the embodiments 10 and 40, shown in FIGS. 1 through 5, except that the arrays overlie each other in a longitudinal direction shown by the arrow 90, so that selective electrification through the lead 92 interconnecting each of the arrays 84 may be provided in a sequential timing manner along the longitudinal direction 90 in order to effect a sequential peristaltic-like stimulation of underlying muscles (not shown).
  • the position of the electrode 80 on the leg 82 is only shown for illustration purposes and the full utilization of the electrode 80 made in accordance with the present invention is not limited thereto, but is suitable for application on any body part on which peristaltic-like stimulation of underlying muscles would be beneficial.
  • FIG. 7 there is yet another embodiment 100, in accordance with the present invention, disposed on a lower back portion 102 of the user 104.
  • a plurality of conductive ink spots 106 is provided with each spot 106 interconnected with a lead 108 for enabling selective electrification of at least one conductive ink spot 106, in order to change the current density through a conductive film or sheet 110 and conductive adhesive (not shown), utilized to adhere the electrode 100 to the user 104.
  • Electrification of each combination of conductive ink spots 106 is provided by a stimulator and control device 116 which may be any suitable electric/electronic device known in the art for providing electrical pulses for stimulation.
  • one or more of the conductive ink spots 118 may be utilized as a receiver of electrical signals so that the electrical pulse is provided to adjacent conductive ink spots 106 and may be altered in order to provide stimulation to underlying muscles which results in a maximum sense to signal from the receptors 118.
  • any of the electrodes 10, 40, 100 may incorporate a reservoir 120 of a therapeutic agent suitable for iontophoresis which is disposed in an operative relationship with one of the arrays 54 of the conductive ink lines 46.
  • This operative relationship may be embedding the agent within the film or separately supporting the agent in order that electrical pulses from the grid 46 may operate through or transfer the active agent into the skin of a patient, as is well-known in the iontophoresis art.
  • the grid 46 may be utilized to separately transfer a therapeutic agent into the skin as may be desired for either treatment of a condition or for anesthetizing surface portions of the body.
  • the present invention provides a method for administering electrical pulses to a user's body with the method including the steps of electrically coupling an electrode 80 having a plurality of conductive grids 84 therein to a user's body, and thereafter sequentially electrifying the conductive grids 84 to stimulate underlying muscles in a peristaltic-like manner.
  • a method in accordance with the present invention for administering electrical pulses through a user's body utilizing electrodes 40, 100 includes the steps of electrically coupling the electrodes 40, 100 having a plurality of conductive grids 42, 44, 46, or spots 106, to a user's body and thereafter providing electrical pulses to at least one of the conductive grids 42, 44, 46, or spots 106, to an underlying muscle.
  • An electrical signal generated by the underlying muscle is sensed and in response thereto, electrical pulses are provided to at least another of the conductive grids 42, 44, 46 or spots 106. This procedure is iterated until a maximum electrical signal is sensed and thereafter electrical pulses are provided to the conductive grid, spots, or grids, which results in the maximum sent sensed signal.
  • the electrode is able to optimize its delivery of pulses by selection of electrification of grids 42, 44, 46 or spots 106.

Abstract

A transcutaneous medical electrode includes a highly conductive grid, having a plurality of arrays of electrical conductors, for controlling current distribution of directed electrical pulses. Electrical connectors are provided for establishing electrical communication with the conductive grid for enabling selective electrification of the electrical conductors in each array. The conductive grid is supported by a moderately conductive sheet, or film, and a conductive adhesive is provided for removably coupling the sheet or film and the conductive grid to a user's body.

Description

This application is a continuation of U.S. patent application Ser. No. 08/873,450 filed Jun. 12, 1997 now U.S. Pat. No. 5,904,712.
The present invention is generally related to transcutaneous electrodes and is more particularly directed to an electrode configuration for providing improved treatment of physical deficiencies such as, for example, joint swelling, tissue healing, muscle re-education, circulatory impairment, joint dysfunction, and postural disorders.
Nerve and muscle cells are excitable because they are able to discharge action potentials and, accordingly, electrical stimulation of nerve and muscle membranes can evoke such action potential In order for an action potential to be evoked, the stimulus intensity and pulse duration must be sufficient to pass a threshold. In this regard, muscle membranes require longer pulse durations due to their higher capacitance. Thus, in order to meet this threshold, transcutaneous electrodes must not only be properly placed on the skin but coupled thereto in order to provide sufficient current density to a particular cross-sectional area body tissue current density. This is a very important factor in controlling the reaction of biological tissue to stimulation. As a rule, the greater the current density, the greater the resulting reaction on the tissue.
Earlier electrodes, such as set forth in U.S. Pat. No. 4,736,752, teach the control of current density across an electrode through the use of a conductive ink design area.
Electrode placement is another factor that influences current density and, accordingly, tissue response. This is due to the fact that the impedance of skin, bone, and adipose tissue vary, and, accordingly, placement of electrodes over these tissues will have significant effect on current flow in the surrounding tissues. In addition, orientation of the electrodes can also significantly affect the response of underlying tissue. For example, muscle tissue is nearly four times more conductive in the longitudinal direction of their fibers than in the transverse direction.
In addition, current density at the electrode-tissue interface also depends on the electrode configuration, its ability to conform to a body part, body inflexibility, and a coupling agent to provide low impedance contact between the electrode and the skin surface.
It is accordingly often desirable to provide means for dynamically controlling the current density provided by an electrode. Such dynamic control would enable accommodation not only for misplacement of the electrode in an area designated for stimulation but also to maximize biological response to current pulses provided by the electrode. As hereinabove noted, insufficient current may not cause the expected physiological response. Thus efficient design of current density eliminates unnecessary current which may increase patient discomfort and decrease the efficiency of the electrode.
The present invention is directed to an electrode system which features control of current density which not only enables the electrode to be optimized for current density for a specific application to a tissue but also accommodates for inaccuracies made in placing the electrode upon a skin surface. A further embodiment of the present invention enables sequential control of current density to enhance the treatment of various physical deficiencies.
SUMMARY OF THE INVENTION
A transcutaneous medical electrode, in accordance with the present invention, generally includes an electrically conductive grid means having a plurality of arrays of electrical conductors for controlling current distribution of directed electrical pulses, along with means for establishing the electrical communication with the conductive grid means for enabling selective electrification of the electrical conductors in each array. By selective electrification of the conductors, the current density of the electrode is controlled and varied over an area of the electrode. This facilitates the optimization of the current density of the electrode which can accommodate for misplacement of the electrode on the skin of a patient and maximize coupling of the pulses with the underlying tissue. In this embodiment of the present invention, means are also provided for supporting the electrically conductive grid means and means for removably coupling the means for supporting the electrically conductive grid means to a body on skin tissue.
More particularly, the electrode, in accordance with the present invention, may include a flexible conductive sheet along with conductive adhesive means disposed on one side of the flexible conductive sheet for electrically coupling the flexible conductive sheet to a user's body. Conductive grid means are provided and disposed on another side of the flexible conductive sheet for controlling current distribution through the conductive sheet and the conductive adhesive and into the user's body. In this embodiment, the conductive grid may comprise at least one array of conductive ink lines. In addition, means are provided for establishing an electrical connection with the conductive grid means.
More specifically in this embodiment, the conductive grid means may comprise a plurality of arrays of conductive ink lines, and the electrode may further comprises insulation means, disposed between the arrays, for preventing electrical communication between the arrays. This feature enables isolated electrification of the arrays and provides for the layered electrode which can more effectively enable the placement of multiple electrodes on the surface than is possible with separate discrete electrodes. This combination not only is effective for controlling current density at a specific site but for progressively effecting stimulation on a progressively moving site, as will be hereinafter described in greater detail.
The present invention provides conductive grid means which includes a plurality of arrays with conductive ink lines, with each of the plurality of arrays, at least in part, overlapping one another, and the means for establishing electrical connection comprises at least one lead wire connected with each of the plurality of arrays for enabling selective electrification of a group of arrays, in order to change the current density through the flexible conductive sheet and the conductive adhesive.
In another embodiment of the present invention, the electrode includes a conductive grid which is comprised of a plurality of conductive ink spots, or dots, and the means for establishing electrical communication comprises lead wire means connected with each of the conductive ink spots for enabling selective electrification of at least one conductive ink spot in order to change the current density through the flexible conductive sheet and the conductive adhesive. In this manner, any combination of the ink spots will be electrified to provide customization of the current density provided by the electrode. In addition, the individual conductive ink spots make this embodiment of the present invention amenable for digital control, Le., each of the dots may be separately electrified in order to create various desired patterns to effect a desired current density suitable for specific underlying tissue.
In yet another embodiment of the present invention, the conductive grid means of the electrode includes a plurality of arrays of conductive ink lines with the arrays overlying one another in a longitudinal direction, enabling sequential electrification of each array along the longitudinal direction. This, in turn, enables electrical stimulation to be applied to the user's body to effect sequential peristaltic-like stimulation of underlying muscles.
In still another embodiment of the present invention, the electrode includes arrays of conductive grids in a rectangular pattern for enabling sequential or simultaneous electrification of the arrays to control the current distribution in a rectilinear pattern.
The present invention further includes the improvement of any suitable transcutaneous medical electrode for directing pulses into a user's body with the improvement including an electrically conductive grid means having a plurality of arrays of electrical conductors for controlling current distribution of the directed electrical pulses, and means for establishing electrical communication with the electrical grid means for enabling selective electrification of the electrical conductors in each array.
The present invention further encompasses a method for administering electrical pulses to a user's body which includes the steps of electrically coupling an electrode having a plurality of conductive grids therein to a user's body with a conductive adhesive and thereafter sequentially electrifying the conductive grids to stimulate underlying muscles in a peristaltic-like manner.
Also encompassed by the present invention is a method for administering electrical pulses to a user's body which includes the steps of electrically coupling an electrode having a plurality of conductive grids therein to a user's body with a conductive adhesive and providing electrical pulses to at least one of the conductive grids to stimulate an underlying muscle. Further, the method includes sensing an electrical signal generated by the underlying muscle and in response thereto providing electrical pulses to at least another of the conductive grids. This procedure is iterated to a maximum signal strength and sent; thereafter, electrical pulses are provided to the conductive grid or grids which result in the maximum sent signal. In this manner, the present invention provides for a biofeedback method of administering electrical pulses to a user's body which is self-correcting, or self-optimizing, thereby significantly improving the efficiency of the electrodes utilized.
BRIEF DESCRIPTION OF THE DRAWINGS
The advantages and features of the present invention will appear from the following description when considered in conjunction with the accompanying drawings in which:
FIG. 1 is a plan view of the transcutaneous medical electrode, in accordance with the present invention, showing a representative conductive grid means disposed on a conductive sheet for controlling current distribution;
FIG. 2 is a cross-section of the electrode shown in FIG. 1 taken along a line 2--2, showing a flexible conductive sheet, a conductive adhesive applied on one side of the flexible conductive sheet, and a conductive grid disposed on another side of the flexible conductive sheet;
FIG. 3 is a representation of the current density achieved across a skin surface utilizing the electrode shown in FIG. 1;
FIG. 4 is a plan view of an electrode utilizing overlying arrays of conductive grids in a rectilinear pattern for enabling sequential or simultaneous electrification of the arrays to control the current distribution in a rectilinear manner;
FIG. 5 is a cross-sectional view of the electrode shown in FIG. 4 taken along the line 5--5;
FIG. 6 is another embodiment of the present invention in which conductive grid arrays are overlaid on one another in a longitudinal direction for enabling electrical stimulation to be applied to a user's body to effect sequential peristaltic-like stimulation of underlying muscles; and
FIG. 7 illustrates an electrode in accordance with the present invention with a plurality of conductive spots for enabling selective electrification in order to change the current density across the electrode.
DETAILED DESCRIPTION
Turning now to FIG. 1, there is shown an electrode 10 in accordance with the present invention which generally includes a flexible conductive sheet 12 which may be formed from any suitable carbon loaded elastomeric film having suitable surface resistivity of between about 103 ohms/square and about 104 ohms/square, for example, about 5000 ohms/square and a transverse resistivity of between about 103 and about 105 ohms/square, for example, about 104 ohms/square. Suitable polycarbonate, polyolefin and polyvinylchloride films are available from, for example, 3-M Manufacturing Company and Rexam Graphics. A conductive adhesive 14 disposed on one side 18 of the conductive sheet 12 provides a means for electrically coupling the flexible conductive sheet 12 to a user's body (not shown in FIGS. 1 and 2). Any suitable conductive adhesive may be utilized such as those manufactured by Valleylab, Inca Boulder, Colorado or ProCam Medical, Chicopee, Mass.
Disposed on another side 20 of the conductive sheet 12 is a highly conductive grid 24 which provides means for controlling current distribution through the flexible conductive sheet 12 and the conductive adhesive 14 into a user's body. The conductive grid 24 may be formed with conductive ink lines 26 applied to the conductive sheet 12. The conductive lines may be formed from any suitable blend of inks including carbon, metals such as silver or copper.
It should be appreciated that the conductivity of the conductive grid 24, i.e., ink lines 26, is much greater than the conductivity of the flexible conductive sheet 12, which is moderately conductive, in order to control the current distribution through the conductive sheet 12. For example, with a surface resistivity of about 5000 ohms/square and a transverse resistivity of about 104 for the sheet 12, the resistivity of the ink lines should be about 1 to about 10 ohms/cm.
The difference in conductivity or resistivity between the sheet 12 and the lines 26 enables precise control of current distribution which cannot be achieved, for example, with a non-conductive sheet or a highly conductive sheet. In fact, ink lines 26 of varied conductivity may be utilized in order to tailor the current through the conductive sheet which may have a thickness of up to about 3 mils, for example, about 1 mil.
Electrification of the conductive grid 24 is provided by a lead wire 30 which provides a means for establishing electrical connection with the conductive grid 24 and the individual conductive ink lines 26 therein
The electrode 10, in accordance with the present invention, is clearly distinguishable over U.S. Pat. No. 4,736,752, which utilized a conductive ink grid on a non-conductive flexible backing sheet, such as polyethylene or the like. The present invention utilizes a conductive sheet onto which additional conductive ink lines are disposed, or printed, in order to provide and control a current distribution through the flexible conductive sheet 12 and adhesive 14 into a user's body. In that regard, current distribution provided by the electrode 10 shown in FIG. 1 provides a current distribution over its 5 cm sides, as shown in FIG. 3, which illustrates in three-dimensional format the normalized current distribution and the uniformity achieved by the electrode 10 made in accordance with the present invention. Utilization of the conductive sheet provides yet another element of current distribution controlled, not anticipated by the prior art such as U.S. Pat. No. 4,736,752. The width and thickness of the lines 26, as shown in FIG. 2, may also be utilized to further control the current density provided by the electrode 10. Strands, or filaments, 32 of lead wire 30 may be adhered or press-fit to the conductive grid 24 in any conventional manner.
Importantly, electrode 10 provides a building block, or element, for electrode 40, for example, as illustrated in FIG. 4. In the electrode 40 a plurality of arrays 42, 44, 46 of conductive ink lines 50, 52, 54 is provided, which lines may overlap one another and which may include insulation layers 60 disposed between arrays 42, 44, as shown in FIG. 5 disposed on a flexible conductive sheet 64. The insulation layer 60 may be formed from any suitable non-conductive sheet material such as, for example, polyethylene, and the thickness of the insulation layer 60 as well as the conductive sheets, 12, 64, may be 3 mm or less in order to provide sufficient flexibility of the electrodes 40, 44 conforming to various body contours. It should be appreciated that perforations, or holes, 70 may be provided in a non-conductive sheet, as necessary, in order to increase the flexibility thereof to provide desired conformity to various body parts. Both the perforation 70, and placement thereof, will of course be dependent upon electrode 10, for the size, as well as the thickness of the films involved, 64, and insulation layers 60.
It should also be appreciated that in a number of different grid 24,42, 44, 46 patterns may be utilized to tailor the distribution. In this regard, the patterns shown in U.S. Pat. No. 4,736,752 are incorporated herewith in the present application for showing of various grid patterns which may be suitable for use in the present invention. Also, it should be noted that no lead wires are shown in FIGS. 4 and 5 for the sake of clarity in showing the arrangement of the grid patterns 42, 44, 46 on the conductive sheet 64. These lead wires, as shown specifically for one array or grid 24, illustrated in FIG. 1, provide a means for establishing electrical connection with each of the plurality of grids, or arrays 42, 44, 46, which enable selective electrification of one or more or a group of arrays in order to change the current density through the flexible conductive sheet 64 and conductive adhesive 72.
As shown in FIG. 4, the plurality of arrays 42, 44, 46 and conductive lines 50, 52, 54 may be disposed with each of the plurality of arrays 42, 44, 46 overlapping, at least in part, with one another. When arranged in a rectangular pattern, as shown in FIG. 4, the arrays 42, 44, 46 enable sequential or simultaneous electrification in a rectilinear manner.
Importantly, one of the arrays 42 may be utilized as a sensor for electrical signals generated by an underlying muscle (not shown in FIG. 4) in order to provide a method for administering electrical pulses to a user's body, as will be hereinafter described in greater detail.
Turning now to FIG. 6, there is shown an alternative embodiment 80, in accordance with the present invention, as it may be disposed on a leg 82 of a user, which includes a plurality of arrays, or grids, 84 disposed on a conductive film 86, as hereinabove described in connection with the embodiments 10 and 40, shown in FIGS. 1 through 5, except that the arrays overlie each other in a longitudinal direction shown by the arrow 90, so that selective electrification through the lead 92 interconnecting each of the arrays 84 may be provided in a sequential timing manner along the longitudinal direction 90 in order to effect a sequential peristaltic-like stimulation of underlying muscles (not shown).
It should be appreciated that the position of the electrode 80 on the leg 82 is only shown for illustration purposes and the full utilization of the electrode 80 made in accordance with the present invention is not limited thereto, but is suitable for application on any body part on which peristaltic-like stimulation of underlying muscles would be beneficial.
Turning now to FIG. 7, there is yet another embodiment 100, in accordance with the present invention, disposed on a lower back portion 102 of the user 104. In this embodiment, a plurality of conductive ink spots 106 is provided with each spot 106 interconnected with a lead 108 for enabling selective electrification of at least one conductive ink spot 106, in order to change the current density through a conductive film or sheet 110 and conductive adhesive (not shown), utilized to adhere the electrode 100 to the user 104. Electrification of each combination of conductive ink spots 106 is provided by a stimulator and control device 116 which may be any suitable electric/electronic device known in the art for providing electrical pulses for stimulation. In addition, one or more of the conductive ink spots 118 may be utilized as a receiver of electrical signals so that the electrical pulse is provided to adjacent conductive ink spots 106 and may be altered in order to provide stimulation to underlying muscles which results in a maximum sense to signal from the receptors 118.
Turning now to FIG. 5, any of the electrodes 10, 40, 100, in accordance with the present invention, may incorporate a reservoir 120 of a therapeutic agent suitable for iontophoresis which is disposed in an operative relationship with one of the arrays 54 of the conductive ink lines 46. This operative relationship may be embedding the agent within the film or separately supporting the agent in order that electrical pulses from the grid 46 may operate through or transfer the active agent into the skin of a patient, as is well-known in the iontophoresis art. Thus, while other conductive grids 42, 44 may be utilized for specific treatment through transcutaneous pulses, the grid 46 may be utilized to separately transfer a therapeutic agent into the skin as may be desired for either treatment of a condition or for anesthetizing surface portions of the body.
The present invention, through the use of the hereinabove described electrode 80, provides a method for administering electrical pulses to a user's body with the method including the steps of electrically coupling an electrode 80 having a plurality of conductive grids 84 therein to a user's body, and thereafter sequentially electrifying the conductive grids 84 to stimulate underlying muscles in a peristaltic-like manner.
A method in accordance with the present invention for administering electrical pulses through a user's body utilizing electrodes 40, 100 includes the steps of electrically coupling the electrodes 40, 100 having a plurality of conductive grids 42, 44, 46, or spots 106, to a user's body and thereafter providing electrical pulses to at least one of the conductive grids 42, 44, 46, or spots 106, to an underlying muscle. An electrical signal generated by the underlying muscle is sensed and in response thereto, electrical pulses are provided to at least another of the conductive grids 42, 44, 46 or spots 106. This procedure is iterated until a maximum electrical signal is sensed and thereafter electrical pulses are provided to the conductive grid, spots, or grids, which results in the maximum sent sensed signal. Thus, the electrode is able to optimize its delivery of pulses by selection of electrification of grids 42, 44, 46 or spots 106.
Although there has been hereinabove described specific transcutaneous medical electrodes and methods in accordance with the present invention, for the purpose of illustrating the manner in which the invention may be used to advantage, it should be appreciated that the invention is not limited thereto. Accordingly, any and all modifications, variations, or equivalent arrangements which may occur to those skilled in the art, should be considered to be within the scope of the present invention as defined in the appended claims.

Claims (7)

What is claimed is:
1. A transcutaneous medical electrode comprising:
a flexible conductive sheet;
conductive adhesive means, disposed on one side of said flexible conductive sheet, for electrically coupling said flexible conductive sheet to a user's body;
conductive spot means, including a plurality of conductive ink spots disposed on another side of said flexible conductive sheet, for controlling current distribution through the flexible conductive sheet and conductive adhesive means and into the user's body; and
means for establishing electrical connection with said conductive ink spots in order to provide electrical pulses to at least one of the conductive ink spots and to sense electrical signals generated by an underlying muscle from another of the conductive ink spots.
2. The electrode according to claim 1 wherein said conductive spot means comprises a plurality of rows and columns of conductive ink spots, for enabling selected electrification of a group of spots in order to change the current density through the flexible conductive sheet and conductive adhesive means.
3. The electrode according to claim 1 wherein the means for establishing electrical connection comprises lead wire means, connected with each conductive ink spot, for enabling selected electrification of the at least one conductive ink spot in order to change the current density through the flexible conductive sheet and conductive adhesive means in response to sensed electrical signals from the another conductive ink spot.
4. The electrode according to claim 1 further comprising a reservoir of a therapeutic agent suitable for iontophoresis disposed in an operative relationship with at least one of the conductive spot means.
5. A transcutaneous medical electrode comprising:
a flexible conductive sheet;
conductive adhesive means, disposed on one side of said flexible conductive sheet, for electrically coupling said flexible conductive sheet to a user's body;
conductive spot means, disposed on another side of said flexible conductive sheet, for directing electrical pulses into the user's body and for receiving electrical signals from the user's body, said conductive snot means comprising at least one conductive ink spot for directing electrical pulses into the user's body and at least another conductive ink spot for receiving electrical signals from the user's body; and
means for establishing electrical connection with said conductive spot means.
6. A transcutaneous medical electrode comprising:
a flexible conductive sheet;
conductive adhesive means, disposed on one side of said flexible conductive sheet, for electrically coupling said flexible conductive sheet to a user's body;
conductive spot means, disposed on another side of said flexible conductive sheet, for directing electrical pulses into the user's body and for receiving electrical signals from the user's body, said conductive spot means comprising a plurality of conductive ink spots for directing electrical pulses into the user's body and a plurality of conductive ink spots for receiving electrical signals from the user's body; and
means for establishing electrical connection with said conductive snot means, the means for establishing electrical connection comprising lead wire means, connected with each conductive ink spot for enabling selected electrification of conductive ink spots in response to electrical signals received by other conductive ink spots.
7. A method for administering electrical pulses to a user's body, the method comprising the steps of:
(a) electrically coupling an electrode having a plurality of conductive spots therein to a user's body with conductive adhesive;
(b) providing electrical pulses to at least one of the conductive spots to stimulate an underlying muscle;
(c) sensing an electrical signal generated by the underlying muscle;
(d) in response to the sensed signal, providing electrical pulses to at least another of the conductive spots;
(e) repeating steps (c)-(d) until a maximum electrical signal is sensed; and
(f) thereafter continuing to provide electrical pulses to the conductive spots which results in the maximum sensed signal.
US09/296,827 1997-06-12 1999-04-22 Current-controlling electrode Expired - Lifetime US6038485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/296,827 US6038485A (en) 1997-06-12 1999-04-22 Current-controlling electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/873,450 US5904712A (en) 1997-06-12 1997-06-12 Current-controlling electrode
US09/296,827 US6038485A (en) 1997-06-12 1999-04-22 Current-controlling electrode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/873,450 Continuation US5904712A (en) 1997-06-12 1997-06-12 Current-controlling electrode

Publications (1)

Publication Number Publication Date
US6038485A true US6038485A (en) 2000-03-14

Family

ID=25361662

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/873,450 Expired - Lifetime US5904712A (en) 1997-06-12 1997-06-12 Current-controlling electrode
US09/296,827 Expired - Lifetime US6038485A (en) 1997-06-12 1999-04-22 Current-controlling electrode

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/873,450 Expired - Lifetime US5904712A (en) 1997-06-12 1997-06-12 Current-controlling electrode

Country Status (6)

Country Link
US (2) US5904712A (en)
EP (1) EP1009474B1 (en)
JP (1) JP2002506364A (en)
AU (1) AU7831998A (en)
DE (1) DE69836816T2 (en)
WO (1) WO1998056455A1 (en)

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6256533B1 (en) * 1999-06-09 2001-07-03 The Procter & Gamble Company Apparatus and method for using an intracutaneous microneedle array
US6324435B1 (en) * 2000-06-22 2001-11-27 Ethicon, Inc. Electrical connector for cardiac devices
US6385487B1 (en) 1996-05-08 2002-05-07 Biophoretic Therapeutic Systems, Llc Methods for electrokinetic delivery of medicaments
USRE37796E1 (en) 1997-12-16 2002-07-23 Biophoretic Therapeutic Systems, Llc Methods for iontophoretic delivery of antiviral agents
US6434414B1 (en) * 1999-07-05 2002-08-13 Siemens Aktiengesellschaft Method and device for suppressing stimulations in a subject undergoing a magnetic resonance scan
US20020142340A1 (en) * 1986-04-18 2002-10-03 Carnegie Mellon University Cyanine dyes as labeling reagents for detection of biological and other materials by luminescence methods
US6477410B1 (en) 2000-05-31 2002-11-05 Biophoretic Therapeutic Systems, Llc Electrokinetic delivery of medicaments
USRE38000E1 (en) 1996-05-08 2003-02-25 Biophoretic Therapeutic Systems, Llc Electrokinetic drug delivery apparatus
US6549814B1 (en) * 2000-06-09 2003-04-15 Juergen Strutz Blade electrode array for insertion under soft tissue of lateral wall of cochlea
US6564079B1 (en) 2000-07-27 2003-05-13 Ckm Diagnostics, Inc. Electrode array and skin attachment system for noninvasive nerve location and imaging device
US6600957B2 (en) 2001-06-28 2003-07-29 The Ludlow Company Lp High-energy disposable medical stimulation electrode
US20030199808A1 (en) * 1999-03-12 2003-10-23 Biophoretic Therapeutic Systems, Llc. Systems and methods for electrokinetic delivery of a substance
US20040039328A1 (en) * 1998-09-15 2004-02-26 Biophoretic Therapeutic Systems, Llc Iontophoretic drug delivery electrodes and method
US6745082B2 (en) 2001-10-22 2004-06-01 Jens Axelgaard Current-controlling electrode with adjustable contact area
US20040111051A1 (en) * 2000-03-10 2004-06-10 Biophoretic Therapeutic Systems, Llc. Electrokinetic delivery system for self-administration of medicaments and methods therefor
US20040158305A1 (en) * 2003-02-06 2004-08-12 Jens Axelgaard Reverse current controlling electrode
US20050010192A1 (en) * 2003-06-30 2005-01-13 Ying Sun Methods of treating pores on the skin with electricity
EP1501436A2 (en) * 2002-05-09 2005-02-02 Megadyne Medical Products, Inc. Self-limiting electrosurgical return electrode
US20050187580A1 (en) * 2004-02-19 2005-08-25 Skiba Jeffry B. Current producing surface
US20060129174A1 (en) * 2000-10-16 2006-06-15 Corium International, Inc. Microstructures for delivering a composition cutaneously to skin
US20070293917A1 (en) * 2006-06-15 2007-12-20 Thompson Thomas C Non-invasive neuro stimulation system
US20070293918A1 (en) * 2006-06-15 2007-12-20 Thompson Thomas C Non-invasive neuro stimulation system
EP1926524A2 (en) * 2005-09-19 2008-06-04 Transport Pharmaceuticals, Inc. Electrokinetic delivery system and methods therefor
US20080183144A1 (en) * 2007-01-22 2008-07-31 Trautman Joseph C Applicators for microneedles
US20080188791A1 (en) * 2007-02-02 2008-08-07 Difiore Attilio E Active iontophoresis delivery system
US20080234536A1 (en) * 2007-03-21 2008-09-25 Yossi Gross Implantable peristaltic pump to treat erectile dysfunction
US20080305154A1 (en) * 2007-06-08 2008-12-11 Activatek, Inc. Transdermal medicament patch and active electrode for same
US20090076479A1 (en) * 2003-06-30 2009-03-19 Ying Sun Device for treatment of barrier membranes
US20090097063A1 (en) * 2007-10-11 2009-04-16 Canon Kabushiki Kaisha Image processing system and image processing method
US20090155594A1 (en) * 2007-07-20 2009-06-18 Evans Thomas D Devices for applying conductive gel-pads to electrodes and electrodes produced thereby
US20090155330A1 (en) * 2007-04-16 2009-06-18 Corium International, Inc. Vaccine Delivery via Microneedle Arrays
US20090198097A1 (en) * 2008-01-31 2009-08-06 Ed Tech Medical Ltd. Peristaltic pump for treatment of erectile dysfunction
US20090198271A1 (en) * 2008-01-31 2009-08-06 Rainbow Medical Ltd. Electrode based filter
US20090198308A1 (en) * 2008-01-31 2009-08-06 Enopace Biomedical Ltd. Intra-aortic electrical counterpulsation
US20100028390A1 (en) * 2004-03-24 2010-02-04 Cleary Gary W Transdermal Delivery Device
US20100057147A1 (en) * 2008-08-27 2010-03-04 Ali Fassih Treatment of hyperhydrosis
US20100075532A1 (en) * 2008-09-25 2010-03-25 Tyco Healthcare Group Lp Fluorescent Marker for Detecting Gel or Lack of Gel
US20100072060A1 (en) * 2008-09-25 2010-03-25 Tyco Healthcare Group Lp Biomedical Electrode and Method of Formation Thereof
US20100076294A1 (en) * 2008-09-25 2010-03-25 Tyco Healthcare Group Lp System and Method of Prepping Skin Prior to Electrode Application
US20100082088A1 (en) * 2008-08-27 2010-04-01 Ali Fassih Treatment of sweating and hyperhydrosis
US20100145299A1 (en) * 2006-05-30 2010-06-10 Yossi Gross Implantable Pump for Drug Delivery to Treat Erectile Dysfunction
US20100209515A1 (en) * 2007-09-28 2010-08-19 Jeannette Chantalat Electricity-generating particulates and the use thereof
US20100305392A1 (en) * 2008-01-31 2010-12-02 Enopace Biomedical Ltd. Thoracic aorta and vagus nerve stimulation
US20110006458A1 (en) * 2009-04-24 2011-01-13 Corium International, Inc. Methods for manufacturing microprojection arrays
US20110118655A1 (en) * 2009-11-13 2011-05-19 Ali Fassih Galvanic skin treatment device
US20110137370A1 (en) * 2008-01-31 2011-06-09 Enopace Biomedical Ltd. Thoracic aorta and vagus nerve stimulation
US20110195100A1 (en) * 2010-02-05 2011-08-11 Elizabeth Bruning Lip compositions comprising galvanic particulates
US20110212042A1 (en) * 2010-03-01 2011-09-01 Prithwiraj Maitra Skin care composition having desirable bulk color
US20110236491A1 (en) * 2010-03-25 2011-09-29 Jeannette Chantalat Topical anti-inflammatory composition
US20120226330A1 (en) * 2009-11-05 2012-09-06 Koninklijke Philips Electronics N.V. Electrical muscle stimulation
WO2013059699A1 (en) 2011-10-19 2013-04-25 Neuro Resource Group Inc Automated electrode array treatment protocol
US8626290B2 (en) 2008-01-31 2014-01-07 Enopace Biomedical Ltd. Acute myocardial infarction treatment by electrical stimulation of the thoracic aorta
US8649863B2 (en) 2010-12-20 2014-02-11 Rainbow Medical Ltd. Pacemaker with no production
US8702726B2 (en) 2000-10-16 2014-04-22 Corium International, Inc. Method of exfoliation of skin using closely-packed microstructures
US8855783B2 (en) 2011-09-09 2014-10-07 Enopace Biomedical Ltd. Detector-based arterial stimulation
US8862223B2 (en) 2008-01-18 2014-10-14 Activatek, Inc. Active transdermal medicament patch and circuit board for same
US9044397B2 (en) 2009-03-27 2015-06-02 Ethicon, Inc. Medical devices with galvanic particulates
US9114238B2 (en) 2007-04-16 2015-08-25 Corium International, Inc. Solvent-cast microprotrusion arrays containing active ingredient
US9386991B2 (en) 2012-02-02 2016-07-12 Rainbow Medical Ltd. Pressure-enhanced blood flow treatment
CN106178258A (en) * 2016-04-25 2016-12-07 Bj全球有限公司 Low frequency muscular movement stimulation instrument
US9526637B2 (en) 2011-09-09 2016-12-27 Enopace Biomedical Ltd. Wireless endovascular stent-based electrodes
US9649487B2 (en) 2010-08-05 2017-05-16 Enopace Biomedical Ltd. Enhancing perfusion by contraction
US9687641B2 (en) 2010-05-04 2017-06-27 Corium International, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array
US9962534B2 (en) 2013-03-15 2018-05-08 Corium International, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
US10195409B2 (en) 2013-03-15 2019-02-05 Corium International, Inc. Multiple impact microprojection applicators and methods of use
EP3444006A1 (en) 2016-01-26 2019-02-20 Jens Axelgaard Dual-sided electrode pad
US10245422B2 (en) 2013-03-12 2019-04-02 Corium International, Inc. Microprojection applicators and methods of use
US10384046B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
US10384045B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray with polymer-free microstructures, methods of making, and methods of use
US10624843B2 (en) 2014-09-04 2020-04-21 Corium, Inc. Microstructure array, methods of making, and methods of use
US10779965B2 (en) 2013-11-06 2020-09-22 Enopace Biomedical Ltd. Posts with compliant junctions
US10857093B2 (en) 2015-06-29 2020-12-08 Corium, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
US10959674B2 (en) 2017-10-23 2021-03-30 Datafeel Inc. Communication devices, methods, and systems
US11052231B2 (en) 2012-12-21 2021-07-06 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
US11400299B1 (en) 2021-09-14 2022-08-02 Rainbow Medical Ltd. Flexible antenna for stimulator
US11458307B2 (en) 2016-05-23 2022-10-04 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11464994B2 (en) 2016-05-10 2022-10-11 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11484727B2 (en) 2016-07-01 2022-11-01 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11484725B2 (en) 2019-04-11 2022-11-01 Btl Medical Solutions A.S. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
US11491329B2 (en) 2020-05-04 2022-11-08 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11491342B2 (en) 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
US11497925B2 (en) 2016-07-01 2022-11-15 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11602629B2 (en) 2016-05-03 2023-03-14 Btl Healthcare Technologies A.S. Systems and methods for treatment of a patient including rf and electrical energy
US11612758B2 (en) 2012-07-05 2023-03-28 Btl Medical Solutions A.S. Device for repetitive nerve stimulation in order to break down fat tissue means of inductive magnetic fields
US11633596B2 (en) 2020-05-04 2023-04-25 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11934583B2 (en) 2020-10-30 2024-03-19 Datafeel Inc. Wearable data communication apparatus, kits, methods, and systems

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041764A1 (en) * 1999-01-11 2000-07-20 Bmr Research & Development Limited An electrotherapy device and method
US6438428B1 (en) 1999-10-27 2002-08-20 Axelgaard Manufacturing Co., Ltd. Electrical stimulation compress
US6795722B2 (en) * 2001-06-18 2004-09-21 Neotech Products, Inc. Electrode sensor package and application to the skin of a newborn or infant
US6829510B2 (en) * 2001-12-18 2004-12-07 Ness Neuromuscular Electrical Stimulation Systems Ltd. Surface neuroprosthetic device having an internal cushion interface system
US7697998B2 (en) * 2006-01-20 2010-04-13 Axelgaard Manufacturing Company, Ltd. Electrode with edge protection
US9962538B2 (en) * 2003-02-06 2018-05-08 Axelgaard Manufacturing Company, Ltd. Multi-electrode with lateral conductivity control
US7921727B2 (en) * 2004-06-25 2011-04-12 University Of Dayton Sensing system for monitoring the structural health of composite structures
US20080161884A1 (en) * 2004-12-23 2008-07-03 Mark Chandler Method and apparatus for treating or preventing a medical condition
GB2422549A (en) * 2005-02-01 2006-08-02 Wound Solutions Ltd Flexible electrodes comprising a honey-comb mesh and integrated wound stimulation treatment devices
KR20080027378A (en) * 2005-08-05 2008-03-26 코닌클리케 필립스 일렉트로닉스 엔.브이. Measurement and stimulation of muscle tissue
US20070112402A1 (en) * 2005-10-19 2007-05-17 Duke University Electrode systems and related methods for providing therapeutic differential tissue stimulation
US7729779B2 (en) * 2006-03-29 2010-06-01 Bacoustics, Llc Electrodes for transcutaneous electrical nerve stimulator
US8718758B2 (en) * 2006-06-19 2014-05-06 Highland Instruments, Inc. Interface apparatus for stimulation of biological tissue
US8121696B2 (en) * 2007-02-02 2012-02-21 Rommel P. Vallero Topical analgesia using electrical and vibration stimuli
US9061134B2 (en) * 2009-09-23 2015-06-23 Ripple Llc Systems and methods for flexible electrodes
US8473072B2 (en) 2010-06-08 2013-06-25 Axelgaard Manufacturing Company, Ltd. Customizable medical electrode
US8457735B2 (en) 2011-08-02 2013-06-04 Axelgaard Manufacturing Co., Ltd Field controlling electrode
US9089684B2 (en) * 2012-02-13 2015-07-28 Axelgaard Manufacturing Company, Ltd. Dual-sided current controlling electrode
KR101592925B1 (en) * 2013-11-29 2016-02-11 문찬곤 Device for measuring bioelectrical signals and stimulating body using mesh structure
WO2016135600A1 (en) 2015-02-26 2016-09-01 Rb Patents Sarl Device for functional electrical stimulation and measurement of electromyogram, comprising means for short-circuiting and earthing a pair of electrodes, and associated transcutaneous electrode
GB201511205D0 (en) * 2015-06-25 2015-08-12 Sky Medical Technology Ltd Multiple negative electrodes
EP3388238A1 (en) * 2017-04-13 2018-10-17 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Carrier, use of a carrier, method of activating a carrier and method of making a carrier
US10729564B2 (en) 2018-01-12 2020-08-04 Ripple Llc Sensor system

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US31454A (en) * 1861-02-19 Beehive
US4067342A (en) * 1976-04-06 1978-01-10 Medtronic, Inc. Tape electrode
US4211222A (en) * 1976-08-25 1980-07-08 Robert Tapper Iontophoretic burn-protection method
US4422461A (en) * 1981-08-12 1983-12-27 George Glumac Electrode
US4736752A (en) * 1986-11-28 1988-04-12 Axelgaard Manufacturing Co., Ltd. Transcutaneous medical electrode
US4786277A (en) * 1986-11-21 1988-11-22 Trustees Of Boston University Electrodes, electrode assemblies, methods, and systems for tissue stimulation
US4926879A (en) * 1988-06-13 1990-05-22 Sevrain-Tech, Inc. Electro-tactile stimulator
US4989617A (en) * 1989-07-14 1991-02-05 Case Western Reserve University Intramuscular electrode for neuromuscular stimulation system
US5038796A (en) * 1985-06-14 1991-08-13 Axelgaard Manufacturing Co., Ltd. Electrical stimulation electrode with impedance compensation
US5205297A (en) * 1988-03-25 1993-04-27 Lectec Corporation Multipurpose medical stimulation electrode
US5215089A (en) * 1991-10-21 1993-06-01 Cyberonics, Inc. Electrode assembly for nerve stimulation
US5265608A (en) * 1990-02-22 1993-11-30 Medtronic, Inc. Steroid eluting electrode for peripheral nerve stimulation
US5331966A (en) * 1991-04-05 1994-07-26 Medtronic, Inc. Subcutaneous multi-electrode sensing system, method and pacer
US5342413A (en) * 1992-05-21 1994-08-30 Siemens-Elema Ab Medical electrode arrangement
US5356428A (en) * 1992-03-31 1994-10-18 Cardiotronics, Inc. Non-invasive, radiolucent electrode
US5366497A (en) * 1992-03-31 1994-11-22 Cardiotronics, Inc. Non-invasive, radiolucent cardiac electrode
US5372125A (en) * 1993-08-13 1994-12-13 Ludlow Corporation Positive locking biomedical electrode and connector system
US5423877A (en) * 1992-05-04 1995-06-13 David C. Mackey Method and device for acute pain management by simultaneous spinal cord electrical stimulation and drug infusion
US5423871A (en) * 1993-01-29 1995-06-13 Pacesetter Ab Method and device for monitoring electrodes of electrical heart stimulators
US5425751A (en) * 1993-07-30 1995-06-20 Medtronic, Inc. Method and apparatus for optimum positioning of a muscle stimulating implant
US5465715A (en) * 1993-08-13 1995-11-14 Ludlow Corporation Positive locking biomedical electrode and connector system
US5466247A (en) * 1992-05-18 1995-11-14 Case Western Reserve University Subcutaneous electrode for stimulating skeletal musculature
US5514172A (en) * 1994-08-31 1996-05-07 Pacesetter, Inc. Multi-conductor lead including a connector with an interlocking insulator
US5571165A (en) * 1995-12-08 1996-11-05 Ferrari; R. Keith X-ray transmissive transcutaneous stimulating electrode

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE31454E (en) * 1975-11-25 1983-12-06 Lectec Corporation Monitoring and stimulation electrode
JP3266741B2 (en) * 1994-08-31 2002-03-18 シャープ株式会社 Electrode conductor for low frequency treatment device and method of manufacturing the same
US5432207A (en) * 1994-10-25 1995-07-11 Jiffy Foam, Inc. Phenolic foam composition and use thereof for "in place" foaming
JPH08164213A (en) * 1994-12-12 1996-06-25 Sharp Corp Low frequency therapeutic apparatus

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US31454A (en) * 1861-02-19 Beehive
US4067342A (en) * 1976-04-06 1978-01-10 Medtronic, Inc. Tape electrode
US4211222A (en) * 1976-08-25 1980-07-08 Robert Tapper Iontophoretic burn-protection method
US4422461A (en) * 1981-08-12 1983-12-27 George Glumac Electrode
US5038796A (en) * 1985-06-14 1991-08-13 Axelgaard Manufacturing Co., Ltd. Electrical stimulation electrode with impedance compensation
US4786277A (en) * 1986-11-21 1988-11-22 Trustees Of Boston University Electrodes, electrode assemblies, methods, and systems for tissue stimulation
US4736752A (en) * 1986-11-28 1988-04-12 Axelgaard Manufacturing Co., Ltd. Transcutaneous medical electrode
US5205297A (en) * 1988-03-25 1993-04-27 Lectec Corporation Multipurpose medical stimulation electrode
US4926879A (en) * 1988-06-13 1990-05-22 Sevrain-Tech, Inc. Electro-tactile stimulator
US4989617A (en) * 1989-07-14 1991-02-05 Case Western Reserve University Intramuscular electrode for neuromuscular stimulation system
US5265608A (en) * 1990-02-22 1993-11-30 Medtronic, Inc. Steroid eluting electrode for peripheral nerve stimulation
US5331966A (en) * 1991-04-05 1994-07-26 Medtronic, Inc. Subcutaneous multi-electrode sensing system, method and pacer
US5215089A (en) * 1991-10-21 1993-06-01 Cyberonics, Inc. Electrode assembly for nerve stimulation
US5356428A (en) * 1992-03-31 1994-10-18 Cardiotronics, Inc. Non-invasive, radiolucent electrode
US5366497A (en) * 1992-03-31 1994-11-22 Cardiotronics, Inc. Non-invasive, radiolucent cardiac electrode
US5423877A (en) * 1992-05-04 1995-06-13 David C. Mackey Method and device for acute pain management by simultaneous spinal cord electrical stimulation and drug infusion
US5466247A (en) * 1992-05-18 1995-11-14 Case Western Reserve University Subcutaneous electrode for stimulating skeletal musculature
US5342413A (en) * 1992-05-21 1994-08-30 Siemens-Elema Ab Medical electrode arrangement
US5423871A (en) * 1993-01-29 1995-06-13 Pacesetter Ab Method and device for monitoring electrodes of electrical heart stimulators
US5425751A (en) * 1993-07-30 1995-06-20 Medtronic, Inc. Method and apparatus for optimum positioning of a muscle stimulating implant
US5372125A (en) * 1993-08-13 1994-12-13 Ludlow Corporation Positive locking biomedical electrode and connector system
US5465715A (en) * 1993-08-13 1995-11-14 Ludlow Corporation Positive locking biomedical electrode and connector system
US5514172A (en) * 1994-08-31 1996-05-07 Pacesetter, Inc. Multi-conductor lead including a connector with an interlocking insulator
US5571165A (en) * 1995-12-08 1996-11-05 Ferrari; R. Keith X-ray transmissive transcutaneous stimulating electrode

Cited By (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020142340A1 (en) * 1986-04-18 2002-10-03 Carnegie Mellon University Cyanine dyes as labeling reagents for detection of biological and other materials by luminescence methods
USRE38000E1 (en) 1996-05-08 2003-02-25 Biophoretic Therapeutic Systems, Llc Electrokinetic drug delivery apparatus
US6385487B1 (en) 1996-05-08 2002-05-07 Biophoretic Therapeutic Systems, Llc Methods for electrokinetic delivery of medicaments
USRE38341E1 (en) 1996-05-08 2003-12-09 Biophoretic Therapeutic Systems, Llc Method for electrokinetic delivery of medicaments
USRE37796E1 (en) 1997-12-16 2002-07-23 Biophoretic Therapeutic Systems, Llc Methods for iontophoretic delivery of antiviral agents
US20040039328A1 (en) * 1998-09-15 2004-02-26 Biophoretic Therapeutic Systems, Llc Iontophoretic drug delivery electrodes and method
US20110213295A1 (en) * 1999-03-12 2011-09-01 Nitric Biotherapeutics, Inc. Methods and Systems for Electrokinetic Delivery of a Substance
US20110208111A1 (en) * 1999-03-12 2011-08-25 Nitric Biotherapeutics, Inc. Electrokinetic Delivery System for Self-Administration of Medicaments and Methods Therefor
US8328788B2 (en) 1999-03-12 2012-12-11 Nitric Biotherapeutics, Inc. Methods and systems for electrokinetic delivery of a substance
US20030199808A1 (en) * 1999-03-12 2003-10-23 Biophoretic Therapeutic Systems, Llc. Systems and methods for electrokinetic delivery of a substance
US6256533B1 (en) * 1999-06-09 2001-07-03 The Procter & Gamble Company Apparatus and method for using an intracutaneous microneedle array
US6434414B1 (en) * 1999-07-05 2002-08-13 Siemens Aktiengesellschaft Method and device for suppressing stimulations in a subject undergoing a magnetic resonance scan
US20060167403A1 (en) * 2000-03-10 2006-07-27 Biophoretic Therapeutic Systems, Llc Electrokinetic delivery system for self-administration of medicaments and methods therefor
US8352024B2 (en) 2000-03-10 2013-01-08 Nitric Biotherapeutics, Inc. Electrokinetic delivery system for self-administration of medicaments and methods therefor
US6792306B2 (en) 2000-03-10 2004-09-14 Biophoretic Therapeutic Systems, Llc Finger-mounted electrokinetic delivery system for self-administration of medicaments and methods therefor
US20040111051A1 (en) * 2000-03-10 2004-06-10 Biophoretic Therapeutic Systems, Llc. Electrokinetic delivery system for self-administration of medicaments and methods therefor
US20040176737A1 (en) * 2000-05-31 2004-09-09 Biophoretic Therapeutic Systems, Llc Electrokinetic delivery of medicaments
US6735470B2 (en) 2000-05-31 2004-05-11 Biophoretic Therapeutic Systems, Llc Electrokinetic delivery of medicaments
US20050182351A1 (en) * 2000-05-31 2005-08-18 Biophoretic Therapeutic Systems Llc Electrokinetic delivery of medicaments
US6477410B1 (en) 2000-05-31 2002-11-05 Biophoretic Therapeutic Systems, Llc Electrokinetic delivery of medicaments
US6549814B1 (en) * 2000-06-09 2003-04-15 Juergen Strutz Blade electrode array for insertion under soft tissue of lateral wall of cochlea
US6324435B1 (en) * 2000-06-22 2001-11-27 Ethicon, Inc. Electrical connector for cardiac devices
US6609018B2 (en) * 2000-07-27 2003-08-19 Ckm Diagnostics, Inc. Electrode array and sensor attachment system for noninvasive nerve location and imaging device
US6564079B1 (en) 2000-07-27 2003-05-13 Ckm Diagnostics, Inc. Electrode array and skin attachment system for noninvasive nerve location and imaging device
US8702726B2 (en) 2000-10-16 2014-04-22 Corium International, Inc. Method of exfoliation of skin using closely-packed microstructures
US8216190B2 (en) 2000-10-16 2012-07-10 Corium International, Inc. Microstructures for delivering a composition cutaneously to skin
US20060129174A1 (en) * 2000-10-16 2006-06-15 Corium International, Inc. Microstructures for delivering a composition cutaneously to skin
US6600957B2 (en) 2001-06-28 2003-07-29 The Ludlow Company Lp High-energy disposable medical stimulation electrode
US6745082B2 (en) 2001-10-22 2004-06-01 Jens Axelgaard Current-controlling electrode with adjustable contact area
EP1501436A2 (en) * 2002-05-09 2005-02-02 Megadyne Medical Products, Inc. Self-limiting electrosurgical return electrode
AU2003232023B8 (en) * 2002-05-09 2009-07-30 Megadyne Medical Products, Inc. Self-limiting electrosurgical return electrode
AU2003232023B2 (en) * 2002-05-09 2007-07-26 Megadyne Medical Products, Inc. Self-limiting electrosurgical return electrode
EP1501436A4 (en) * 2002-05-09 2005-05-18 Megadyne Med Prod Inc Self-limiting electrosurgical return electrode
US7324847B2 (en) 2003-02-06 2008-01-29 Axelgaard Manufacturing Co., Ltd. Reverse current controlling electrode
US20040158305A1 (en) * 2003-02-06 2004-08-12 Jens Axelgaard Reverse current controlling electrode
US8475689B2 (en) 2003-06-30 2013-07-02 Johnson & Johnson Consumer Companies, Inc. Topical composition containing galvanic particulates
US8734421B2 (en) 2003-06-30 2014-05-27 Johnson & Johnson Consumer Companies, Inc. Methods of treating pores on the skin with electricity
US20050010192A1 (en) * 2003-06-30 2005-01-13 Ying Sun Methods of treating pores on the skin with electricity
US8239017B2 (en) 2003-06-30 2012-08-07 Johnson & Johnson Consumer Companies, Inc. Device for treatment of barrier membranes
US20070060862A1 (en) * 2003-06-30 2007-03-15 Ying Sun Method for administering electricity with particlulates
US20090076479A1 (en) * 2003-06-30 2009-03-19 Ying Sun Device for treatment of barrier membranes
US20090062723A1 (en) * 2004-02-19 2009-03-05 Silverleaf Medical Products, Inc. Current producing surface for treating biologic tissue
US20050187580A1 (en) * 2004-02-19 2005-08-25 Skiba Jeffry B. Current producing surface
US8224439B2 (en) 2004-02-19 2012-07-17 Vamaris Innovations, Inc. Batteries and methods of manufacture and use
US7457667B2 (en) * 2004-02-19 2008-11-25 Silverleaf Medical Products, Inc. Current producing surface for a wound dressing
US7672719B2 (en) 2004-02-19 2010-03-02 Vomaris Innovations, Inc. Batteries and methods of manufacture and use
US20100312293A1 (en) * 2004-02-19 2010-12-09 Vomaris Innovations, Inc. Batteries and Methods of Manufacture and Use
US7813806B2 (en) 2004-02-19 2010-10-12 Vomaris Innovations, Inc. Current producing surface for treating biologic tissue
US20100028390A1 (en) * 2004-03-24 2010-02-04 Cleary Gary W Transdermal Delivery Device
US7914480B2 (en) 2004-03-24 2011-03-29 Corium International, Inc. Transdermal delivery device
EP1926524A4 (en) * 2005-09-19 2009-07-15 Transport Pharmaceuticals Inc Electrokinetic delivery system and methods therefor
EP1926524A2 (en) * 2005-09-19 2008-06-04 Transport Pharmaceuticals, Inc. Electrokinetic delivery system and methods therefor
US20100145299A1 (en) * 2006-05-30 2010-06-10 Yossi Gross Implantable Pump for Drug Delivery to Treat Erectile Dysfunction
US8273063B2 (en) 2006-05-30 2012-09-25 Yossi Gross Implantable pump for drug delivery to treat erectile dysfunction
US20070293917A1 (en) * 2006-06-15 2007-12-20 Thompson Thomas C Non-invasive neuro stimulation system
US20170209694A1 (en) * 2006-06-15 2017-07-27 Htk Enterprises, Inc. Non-invasive neuro stimulation system
US20070293918A1 (en) * 2006-06-15 2007-12-20 Thompson Thomas C Non-invasive neuro stimulation system
US9630003B2 (en) 2006-06-15 2017-04-25 Htk Enterprises, Inc. Non-invasive neuro stimulation system
US20080183144A1 (en) * 2007-01-22 2008-07-31 Trautman Joseph C Applicators for microneedles
US8821446B2 (en) 2007-01-22 2014-09-02 Corium International, Inc. Applicators for microneedles
US20080188791A1 (en) * 2007-02-02 2008-08-07 Difiore Attilio E Active iontophoresis delivery system
US20080234536A1 (en) * 2007-03-21 2008-09-25 Yossi Gross Implantable peristaltic pump to treat erectile dysfunction
US8152711B2 (en) 2007-03-21 2012-04-10 Yossi Gross Implantable peristaltic pump to treat erectile dysfunction
US9498524B2 (en) 2007-04-16 2016-11-22 Corium International, Inc. Method of vaccine delivery via microneedle arrays
US8911749B2 (en) 2007-04-16 2014-12-16 Corium International, Inc. Vaccine delivery via microneedle arrays
US9114238B2 (en) 2007-04-16 2015-08-25 Corium International, Inc. Solvent-cast microprotrusion arrays containing active ingredient
US9452280B2 (en) 2007-04-16 2016-09-27 Corium International, Inc. Solvent-cast microprotrusion arrays containing active ingredient
US10238848B2 (en) 2007-04-16 2019-03-26 Corium International, Inc. Solvent-cast microprotrusion arrays containing active ingredient
US20090155330A1 (en) * 2007-04-16 2009-06-18 Corium International, Inc. Vaccine Delivery via Microneedle Arrays
US20080305154A1 (en) * 2007-06-08 2008-12-11 Activatek, Inc. Transdermal medicament patch and active electrode for same
US8197844B2 (en) 2007-06-08 2012-06-12 Activatek, Inc. Active electrode for transdermal medicament administration
US20090155594A1 (en) * 2007-07-20 2009-06-18 Evans Thomas D Devices for applying conductive gel-pads to electrodes and electrodes produced thereby
US8931536B2 (en) 2007-07-20 2015-01-13 Ropheka Technologies, Llc Devices for applying conductive gel-pads to electrodes and electrodes produced thereby
US20100209515A1 (en) * 2007-09-28 2010-08-19 Jeannette Chantalat Electricity-generating particulates and the use thereof
US20090097063A1 (en) * 2007-10-11 2009-04-16 Canon Kabushiki Kaisha Image processing system and image processing method
US8862223B2 (en) 2008-01-18 2014-10-14 Activatek, Inc. Active transdermal medicament patch and circuit board for same
US20110137370A1 (en) * 2008-01-31 2011-06-09 Enopace Biomedical Ltd. Thoracic aorta and vagus nerve stimulation
US20100305392A1 (en) * 2008-01-31 2010-12-02 Enopace Biomedical Ltd. Thoracic aorta and vagus nerve stimulation
US20090198097A1 (en) * 2008-01-31 2009-08-06 Ed Tech Medical Ltd. Peristaltic pump for treatment of erectile dysfunction
US20090198271A1 (en) * 2008-01-31 2009-08-06 Rainbow Medical Ltd. Electrode based filter
US9005106B2 (en) 2008-01-31 2015-04-14 Enopace Biomedical Ltd Intra-aortic electrical counterpulsation
US20090198308A1 (en) * 2008-01-31 2009-08-06 Enopace Biomedical Ltd. Intra-aortic electrical counterpulsation
US7818062B2 (en) 2008-01-31 2010-10-19 Ed Tech Medical Ltd. Peristaltic pump for treatment of erectile dysfunction
US8626290B2 (en) 2008-01-31 2014-01-07 Enopace Biomedical Ltd. Acute myocardial infarction treatment by electrical stimulation of the thoracic aorta
US8626299B2 (en) 2008-01-31 2014-01-07 Enopace Biomedical Ltd. Thoracic aorta and vagus nerve stimulation
US20100057147A1 (en) * 2008-08-27 2010-03-04 Ali Fassih Treatment of hyperhydrosis
US20100082088A1 (en) * 2008-08-27 2010-04-01 Ali Fassih Treatment of sweating and hyperhydrosis
US8150525B2 (en) 2008-08-27 2012-04-03 Johnson & Johnson Consumer Companies, Inc. Treatment of hyperhydrosis
US20100075532A1 (en) * 2008-09-25 2010-03-25 Tyco Healthcare Group Lp Fluorescent Marker for Detecting Gel or Lack of Gel
US20100072060A1 (en) * 2008-09-25 2010-03-25 Tyco Healthcare Group Lp Biomedical Electrode and Method of Formation Thereof
US20100076294A1 (en) * 2008-09-25 2010-03-25 Tyco Healthcare Group Lp System and Method of Prepping Skin Prior to Electrode Application
US9044397B2 (en) 2009-03-27 2015-06-02 Ethicon, Inc. Medical devices with galvanic particulates
US20110006458A1 (en) * 2009-04-24 2011-01-13 Corium International, Inc. Methods for manufacturing microprojection arrays
US20120226330A1 (en) * 2009-11-05 2012-09-06 Koninklijke Philips Electronics N.V. Electrical muscle stimulation
US9878152B2 (en) * 2009-11-05 2018-01-30 Koninklijke Philips N.V. Electrical muscle stimulation
US8744567B2 (en) 2009-11-13 2014-06-03 Johnson & Johnson Consumer Companies, Inc. Galvanic skin treatment device
US20110118655A1 (en) * 2009-11-13 2011-05-19 Ali Fassih Galvanic skin treatment device
US20110195100A1 (en) * 2010-02-05 2011-08-11 Elizabeth Bruning Lip compositions comprising galvanic particulates
US20110212042A1 (en) * 2010-03-01 2011-09-01 Prithwiraj Maitra Skin care composition having desirable bulk color
US20110236491A1 (en) * 2010-03-25 2011-09-29 Jeannette Chantalat Topical anti-inflammatory composition
US11419816B2 (en) 2010-05-04 2022-08-23 Corium, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array
US9687641B2 (en) 2010-05-04 2017-06-27 Corium International, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array
US9649487B2 (en) 2010-08-05 2017-05-16 Enopace Biomedical Ltd. Enhancing perfusion by contraction
US8649863B2 (en) 2010-12-20 2014-02-11 Rainbow Medical Ltd. Pacemaker with no production
US10828181B2 (en) 2011-09-09 2020-11-10 Enopace Biomedical Ltd. Annular antenna
US9526637B2 (en) 2011-09-09 2016-12-27 Enopace Biomedical Ltd. Wireless endovascular stent-based electrodes
US8855783B2 (en) 2011-09-09 2014-10-07 Enopace Biomedical Ltd. Detector-based arterial stimulation
WO2013059699A1 (en) 2011-10-19 2013-04-25 Neuro Resource Group Inc Automated electrode array treatment protocol
US9386991B2 (en) 2012-02-02 2016-07-12 Rainbow Medical Ltd. Pressure-enhanced blood flow treatment
US11612758B2 (en) 2012-07-05 2023-03-28 Btl Medical Solutions A.S. Device for repetitive nerve stimulation in order to break down fat tissue means of inductive magnetic fields
US11052231B2 (en) 2012-12-21 2021-07-06 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
US11110259B2 (en) 2013-03-12 2021-09-07 Corium, Inc. Microprojection applicators and methods of use
US10245422B2 (en) 2013-03-12 2019-04-02 Corium International, Inc. Microprojection applicators and methods of use
US10195409B2 (en) 2013-03-15 2019-02-05 Corium International, Inc. Multiple impact microprojection applicators and methods of use
US10384046B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
US11565097B2 (en) 2013-03-15 2023-01-31 Corium Pharma Solutions, Inc. Microarray for delivery of therapeutic agent and methods of use
US10384045B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray with polymer-free microstructures, methods of making, and methods of use
US9962534B2 (en) 2013-03-15 2018-05-08 Corium International, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
US11432949B2 (en) 2013-11-06 2022-09-06 Enopace Biomedical Ltd. Antenna posts
US10779965B2 (en) 2013-11-06 2020-09-22 Enopace Biomedical Ltd. Posts with compliant junctions
US10624843B2 (en) 2014-09-04 2020-04-21 Corium, Inc. Microstructure array, methods of making, and methods of use
US10857093B2 (en) 2015-06-29 2020-12-08 Corium, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
US11491342B2 (en) 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
US10980994B2 (en) 2016-01-26 2021-04-20 Jens Axelgaard Dual-sided electrode pad
EP3444006A1 (en) 2016-01-26 2019-02-20 Jens Axelgaard Dual-sided electrode pad
CN106178258B (en) * 2016-04-25 2018-08-21 Bj全球有限公司 Low frequency muscular movement stimulation instrument
CN106178258A (en) * 2016-04-25 2016-12-07 Bj全球有限公司 Low frequency muscular movement stimulation instrument
US11602629B2 (en) 2016-05-03 2023-03-14 Btl Healthcare Technologies A.S. Systems and methods for treatment of a patient including rf and electrical energy
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11883643B2 (en) 2016-05-03 2024-01-30 Btl Healthcare Technologies A.S. Systems and methods for treatment of a patient including RF and electrical energy
US11464994B2 (en) 2016-05-10 2022-10-11 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11691024B2 (en) 2016-05-10 2023-07-04 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11590356B2 (en) 2016-05-10 2023-02-28 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11623083B2 (en) 2016-05-23 2023-04-11 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11878162B2 (en) 2016-05-23 2024-01-23 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11458307B2 (en) 2016-05-23 2022-10-04 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11896821B2 (en) 2016-05-23 2024-02-13 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11497925B2 (en) 2016-07-01 2022-11-15 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11679270B2 (en) 2016-07-01 2023-06-20 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11524171B2 (en) 2016-07-01 2022-12-13 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11607556B2 (en) 2016-07-01 2023-03-21 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11794029B2 (en) 2016-07-01 2023-10-24 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11484727B2 (en) 2016-07-01 2022-11-01 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11628308B2 (en) 2016-07-01 2023-04-18 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US10959674B2 (en) 2017-10-23 2021-03-30 Datafeel Inc. Communication devices, methods, and systems
US11864914B2 (en) 2017-10-23 2024-01-09 Datafeel Inc. Communication devices, methods, and systems
US11684313B2 (en) 2017-10-23 2023-06-27 Datafeel Inc. Communication devices, methods, and systems
US11484263B2 (en) 2017-10-23 2022-11-01 Datafeel Inc. Communication devices, methods, and systems
US11931174B1 (en) 2017-10-23 2024-03-19 Datafeel Inc. Communication devices, methods, and systems
US11589816B2 (en) 2017-10-23 2023-02-28 Datafeel Inc. Communication devices, methods, and systems
US11864913B2 (en) 2017-10-23 2024-01-09 Datafeel Inc. Communication devices, methods, and systems
US11484725B2 (en) 2019-04-11 2022-11-01 Btl Medical Solutions A.S. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
US11806528B2 (en) 2020-05-04 2023-11-07 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11826565B2 (en) 2020-05-04 2023-11-28 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11813451B2 (en) 2020-05-04 2023-11-14 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11679255B2 (en) 2020-05-04 2023-06-20 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11878167B2 (en) 2020-05-04 2024-01-23 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11633596B2 (en) 2020-05-04 2023-04-25 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11491329B2 (en) 2020-05-04 2022-11-08 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11934583B2 (en) 2020-10-30 2024-03-19 Datafeel Inc. Wearable data communication apparatus, kits, methods, and systems
US11400299B1 (en) 2021-09-14 2022-08-02 Rainbow Medical Ltd. Flexible antenna for stimulator
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient

Also Published As

Publication number Publication date
DE69836816T2 (en) 2007-10-11
US5904712A (en) 1999-05-18
EP1009474A1 (en) 2000-06-21
EP1009474B1 (en) 2007-01-03
JP2002506364A (en) 2002-02-26
DE69836816D1 (en) 2007-02-15
EP1009474A4 (en) 2004-10-06
WO1998056455A1 (en) 1998-12-17
AU7831998A (en) 1998-12-30

Similar Documents

Publication Publication Date Title
US6038485A (en) Current-controlling electrode
US8874231B2 (en) Customizable medical electrode
US6745082B2 (en) Current-controlling electrode with adjustable contact area
US5450845A (en) Medical electrode system
US7695430B2 (en) Reverse current controlling electrode with oversize backing
CA2135301C (en) Apparatus for the electrical stimulation of skin receptors
US4736752A (en) Transcutaneous medical electrode
JP4708447B2 (en) Floating electrode
EP2340080B1 (en) Electrode chain
US8320988B2 (en) Multi-electrode strung on a common connector
CA2584722C (en) Method and means for electrical stimulation of cutaneous sensory receptors
EP0212096B1 (en) Electrical stimulation electrode
US9962538B2 (en) Multi-electrode with lateral conductivity control
US5843155A (en) Current-controlling electrode system
EP2814562B1 (en) Dual-sided current controlling electrode

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12