WO2009148018A1 - 電動歯ブラシ - Google Patents

電動歯ブラシ Download PDF

Info

Publication number
WO2009148018A1
WO2009148018A1 PCT/JP2009/059986 JP2009059986W WO2009148018A1 WO 2009148018 A1 WO2009148018 A1 WO 2009148018A1 JP 2009059986 W JP2009059986 W JP 2009059986W WO 2009148018 A1 WO2009148018 A1 WO 2009148018A1
Authority
WO
WIPO (PCT)
Prior art keywords
brush
angle
electric toothbrush
posture
brushing
Prior art date
Application number
PCT/JP2009/059986
Other languages
English (en)
French (fr)
Inventor
岩堀敏之
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Priority to CN200980120238.5A priority Critical patent/CN102046041B/zh
Priority to RU2010153356/12A priority patent/RU2493760C2/ru
Priority to US12/990,308 priority patent/US8341791B2/en
Priority to DE112009001137.3T priority patent/DE112009001137B4/de
Publication of WO2009148018A1 publication Critical patent/WO2009148018A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • A61C17/16Power-driven cleaning or polishing devices
    • A61C17/22Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like
    • A61C17/221Control arrangements therefor
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B15/00Other brushes; Brushes with additional arrangements
    • A46B15/0002Arrangements for enhancing monitoring or controlling the brushing process
    • A46B15/0004Arrangements for enhancing monitoring or controlling the brushing process with a controlling means
    • A46B15/0006Arrangements for enhancing monitoring or controlling the brushing process with a controlling means with a controlling brush technique device, e.g. stroke movement measuring device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • A61C17/16Power-driven cleaning or polishing devices
    • A61C17/22Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like
    • A61C17/32Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like reciprocating or oscillating
    • A61C17/34Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like reciprocating or oscillating driven by electric motor
    • A61C17/3409Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like reciprocating or oscillating driven by electric motor characterized by the movement of the brush body
    • A61C17/3481Vibrating brush body, e.g. by using eccentric weights

Definitions

  • the present invention relates to an electric toothbrush.
  • An electric toothbrush that brushes teeth (removes food residues and plaque) by applying a brush that moves at high speed to the teeth is known.
  • the brushing effect obtained differs depending on the angle at which the brush is applied to the teeth. For example, if the brush is applied at 90 degrees with respect to the tooth axis, the highest plaque removal force can be exerted on the tooth surface. Also, if the brush is applied at 45 degrees to the tooth axis, the tip of the brush can easily enter between teeth and periodontal pockets (between teeth and gums), effectively removing food residues and Be able to scrape plaque.
  • Patent Document 1 discloses the idea of detecting the direction around the axis of the toothbrush body in four or eight stages and estimating the brushing site from the detection result. Specifically, a plurality of fan-shaped sections are provided in the circumferential direction inside the main body, and the direction of the toothbrush main body is estimated by detecting which section the conductive sphere is in from the change in electrical resistance. is doing. However, it is difficult to reduce the size of such a mechanism, and the feasibility is poor.
  • An object of the present invention is to provide a technique for easily realizing an appropriate brush angle in an electric toothbrush.
  • the present invention adopts the following configuration.
  • the electric toothbrush of the present invention includes an electric toothbrush body having a grip portion, a brush member having a brush, a driving means for moving the brush, and the brush member for changing the direction of the brush.
  • a rotation means that rotates relative to the body; an attitude detection means that detects an attitude of the electric toothbrush main body; and a brush angle that is an angle of the brush with respect to the tooth axis based on the detected attitude.
  • Control means for controlling the rotating means so as to have a value.
  • control means is detected with a part estimation means for estimating a brushing part brushed from a plurality of parts defined by dividing the dentition surface based on the detected posture.
  • Brush angle estimating means for estimating a brush angle that is an angle of the brush with respect to a tooth axis based on a posture, and an optimal brush angle value preset for each brushing part and the estimated brush angle
  • the rotation means is preferably controlled so that the brush angle becomes the optimum value.
  • control means controls the driving means so as to change the movement direction or the movement frequency of the brush according to the detected posture.
  • the driving means is a rotary motor
  • the direction of movement and the frequency of movement of the brush can be changed by switching the direction of rotation of the rotary motor or changing the number of rotations.
  • the posture detection means detects the posture based on the output of the acceleration sensor.
  • a uniaxial acceleration sensor can be used, and preferably a multiaxial (biaxial, triaxial, or more) acceleration sensor can be used.
  • notifying means for notifying that the brush angle is the optimum value thereby, usability can be improved.
  • a notification method light, sound, voice, vibration, or the like can be used.
  • the optimum value can be changed.
  • the brush angle is set to 90 degrees, and when it is desired to effectively polish between teeth and gums such as periodontal pockets, the brush angle is set to 45 degrees. It can be used flexibly.
  • control means controls the rotating means so that the brush member is at a preset initial position after the electric toothbrush is used or at the start of use.
  • the orientation of the brush automatically returns to the initial position until the next start of brushing. Therefore, it is possible to reach the optimum brush angle more quickly at the start of tooth brushing.
  • FIG. 1 is a block diagram of the electric toothbrush of the first embodiment.
  • FIG. 2 is a cross-sectional view showing the internal configuration of the electric toothbrush of the first embodiment.
  • FIG. 3 is a perspective view showing the appearance of the electric toothbrush.
  • 4A and 4B are diagrams illustrating the configuration of the brush angle control actuator.
  • FIG. 5 is a diagram showing the classification of the brushing part.
  • FIG. 6 is a flowchart showing a main routine of the operation of the electric toothbrush.
  • FIG. 7 is a flowchart of the posture detection process.
  • FIG. 8 is a flowchart of the brushing site estimation process (upper jaw).
  • FIG. 9 is a flowchart of the brushing site estimation process (mandible).
  • FIG. 10 is a diagram illustrating an example of acceleration sensor outputs Ax, Ay, and Az for each brushing region of the upper jaw.
  • FIG. 11 is a diagram illustrating an example of acceleration sensor outputs Ax, Ay, and Az for each lower brushing region.
  • FIG. 12 is a diagram illustrating the definition of the posture angle of the electric toothbrush.
  • FIG. 13 is a diagram showing a change in the waveform of the sensor output accompanying a change in the brush angle.
  • FIG. 14 is a diagram for explaining the brush angle.
  • FIG. 15 is a cross-sectional view showing the internal configuration of the electric toothbrush of the second embodiment.
  • FIG. 16 is a cross-sectional view showing the internal configuration of the electric toothbrush of the third embodiment.
  • FIG. 17 is a diagram illustrating a configuration of an electrical connection portion using a rectifying brush.
  • FIG. 18 is a diagram showing a configuration of an electrical connection portion using a coil.
  • FIG. 19 is a diagram for explaining the trajectory of the brush.
  • FIG. 20 is a diagram illustrating the relationship between the brush angle and the movement of the brush.
  • FIG. 21 is a flowchart of the operation mode switching process according to the fifth embodiment.
  • FIG. 22 is a diagram illustrating posture detection according to the sixth embodiment.
  • FIG. 23 is a diagram for explaining automatic return processing according to the seventh embodiment.
  • FIG. 1 is a block diagram of the electric toothbrush of the first embodiment
  • FIG. 2 is a cross-sectional view showing the internal configuration of the electric toothbrush of the first embodiment
  • FIG. 3 is a perspective view showing the appearance of the electric toothbrush.
  • the electric toothbrush includes an electric toothbrush main body 1 (hereinafter also simply referred to as “main body 1”) composed of an outer casing 1a and an inner casing 1b, and a brush member 2 attached to the inner casing 1b of the main body 1. It is equipped with.
  • main body 1 composed of an outer casing 1a and an inner casing 1b
  • brush member 2 attached to the inner casing 1b of the main body 1. It is equipped with.
  • the outer casing 1a of the main body 1 is made of a resin case having a generally cylindrical shape.
  • the outer casing 1a is provided with an elastomer grip 14 for a user to grip with his / her hands when brushing teeth, a switch S for turning on / off the power, switching modes, and the like.
  • the drive circuit 12 includes a CPU (input / output processing unit) 120 that executes various calculations and controls, a memory 121 that stores programs and various setting values, a timer 122, and the like.
  • An acceleration sensor 15 is provided inside the main body 1.
  • a multi-axis acceleration sensor may be used, or a single-axis acceleration sensor may be used.
  • the x axis is parallel to the brush surface
  • the y axis is coincident with the longitudinal direction of the main body 1
  • the z axis is perpendicular to the brush surface. It is good to install like this.
  • “Brush surface” refers to a virtual plane that is substantially orthogonal to the hair (fiber) of the brush and is located at the tip of the hair.
  • a uniaxial acceleration sensor it may be installed so as to detect acceleration in the z-axis direction or the x-axis direction in FIG.
  • an x, y, z triaxial acceleration sensor is used.
  • the output of the acceleration sensor 15 is input to the CPU 120 and used to detect the three-dimensional posture of the brush.
  • the acceleration sensor 15 a piezoresistive type, a capacitance type, or a heat detection type MEMS sensor can be preferably used. This is because the MEMS sensor is very small and can be easily incorporated into the body 1.
  • the form of the acceleration sensor 15 is not limited to this, and an electrodynamic sensor, a strain gauge sensor, a piezoelectric sensor, or the like may be used.
  • a band pass filter low pass filter for removing dynamic acceleration components and noise may be provided. Further, noise may be reduced by smoothing the output waveform of the acceleration sensor.
  • the inner casing 1b of the main body 1 is a component that is attached to the outer casing 1a so as to be movable relative to the outer casing 1a. It has.
  • the brush member 2 is mounted so as to cover the stem 3.
  • a brush 20 is implanted at the tip of the brush member 2. Since the brush member 2 is a consumable part, it is configured to be detachable from the stem 3 (inner housing 1b) so that it can be replaced with a new one.
  • the stem 3 is a cylindrical member made of a resin material with a closed tip (brush side end) and has a bearing 32 at the tip inside the tube.
  • the tip of the eccentric shaft 30 connected to the rotating shaft 11 of the motor 10 is inserted into the bearing 32 of the stem 3.
  • the eccentric shaft 30 has a weight 31 in the vicinity of the bearing 32, and the center of gravity of the eccentric shaft 30 is deviated from the center of rotation.
  • the CPU 120 supplies a drive signal (for example, a pulse width modulation signal) corresponding to the operation mode to the motor 10 and rotates the rotating shaft 11 of the motor 10, the eccentric shaft 30 also rotates as the rotating shaft 11 rotates.
  • the eccentric shaft 30 moves so as to turn around the center of rotation because the center of gravity is displaced.
  • the tip of the eccentric shaft 30 repeats minute collisions with the inner wall of the bearing 32, and the brush 20 is vibrated (moved) at high speed. That is, the motor 10 plays a role of driving means for vibrating (moving) the brush, and the eccentric shaft 30 plays a role of a motion transmission mechanism (motion converting mechanism) that converts the output (rotation) of the motor 10 into vibration of the brush 20. Take on.
  • the electric toothbrush of the present embodiment includes an actuator (rotating means) 40 that rotates the brush member 2 relative to the outer casing 1a of the main body 1 in order to change the orientation of the brush 20 around the y-axis.
  • an actuator (rotating means) 40 that rotates the brush member 2 relative to the outer casing 1a of the main body 1 in order to change the orientation of the brush 20 around the y-axis.
  • FIG. 4A and 4B show the configuration of the actuator 40.
  • FIG. 4A is a cross-sectional view taken along the line XX of FIG. 4B.
  • the actuator 40 is composed of a rotary motor having a stator 41 and a rotor 42.
  • the stator 41 is fixed to the outer casing 1 a of the main body 1, and the rotor 42 is fixed to the motor housing 43 of the motor 10.
  • the rotor 42 rotates by an angle corresponding to the control signal.
  • the rotation angle of the rotor 42 is assumed to be within a range of ⁇ 180 degrees to +180 degrees.
  • brush direction means the normal direction of the brush surface, that is, the direction of the brush tip
  • change the brush direction means the rotation angle of the brush direction around the y-axis.
  • a known rotary motor such as a stepping motor can be preferably used.
  • a cylindrical linear motor having an arcuate stator can also be used as long as a rotational output can be obtained.
  • the electric toothbrush of the present embodiment includes two types of actuators: the motor 10 for moving (vibrating) the brush 20 and the actuator 40 for controlling the direction (brush angle) of the brush 20.
  • the motor 10 may be referred to as a brush drive actuator
  • the actuator 40 may be referred to as a brush angle control actuator.
  • the electric toothbrush of the present embodiment estimates the brushing part based on the posture of the brush detected by the acceleration sensor 15, and controls the actuator 40 so that the brush angle becomes an optimum value according to the brushing part.
  • the upper and lower dentitions are divided into “maxillary anterior cheek side”, “maxillary anterior tongue side”, “maxillary left cheek side”, “maxillary left lingual side”, “maxillary left chewing side”.
  • the region is divided into 16 parts: “tongue side”, “mandibular left occlusal surface”, “mandibular right cheek side”, “mandibular right lingual side”, and “mandibular right occlusal surface”.
  • the division of the dentition is not limited to this, and may be a broader division or a finer division.
  • FIG. 6 is a flowchart of the main routine
  • FIGS. 7 to 9 are flowcharts showing details of each process of the main routine. Note that the processing described below is processing executed by the CPU 120 serving as control means according to a program unless otherwise specified.
  • the CPU 120 controls the motor 10 to start driving the brush 20 (S10).
  • the processing of S20 to S60 described below is repeatedly executed at regular intervals.
  • the power of the electric toothbrush is turned off or the continuous operation time counted by the timer reaches a predetermined time (for example, 2 minutes)
  • the loop of S20 to S60 ends (continuation ?; NO)
  • the CPU 120 determines that the brush 20 Is stopped (S70).
  • FIG. 7 is a flowchart of the posture detection process (S20).
  • CPU 120 obtains the respective outputs Ax, Ay, Az of x, y, z from the acceleration sensor 15 (S100).
  • Ax represents an acceleration component in the x direction
  • Ay represents an acceleration component in the y direction
  • Az represents an acceleration component in the z direction.
  • A (Ax, Ay, Az) is called an attitude vector.
  • FIGS. 10 and 11 are diagrams illustrating examples of acceleration sensor outputs Ax, Ay, and Az for each brushing part.
  • the CPU 120 determines whether the upper jaw or the lower jaw based on the output Az of the acceleration sensor in the z direction (S700).
  • the determination is focused on the fact that the brush surface is upward rather than downward, and when brushing the lower jaw dentition, the brush surface is not lower than downward.
  • Az>0 the lower jaw (S801) is determined, and when Az ⁇ 0, the upper jaw (S701) is determined.
  • the CPU 120 determines whether or not it is an anterior tooth based on the output Ay of the acceleration sensor in the y direction (S702).
  • Ay threshold value a
  • the CPU 120 determines whether it is the cheek side or the tongue side based on the output Ax of the acceleration sensor in the x direction (S704). This determination is focused on the fact that the direction of the brush is reversed between the cheek side and the tongue side. When Ax> 0, it is determined as “upper front cheek side” (S705), and when Ax ⁇ 0, it is determined as “upper front tongue side” (S706).
  • the CPU 120 determines whether or not it is a meshing surface based on the output Ax of the acceleration sensor in the x direction (S707).
  • the determination is focused on the fact that the brush surface is substantially horizontal and the output of Ax is very small.
  • threshold value b> Ax> threshold value c it is determined that “the upper jaw left engagement surface or the upper jaw right engagement surface” (S708).
  • the upper jaw left engagement surface and the upper jaw right engagement surface are not particularly distinguished. This is because in the case of the meshing surface, there is little need to change the brushing operation on the left and right.
  • the CPU 120 determines whether Ax is greater than 0 or not (S709). This determination is focused on the fact that the direction of the brush is reversed between the cheek side and the tongue side. When Ax> 0, it is determined as “upper right cheek side or upper left tongue side” (S710), and when Ax ⁇ 0, it is determined as “upper left cheek side or upper maxillary right tongue side” (S711). In the first embodiment, the right upper cheek side and the upper left lingual side are not particularly distinguished. This is because there is little need to change the brush angle between the two parts. The same applies to the maxillary left cheek side and the maxillary right lingual side.
  • the CPU 120 determines whether or not it is an anterior tooth based on the output Ay of the acceleration sensor in the y direction (S802).
  • Ay ⁇ threshold d it is determined as a lower anterior tooth (S803).
  • the CPU 120 determines whether it is the cheek side or the tongue side based on the output Ax of the acceleration sensor in the x direction (S804). This determination is focused on the fact that the direction of the brush is reversed between the cheek side and the tongue side. When Ax ⁇ 0, it is determined as “mandibular anterior cheek side” (S805), and when Ax ⁇ 0, it is determined as “mandibular anterior tongue side” (S806).
  • the CPU 120 determines whether or not it is a meshing surface based on the output Ax of the acceleration sensor in the x direction (S807).
  • the determination is focused on the fact that the brush surface is substantially horizontal and the output of Ax is very small.
  • threshold e> Ax> threshold f it is determined that “the lower jaw left occlusal surface or the lower jaw right occlusal surface” (S808).
  • the lower jaw left engagement surface and the lower jaw right engagement surface are not particularly distinguished. This is because in the case of the meshing surface, there is little need to change the brushing operation on the left and right.
  • the CPU 120 determines whether the cheek side or the tongue side depending on whether Ax is greater than 0 (S809). This determination is focused on the fact that the direction of the brush is reversed between the cheek side and the tongue side. When Ax> 0, it is determined as “mandibular right cheek side or mandibular left lingual side” (S810), and when Ax ⁇ 0, it is determined as “mandibular left cheek side or mandibular right lingual side” (S811). In the first embodiment, there is no particular distinction between the lower jaw right cheek side and the lower jaw left tongue side. This is because there is little need to change the brush angle between the two parts. The same applies to the lower jaw left cheek side or the lower jaw right tongue side.
  • the current brushing site is “maxillary front cheek side” (S705), “maxillary anterior tongue side” (S706), “maxillary meshing surface” (S708), “maxillary right cheek side or maxillary left tongue.
  • the above determination algorithm is merely an example, and any determination algorithm may be used as long as the brushing part can be specified from the outputs Ax, Ay, and Az of the acceleration sensor.
  • secondary variables obtained by appropriately combining Ax, Ay, Az may be used for determination.
  • the secondary variable can be arbitrarily set, for example, Ay / Az, Ax ⁇ Ax + Ay ⁇ Ay, Az ⁇ Ax, and the like.
  • the brushing part may be determined after converting the acceleration information Ax, Ay, Az of each axis into angle information (attitude angles) ⁇ , ⁇ , ⁇ as shown in FIG. In the example of FIG.
  • the x-axis angle with respect to the gravitational acceleration direction is defined as a roll angle ⁇
  • the y-axis angle with respect to the gravitational acceleration direction is defined as a pitch angle ⁇
  • the z-axis angle with respect to the gravitational acceleration direction is defined as a yaw angle ⁇ .
  • S40-S60 Brush angle control
  • the CPU 120 estimates the current brush angle value based on the posture (output of the acceleration sensor) detected in S200.
  • the brush angle is the contact angle of the brush with respect to the tooth axis (axis along the tooth head and root).
  • the brush angle is calculated when it is assumed that the rotation angle of the inner casing 1b by the actuator 40 is 0 degree and the tooth axis coincides with the direction of gravity.
  • the brush angle is represented in the range of 0 to 90 degrees.
  • the brush angle can be estimated from, for example, the acceleration component Az in the z direction. As shown in FIG. 13, when the brush angle is about 90 degrees, Az is almost 0, and as the brush angle becomes smaller, the value of Az increases. Thus, the value of Az changes significantly according to the brush angle. Because it does. Since the acceleration component Ax in the x direction also changes according to the brush angle, the brush angle is estimated from Ax instead of Az, or the brush angle is calculated from both Ax and Az (the direction of the combined vector of Ax and Az). It is also preferable to estimate.
  • the brush angle may be calculated as a continuous amount, or may be calculated as a discrete value such as 0 degrees to 10 degrees, 10 degrees to 20 degrees, and so on.
  • the upper part of FIG. 14 shows a state where the brush angle is 0 degrees
  • the middle part shows a state where the brush angle is 45 degrees
  • the lower part shows a state where the brush angle is 90 degrees.
  • the brush angle is preferably about 0 degrees.
  • the brush angle is 90 degrees, the highest plaque removal force can be exerted on the tooth surface.
  • the optimal brush angle can be determined depending on the brushing part or the desired brushing effect.
  • the optimal brush angle values for the “maxillary meshing surface” and “mandibular meshing surface” are 0 degrees, “maxillary right cheek side”, “maxillary left tongue side”, “maxillary left cheek side”, “maxillary right side”
  • the optimum brush angle values for the front tongue side, the lower jaw front cheek side, and the lower jaw front tongue side were set to 90 degrees. These set values are stored in the memory 121.
  • the optimum value of the brush angle shown here is only an example, and the optimum value may be set in any way, and it is also preferable that the user can change the optimum value to a desired value.
  • a plurality of setting values are prepared in advance such as “plaque removal mode” and “periodontal pocket mode”, and when the user selects the plaque removal mode, “45”
  • the optimum value of “degree” may be automatically set, and when the periodontal pocket mode is selected, the optimum value of “90 degrees” may be automatically set at the brushing portion other than the meshing surface.
  • the CPU 120 compares the current brush angle value obtained in S40 with the optimum brush angle value in the brushing part obtained in S30, and determines whether or not the brush angle is appropriate. If the optimum value is defined as one value such as “45 degrees”, the difference between the current value and the optimum value may be evaluated. If the optimum value is defined in the range such as “40 degrees to 50 degrees”, it may be evaluated whether or not the current value is within the range.
  • the CPU 120 adjusts the brush angle (S60). Specifically, the CPU 120 obtains a difference between the optimum value and the current value, sends a control signal corresponding to the difference (angle) to the actuator 40, and rotates the brush member 2. Thereby, the direction of the brush 20 is controlled so that the brush angle becomes an optimum value.
  • the brush member 2 is automatically rotated according to the posture of the electric toothbrush and the brush angle is controlled to the optimum value, so that an appropriate brush angle can be easily set during brushing. Therefore, a good cleaning effect can be obtained.
  • FIG. 15 shows the configuration of the electric toothbrush of the second embodiment of the present invention.
  • the difference from the first embodiment is that a bearing 44 is provided between the outer casing 1a and the inner casing 1b.
  • the positional stability of the inner casing 1b is improved.
  • the axial length of the actuator 40 can be shortened, which contributes to the miniaturization of the electric toothbrush body 1.
  • FIG. 16 shows the configuration of the electric toothbrush of the third embodiment of the present invention.
  • power is supplied to the motor 10 via the lead wire
  • the drive circuit 12 is connected to the motor 10 via the electrical connection portion 45. The difference is that the power supply is performed.
  • the electrical connection portion 45 of the present embodiment has a circuit configuration for ensuring electrical connection between the power supply line on the drive circuit side and the electrode of the motor 10 regardless of the rotation angle of the actuator 40.
  • this configuration can be suitably used when the actuator 40 needs to be rotated 360 degrees or more.
  • FIG. 17 schematically shows a circuit configuration using a rectifying brush as an example of the electrical connection portion 45.
  • the drive circuit 12 side so that the current I in a fixed direction flows to the motor 10 regardless of the contact position of the rectifying brush (regardless of the positional relationship between the inner casing 1b and the outer casing 1a). Power can be supplied to the motor 10.
  • FIG. 18 schematically shows a circuit configuration using coils as an example of the electrical connection portion 45. With such a circuit configuration, it is possible to supply electrodes from the drive circuit 12 side to the motor 10 by electromagnetic induction.
  • reports that a brush angle is an optimal value is provided. Specifically, when it is determined in S50 of FIG. 6 that the brush angle is appropriate, the CPU 120 causes a light emitting unit (such as an LED) provided in the outer casing 1a to emit light. The user can easily grasp that the brush angle is the optimum value by looking at the lighting state of the light emitting unit.
  • a light emitting unit such as an LED
  • the brush angle adjustment by the actuator 40 is not necessary (the posture of the main body 1 is correct) and the brush angle is adjusted by the actuator 40 (the posture of the main body 1 is incorrect). Therefore, the user can learn the correct posture.
  • the notification method can use sound, vibration, voice, etc. in addition to light.
  • sound the volume and pattern of the sound can be changed according to the difference.
  • vibration the strength and length of vibration can be changed according to the difference.
  • voice for example, it is possible to notify contents such as “tilt about 30 degrees more”, “tilt a little more”, “optimum brush angle”.
  • the brush portion has at least two resonance points (resonance frequencies).
  • the direction of resonance at each resonance point is different. Specifically, as shown in FIG. 19, the amplitude in the x-axis direction parallel to the brush surface increases at the resonance point on the low frequency side (first resonance: about 12,500 spm). At the resonance point on the low frequency side (second resonance: about 38000 spm), the amplitude in the z-axis direction perpendicular to the brush surface increases. Outside of resonance (eg, about 26500 spm), the brush follows a trajectory that is oblique (about 45 degrees) with respect to the x-axis (z-axis). Note that “spm” is a unit representing the number of swings per minute.
  • the reason why a plurality of resonances with different directions appear is largely due to the structure of the electric toothbrush and its driving principle.
  • the inventors of the present invention repeat the experiment while changing the configuration of the eccentric shaft and the brush, whereby the first resonance point mainly depends on the motion transmission mechanism, and the second resonance point mainly depends on the brush.
  • the knowledge that it is a characteristic has been acquired.
  • the frequency and amplitude of the first resonance point can be adjusted by changing the structure and shape of the motion transmission mechanism (simply the position, size, weight, etc. of the weight of the eccentric shaft), and the structure of the brush It was found that the frequency and amplitude of the second resonance point can be adjusted by changing the shape.
  • FIG. 20 shows a state where the brush angle is 45 degrees
  • the lower part of FIG. 20 shows a state where the brush angle is 90 degrees
  • the left side of FIG. 20 shows the motor in the normal rotation state
  • the right side shows the motor in the reverse state.
  • Each arrow represents the movement of the brush (the direction with the largest amplitude).
  • the brush moves sideways (x-axis direction) in the first resonance
  • the brush moves vertically (z-axis direction) in the second resonance
  • the brush moves diagonally outside the resonance.
  • the moving direction of the brush is oblique (for example, 45 degrees) with respect to the tooth axis. Therefore, in the example of FIG. 20, it can be seen that when the brush angle is 45 degrees, the movement of the second resonance is optimal. On the other hand, when the brush angle is 90 degrees, it is understood that the movement outside the resonance of the motor normal rotation is optimal on the right tongue side of the lower jaw, and the movement outside the resonance of the motor reverse rotation is optimal on the right jaw side of the lower jaw. In addition, according to the same way of thinking, it is possible to determine the optimum operation mode (motor rotation direction and brush frequency) for each combination of the brushing part and the brush angle.
  • the optimum operation mode motor rotation direction and brush frequency
  • FIG. 21 is a flowchart of the operation mode switching process of the present embodiment. This process is executed, for example, after S60 in FIG.
  • the CPU 120 compares the brushing part obtained in S30 and the brush angle (or the optimum value of the brush angle) obtained in S40 with the brushing part and the brush angle at the time of the previous process, so that the brushing part or the brush angle is obtained. It is checked whether or not has changed (S1800).
  • the brushing part and the brush angle at the time of the previous processing are stored in the memory.
  • the CPU 120 determines that the current brushing part is “the lower jaw left cheek side, the lower jaw right tongue side, the upper jaw left tongue side, the upper jaw right cheek side” and the first group; It is determined which one of the second groups “the lower jaw right cheek side, the lower jaw left tongue side, the upper jaw right tongue side, the upper jaw left cheek side” corresponds (S1801). In the case of the first group, the CPU 120 sets the rotation direction of the motor to normal rotation (S1802). In the case of the second group, the CPU 120 reverses the rotation direction of the motor (S1803).
  • the CPU 12 controls the vibration frequency of the brush to the second resonance (high speed) when the brush angle is 45 degrees (S1804, S1805), and sets the vibration frequency of the brush outside the resonance (medium speed) when the brush angle is 90 degrees. (S1806).
  • both the movement direction and the movement frequency of the brush are controlled.
  • a configuration in which only one of them is controlled is also preferable.
  • the brushing strength can be reduced by lowering the motion frequency, and conversely, for regions where a high brushing effect is desired, the brushing strength can be increased by increasing the motion frequency. .
  • the vibration mechanism of the toothbrush is symmetric with respect to the yz plane, when the rotation direction of the motor is reversed, the brush draws a symmetrical trajectory with respect to the yz plane. Therefore, the rotation direction of the motor may be switched according to the brushing site so that the brush tip moves in a direction to scrape plaque from the periodontal pocket.
  • the sixth embodiment employs a configuration in which a brushing part and a brush angle are estimated by a uniaxial acceleration sensor.
  • the upper part of FIG. 22 shows a state where the tooth surface on the cheek side or the lingual side is brushed.
  • the brush angle (yaw angle ⁇ ) is about 90 degrees
  • the x-axis direction component of gravity acceleration is about 1 g or ⁇ 1 g (positive or negative corresponds to the left and right of the dentition)
  • the lower part of FIG. 22 shows a state where the meshing surface is brushed.
  • the brush angle (yaw angle ⁇ ) is approximately 0 degrees
  • the x-axis direction component of gravitational acceleration is approximately 0
  • the z-axis direction component of gravitational acceleration is approximately 1 g or ⁇ 1 g (positive or negative is the dentition) Corresponding to the top and bottom).
  • the x-axis acceleration sensor or the z-axis acceleration sensor can be used to determine whether the tooth surface is a cheek or lingual side or a meshing surface. Is also possible.
  • the brush angle can be calculated from the x-axis or z-axis acceleration sensor output. The processing after the brushing part and the brush angle are estimated is the same as in the above-described embodiment.
  • the electric toothbrush of 7th Embodiment has an automatic return function which returns a brush member to an initial position after use of an electric toothbrush.
  • Other configurations are the same as those of the above-described embodiment.
  • Such an automatic return function automatically returns the brush orientation to the initial position by the start of the next tooth brushing even when brushing is finished with the brush orientation deviating from the initial position. Therefore, it is possible to reach the optimum brush angle more quickly at the start of next brushing.
  • the brush member is initialized after a predetermined time (for example, 1 minute) has elapsed since the power was turned off. It is also preferable to return to the position.
  • the automatic restoration process is executed after the use of the electric toothbrush.
  • the electric toothbrush for example, when the power is turned on or the electric toothbrush is removed from the charger 100. Even if the automatic return process is executed, the same effect can be obtained.
  • the amount of movement of the brush and the relative posture from the output of the acceleration sensor and the gyroscope.
  • the posture at the time of turning on the power may be set to the reference position, or a mechanism for allowing the user to input the reference position (the position to start polishing) (for example, holding the toothbrush body horizontally)
  • a switch may be provided in a state where the brush is applied to the front cheek side of the upper jaw).
  • the movement amount (movement distance) can be calculated by second-order integration of dynamic acceleration components in the x-axis direction, y-axis direction, and z-axis direction obtained from the acceleration sensor output.
  • the coordinate system xyz of the toothbrush is converted into a coordinate system XYZ (the reference position may be the origin) with the gravitational acceleration direction as the Z axis.
  • the relative position with respect to the reference position can be determined by calculating and accumulating the movement distances of X, Y, and Z for each clock. If the relative position with respect to the reference position is known, the brushing site can be identified more accurately and in detail than in the above-described embodiment.
  • the posture of the brush changes by 180 degrees depending on whether the left or right hand holds the toothbrush body, so the user can register the dominant hand (the hand holding the toothbrush) and brushing according to the registered dominant hand
  • the part determination algorithm may be changed, or the operation mode (motor rotation direction, brush movement) may be changed.
  • the inside of the oral cavity may be photographed with a small camera provided at the tip of the brush member 2, and the image information may be used for detecting the posture of the brush.
  • a temperature sensor or an optical sensor can be provided at the tip of the brush member 2, and the detection results can be used for brush posture detection.

Abstract

 電動歯ブラシは、把持部14を有する電動歯ブラシ本体1と、ブラシ20を有するブラシ部材2と、ブラシ20を運動させるモータ10と、ブラシ20の向きを変更するためにブラシ部材2を本体1に対して相対的に回転させるアクチュエータ40と、本体1の姿勢を検出するための加速度センサ15と、検出された姿勢に基づいて、ブラシ角が予め定められた最適値になるようにアクチュエータ40を制御するCPU120と、を備える。

Description

電動歯ブラシ
 本発明は、電動歯ブラシに関する。
 高速に運動するブラシを歯に当てることによって歯磨き(食物残渣や歯垢の除去)を行うタイプの電動歯ブラシが知られている。このような電動歯ブラシにおいては、ブラシをどのような角度で歯に当てるかにより、得られる刷掃効果に違いがでる。たとえばブラシを歯軸に対して90度に当てれば、歯面に対して最も高い歯垢除去力を発揮できる。またブラシを歯軸に対して45度に当てると、ブラシの毛先が歯間や歯周ポケット(歯と歯茎の間)に入り込みやすくなり、歯間や歯周ポケットから効果的に食物残渣や歯垢を掻き出すことができるようになる。
 このように、ブラッシング部位あるいは所望する刷掃効果などに応じて、最適なブラシ角(歯軸に対するブラシの角度)が存在する。しかしながら、ほとんどのユーザは望ましいブラシ角があることすら意識していない。たとえブラシ角を意識したとしても、歯磨き中はブラシが実際に歯に当たっている様子を確認できないために、ブラシ角を最適値に合わせることは困難であった。
 なお、特許文献1には、歯ブラシ本体の軸周りの向きを4段階または8段階に検出し、その検出結果からブラッシング部位を推定するというアイデアが開示されている。具体的には、本体内部に複数の扇状の区画が周方向に設けられており、導電性の球がどの区画に入っているかを電気抵抗の変化から検知することで、歯ブラシ本体の向きを推定している。ただしこのような機構は小型化が難しく、実施可能性に乏しい。
特開2005-152217号公報
 本発明の目的は、電動歯ブラシにおいて適切なブラシ角を容易に実現するための技術を提供することにある。
 上記目的を達成するために本発明は、以下の構成を採用する。
 本発明の電動歯ブラシは、把持部を有する電動歯ブラシ本体と、ブラシを有するブラシ部材と、前記ブラシを運動させる駆動手段と、前記ブラシの向きを変更するために前記ブラシ部材を前記電動歯ブラシ本体に対して相対的に回転させる回転手段と、前記電動歯ブラシ本体の姿勢を検出する姿勢検出手段と、検出された姿勢に基づいて、歯軸に対する前記ブラシの角度であるブラシ角が予め定められた最適値になるように前記回転手段を制御する制御手段と、を備える。
 この構成によれば、電動歯ブラシの姿勢に応じて自動的にブラシ部材が回転しブラシ角が最適値になるよう制御されるため、ブラッシング中に適切なブラシ角を容易に実現することができ、良好な刷掃効果を得ることができる。
 ここで、前記制御手段は、検出された姿勢に基づいて、歯列表面を区分することで定義される複数の部位の中からブラッシングされているブラッシング部位を推定する部位推定手段と、検出された姿勢に基づいて、歯軸に対する前記ブラシの角度であるブラシ角を推定するブラシ角推定手段と、を備え、前記ブラッシング部位ごとに予め設定されているブラシ角の最適値と前記推定されたブラシ角とを比較して、ブラシ角が前記最適値になるように前記回転手段を制御することが好ましい。
 歯の種類(上顎/下顎、臼歯/切歯など)や部分(舌側/頬側、歯面/噛み合わせ面、歯周ポケットなど)によって、食物残渣や歯垢の付き方が異なり、部位ごとに効果的なブラシ角に違いがある。また、同じ種類の歯であっても歯列の右と左ではブラシの当て方が反対になる。そこで、本発明のようにブラッシング部位を推定し、その推定結果に応じてブラシ角を適宜制御することで、より良好な刷掃効果を実現できるようになる。
 前記制御手段は、検出された姿勢に応じて、前記ブラシの運動方向又は運動周波数を変更するように前記駆動手段を制御することが好ましい。たとえば駆動手段が回転モータの場合には、回転モータの回転方向を切り替えたり、回転数を変更したりすることで、ブラシの運動方向や運動周波数を変更可能である。
 このようにブラシ角だけでなく、ブラシ自体の運動も制御することで、より良好な刷掃効果を実現することができる。
 前記姿勢検出手段は、加速度センサの出力に基づいて姿勢を検出するものであることが好ましい。
 これにより、高精度に姿勢を判定でき、従来よりも高精度かつ高分解能なブラッシング部位及びブラシ角の推定が可能となる。また加速度センサは小型ゆえ、電動歯ブラシ本体への組み込みも容易である。1軸の加速度センサを用いることもできるし、好ましくは、多軸(2軸、3軸、それ以上)の加速度センサを用いることもできる。
 前記ブラシ角が前記最適値であることを報知する報知手段をさらに備えることが好ましい。これによりユーザビリティを向上することができる。なお、報知の方法としては、光、音、音声、振動などを利用できる。
 前記最適値が変更可能であることが好ましい。これにより、たとえば高い歯垢除去力を得たい場合にブラシ角を90度に設定し、歯周ポケットなど歯と歯茎の間を効果的に磨きたい場合にはブラシ角を45度に設定する、というように柔軟な使い方ができる。
 前記制御手段は、電動歯ブラシの使用後または使用開始時に、前記ブラシ部材が予め設定された初期位置になるように前記回転手段を制御することが好ましい。これにより、ブラシの向きが初期位置からずれた状態で歯磨きを終えた場合でも、次回の歯磨き開始までにブラシの向きが自動的に初期位置に復帰する。よって、歯磨きの開始時に、より素早く最適なブラシ角に至らしめることが可能となる。
 なお、上記手段および処理の各々は可能な限り互いに組み合わせて本発明を構成することができる。
 本発明によれば、電動歯ブラシにおいて適切なブラシ角を容易に実現することが可能となる。
図1は第1実施形態の電動歯ブラシのブロック図である。 図2は第1実施形態の電動歯ブラシの内部構成を示す断面図である。 図3は電動歯ブラシの外観を示す斜視図である。 図4A及び図4Bはブラシ角制御用アクチュエータの構成を示す図である。 図5はブラッシング部位の区分を示す図である。 図6は電動歯ブラシの動作のメインルーチンを示すフローチャートである。 図7は姿勢検出処理のフローチャートである。 図8はブラッシング部位推定処理(上顎)のフローチャートである。 図9はブラッシング部位推定処理(下顎)のフローチャートである。 図10は上顎のブラッシング部位ごとの加速度センサ出力Ax、Ay、Azの一例を示す図である。 図11は下顎のブラッシング部位ごとの加速度センサ出力Ax、Ay、Azの一例を示す図である。 図12は電動歯ブラシの姿勢角の定義を示す図である。 図13はブラシ角の変化にともなうセンサ出力の波形変化を示す図である。 図14はブラシ角を説明する図である。 図15は第2実施形態の電動歯ブラシの内部構成を示す断面図である。 図16は第3実施形態の電動歯ブラシの内部構成を示す断面図である。 図17は整流ブラシによる電気的接続部の構成を示す図である。 図18はコイルによる電気的接続部の構成を示す図である。 図19はブラシの軌道を説明する図である。 図20はブラシ角とブラシの動きの関係を示す図である。 図21は第5実施形態の動作モード切替処理のフローチャートである。 図22は第6実施形態の姿勢検出を説明する図である。 図23は第7実施形態の自動復帰処理を説明する図である。
 以下に図面を参照して、この発明の好適な実施の形態を例示的に詳しく説明する。
 <第1実施形態>
 (電動歯ブラシの構成)
 図1、図2、図3を参照して、電動歯ブラシの構成を説明する。図1は第1実施形態の電動歯ブラシのブロック図であり、図2は第1実施形態の電動歯ブラシの内部構成を示す断面図であり、図3は電動歯ブラシの外観を示す斜視図である。
 電動歯ブラシは、外筐体1aと内筐体1bとから構成される電動歯ブラシ本体1(以下、単に「本体1」ともいう。)と、本体1の内筐体1bに取り付けられるブラシ部材2と、を備えている。
 本体1の外筐体1aは、概ね円筒形状を呈する樹脂ケースからなる。外筐体1aには、歯を磨く際に使用者が手で握るためのエラストマ製の把持部14や、電源のオン/オフやモード切替などを行うためのスイッチSなどが設けられている。
 また本体1の外筐体1aの内部には、駆動源であるモータ10、駆動回路12、2.4V電源である充電池13、充電用のコイル(不図示)などが設けられている。充電池13を充電する際には、充電器100に本体1を載置するだけで、電磁誘導により非接触で充電可能である。駆動回路12は、各種演算・制御を実行するCPU(入出力処理部)120、プログラムや各種設定値を記憶するメモリ121、タイマ122などを有している。
 (加速度センサ)
 本体1の内部には、加速度センサ15が設けられている。加速度センサ15としては多軸の加速度センサを用いてもよいし、1軸の加速度センサを用いてもよい。3軸加速度センサの場合は、図3に示すように、x軸がブラシ面に対して平行になり、y軸が本体1の長手方向に一致し、z軸がブラシ面に対して垂直になるように設置するとよい。「ブラシ面」とは、ブラシの毛(繊維)と略直交し、かつ、毛の先端部分に位置する仮想的な平面をいう。1軸加速度センサの場合は、図3のz軸方向もしくはx軸方向の加速度を検出するように設置するとよい。なお本実施形態では、x,y,zの3軸加速度センサを用いる。加速度センサ15の出力はCPU120に入力され、ブラシの三次元姿勢を検出するために利用される。
 加速度センサ15としては、ピエゾ抵抗タイプ、静電容量タイプ、もしくは熱検知タイプのMEMSセンサを好ましく利用できる。MEMSセンサは非常に小型であるため、本体1の内部への組み込みが容易だからである。ただし、加速度センサ15の形式はこれに限らず、動電式、歪みゲージ式、圧電式などのセンサを利用しても構わない。また特に図示しないが、各軸のセンサの感度のバランス、感度の温度特性、温度ドリフトなどを補正するための補正回路を設けるとよい。また、動加速度成分やノイズを除去するためのバンドパスフィルタ(ローパスフィルタ)を設けてもよい。また、加速度センサの出力波形を平滑化することによりノイズを低減してもよい。
 (ブラシの駆動機構)
 本体1の内筐体1bは、外筐体1aに対して相対動自在に取り付けられた部品であり、外筐体1aの先端側(ブラシ側)の開口部から突き出るように設けられたステム3を備えている。上記のブラシ部材2は、このステム3を覆うように装着される。ブラシ部材2の先端には、ブラシ20が植毛されている。ブラシ部材2は消耗部品ゆえ、新品に交換できるよう、ステム3(内筐体1b)に対して着脱自在な構成となっている。
 ステム3は、樹脂材からなる、先端(ブラシ側の端部)が閉じた筒状の部材であり、筒の内部の先端に軸受32を有している。モータ10の回転軸11に連結された偏心軸30の先端が、ステム3の軸受32に挿入される。この偏心軸30は、軸受32の近傍に重り31を有しており、偏心軸30の重心はその回転中心からずれている。CPU120が動作モードに応じた駆動信号(たとえばパルス幅変調信号)をモータ10に供給し、モータ10の回転軸11を回転させると、回転軸11の回転に伴って偏心軸30も回転するが、偏心軸30は重心がずれているために回転中心の回りに旋回するような運動を行う。よって、偏心軸30の先端が軸受32の内壁に対して微小な衝突を繰り返し、ブラシ20を高速に振動(運動)させることとなる。つまり、モータ10が、ブラシを振動(運動)させる駆動手段の役割を担い、偏心軸30が、モータ10の出力(回転)をブラシ20の振動に変換する運動伝達機構(運動変換機構)の役割を担う。
 (ブラシ部材の回転機構)
 本実施形態の電動歯ブラシは、ブラシ20のy軸周りの向きを変更するために、ブラシ部材2を本体1の外筐体1aに対して相対的に回転移動させるアクチュエータ(回転手段)40を備えている。図4A及び図4Bにアクチュエータ40の構成を示す。図4Aは図4BのX-X断面図である。
 アクチュエータ40は、固定子41と回転子42を有する回転型のモータにより構成される。固定子41は本体1の外筐体1aに固定されており、回転子42はモータ10のモータハウジング43に固定されている。CPU120からアクチュエータ40に制御信号が供給されると、その制御信号に応じた角度だけ回転子42が回転する。なお、この実施形態では、回転子42の回転角は-180度~+180度の範囲内を想定している。回転子42の回転に伴って、モータハウジング43及びモータ10が回転し、さらに、モータ10の回転軸11に固定されている内筐体1bも回転する。その結果、ブラシ部材2が本体1に対して所望の角度だけ回転し、ブラシ20の向きを変更することができる。ここで、「ブラシの向き」とは、ブラシ面の法線方向、つまり、ブラシの毛先の方向をいい、「ブラシの向きを変更する」とは、ブラシの向きのy軸周りの回転角を変更することをいう。
 このアクチュエータ40としては、ステッピングモータなど公知の回転型モータを好ましく利用できる。なお、回転出力を得ることができればよいので、弧状の固定子を有する円筒型リニアモータなども利用可能である。
 以上述べたように、本実施形態の電動歯ブラシは、ブラシ20を運動(振動)させるためのモータ10と、ブラシ20の向き(ブラシ角)を制御するためのアクチュエータ40の、2種類のアクチュエータを備えている。互いを区別するために、モータ10をブラシ駆動用アクチュエータ、アクチュエータ40をブラシ角制御用アクチュエータと称することもできる。
 (電動歯ブラシの動作)
 歯の種類(上顎/下顎、臼歯/切歯など)や部分(舌側/頬側、歯面/噛み合わせ面、歯周ポケットなど)によって、食物残渣や歯垢の付き方が異なり、部位ごとに効果的なブラシ角に違いがある。また、同じ種類の歯であっても歯列の右と左ではブラシの当て方が反対になる。
 そこで、本実施形態の電動歯ブラシは、加速度センサ15で検出されたブラシの姿勢に基づいてブラッシング部位を推定し、ブラッシング部位に応じてブラシ角が最適値になるようアクチュエータ40を制御する。
 本実施形態では、図5に示すように、上下の歯列を、「上顎前頬側」、「上顎前舌側」、「上顎左頬側」、「上顎左舌側」、「上顎左噛み合わせ面」、「上顎右頬側」、「上顎右舌側」、「上顎右噛み合わせ面」、「下顎前頬側」、「下顎前舌側」、「下顎左頬側」、「下顎左舌側」、「下顎左噛み合わせ面」、「下顎右頬側」、「下顎右舌側」、「下顎右噛み合わせ面」、の16箇所の部位に区分する。ただし、歯列の区分はこれに限らず、もっと大まかな区分でもよいし、より細かい区分でもよい。
 図6~図9のフローチャートを参照して、ブラシ角の自動制御のフローを具体的に説明する。図6はメインルーチンのフローチャートであり、図7~図9はメインルーチンの各処理の詳細を示すフローチャートである。なお、以下に説明する処理は、特にことわりのない限り、制御手段であるCPU120がプログラムに従って実行する処理である。
 電動歯ブラシの電源がONになると、CPU120は、モータ10を制御してブラシ20の駆動を開始する(S10)。以下に述べるS20~S60の処理は一定時間ごとに繰り返し実行される。電動歯ブラシの電源がOFFになるか、タイマによって計時されていた継続動作時間が所定時間(たとえば2分間)に達すると、S20~S60のループが終了し(継続?;NO)、CPU120はブラシ20の駆動を停止する(S70)。
 (S20:姿勢の検出)
 S20において、CPU120は、加速度センサ15の出力に基づき電動歯ブラシ本体の姿勢を検出する。図7は姿勢検出処理(S20)のフローチャートである。
 CPU120は、加速度センサ15からx、y、zそれぞれの出力Ax、Ay、Azを取得する(S100)。Axはx方向の加速度成分、Ayはy方向の加速度成分、Azはz方向の加速度成分を表す。歯ブラシが静止状態にあるとき(加速度センサ15に動加速度が作用していないとき)は、Ax、Ay、Azの合成ベクトルAが重力加速度に相当する。ここでは、A=(Ax、Ay、Az)を姿勢ベクトルとよぶ。
 ここで、姿勢ベクトルA=(Ax、Ay、Az)の大きさが1.2g(gは重力加速度)より大きい場合は(S101;YES)、エラーを返す(S102)。加速度センサ出力に動加速度成分が多く含まれていると、重力加速度の方向(つまりブラシの三次元姿勢)を正確に特定するのが難しくなるからである。なお、S102のようにエラーを返すのではなく、合成ベクトルの大きさが1.2g以下となる加速度センサ出力Ax、Ay、Azが得られるまでS100とS101の処理を繰り返すようにしてもよい。なお、エラー判定の閾値は1.2gに限らず、他の値でもよい。
 (S30:ブラッシング部位の推定)
 図8、図9はブラッシング部位推定処理(S30)のフローチャートである。また図10、図11は、ブラッシング部位ごとの加速度センサ出力Ax、Ay、Azの一例を示す図である。
 まずCPU120は、z方向の加速度センサの出力Azに基づき、上顎か下顎かを判定する(S700)。上顎の歯列をブラッシングするときはブラシ面が少なからず上向きになり、下顎の歯列をブラッシングするときはブラシ面が少なからず下向きになることに着目した判定である。Az>0の場合は下顎(S801)、Az≦0の場合は上顎(S701)と判定される。
 (1)上顎の場合
 CPU120は、y方向の加速度センサの出力Ayに基づいて前歯か否かを判定する(S702)。前歯をブラッシングするときは歯ブラシ本体1が比較的水平になるが、臼歯をブラッシングするときは唇との干渉があるため歯ブラシ本体1が斜めにならざるをえないことに着目した判定である。Ay≦閾値aの場合は上顎前歯と判定される(S703)。
 上顎前歯と判定した場合、CPU120は、x方向の加速度センサの出力Axに基づいて頬側か舌側かを判定する(S704)。頬側と舌側とではブラシの向きが反転することに着目した判定である。Ax>0の場合は「上顎前頬側」と判定され(S705)、Ax≦0の場合は「上顎前舌側」と判定される(S706)。
 一方、S702で上顎前歯でないと判定した場合、CPU120は、x方向の加速度センサの出力Axに基づいて噛み合わせ面か否かを判定する(S707)。噛み合わせ面をブラッシングするときはブラシ面がほぼ水平になり、Axの出力が非常に小さくなることに着目した判定である。閾値b>Ax>閾値cの場合は「上顎左噛み合わせ面または上顎右噛み合わせ面」と判定される(S708)。なお、第1実施形態では、上顎左噛み合わせ面と上顎右噛み合わせ面とをとくに区別していない。噛み合わせ面の場合、左右でブラッシング動作を変える必要性が小さいからである。
 Ax≧閾値bまたはAx≦閾値cの場合、CPU120は、Axが0より大きいか否かで、頬側か舌側かを判定する(S709)。頬側と舌側とではブラシの向きが反転することに着目した判定である。Ax>0の場合は「上顎右頬側または上顎左舌側」と判定され(S710)、Ax≦0の場合は「上顎左頬側または上顎右舌側」と判定される(S711)。なお、第1実施形態では、上顎右頬側と上顎左舌側とをとくに区別していない。両部位のあいだでブラシ角等を変える必要性が小さいからである。上顎左頬側と上顎右舌側についても同様である。
 (2)下顎の場合
 CPU120は、y方向の加速度センサの出力Ayに基づいて前歯か否かを判定する(S802)。前歯をブラッシングするときは歯ブラシ本体1が比較的水平になるが、臼歯をブラッシングするときは唇との干渉があるため歯ブラシ本体1が斜めにならざるをえないことに着目した判定である。Ay≦閾値dの場合は下顎前歯と判定される(S803)。
 下顎前歯と判定した場合、CPU120は、x方向の加速度センサの出力Axに基づいて頬側か舌側かを判定する(S804)。頬側と舌側とではブラシの向きが反転することに着目した判定である。Ax<0の場合は「下顎前頬側」と判定され(S805)、Ax≧0の場合は「下顎前舌側」と判定される(S806)。
 一方、S802で下顎前歯でないと判定した場合、CPU120は、x方向の加速度センサの出力Axに基づいて噛み合わせ面か否かを判定する(S807)。噛み合わせ面をブラッシングするときはブラシ面がほぼ水平になり、Axの出力が非常に小さくなることに着目した判定である。閾値e>Ax>閾値fの場合は「下顎左噛み合わせ面または下顎右噛み合わせ面」と判定される(S808)。なお、第1実施形態では、下顎左噛み合わせ面と下顎右噛み合わせ面とをとくに区別していない。噛み合わせ面の場合、左右でブラッシング動作を変える必要性が小さいからである。
 Ax≧閾値eまたはAx≦閾値fの場合、CPU120は、Axが0より大きいか否かで、頬側か舌側かを判定する(S809)。頬側と舌側とではブラシの向きが反転することに着目した判定である。Ax>0の場合は「下顎右頬側または下顎左舌側」と判定され(S810)、Ax≦0の場合は「下顎左頬側または下顎右舌側」と判定される(S811)。なお、第1実施形態では、下顎右頬側と下顎左舌側とをとくに区別していない。両部位のあいだでブラシ角等を変える必要性が小さいからである。下顎左頬側または下顎右舌側についても同様である。
 以上の処理によって、現在のブラッシング部位が、「上顎前頬側」(S705)、「上顎前舌側」(S706)、「上顎噛み合わせ面」(S708)、「上顎右頬側または上顎左舌側」(S710)、「上顎左頬側または上顎右舌側」(S711)、「下顎前頬側」(S805)、「下顎前舌側」(S806)、「下顎噛み合わせ面」(S808)、「下顎右頬側または下顎左舌側」(S810)、「下顎左頬側または下顎右舌側」(S811)のいずれかに特定される。
 なお、上記判定アルゴリズムはあくまでも一例を示したものにすぎず、加速度センサの出力Ax、Ay、Azからブラッシング部位を特定できるのであればどのような判定アルゴリズムでも構わない。たとえばAx、Ay、Azの値をそのまま判定の変数として用いるのでなく、Ax、Ay、Azを適宜組み合わせることで得られる2次変数を判定に用いてもよい。2次変数は、たとえば、Ay/Az、Ax・Ax+Ay・Ay、Az-Axなど、任意に設定できる。あるいは、各軸の加速度情報Ax、Ay、Azを、図12に示すように角度情報(姿勢角)α、β、γに変換した後で、ブラッシング部位を判定してもよい。図12の例では、重力加速度方向に対するx軸の角度をロール角α、重力加速度方向に対するy軸の角度をピッチ角β、重力加速度方向に対するz軸の角度をヨー角γのように定義している。判定に用いる閾値は臨床実験等の結果から決定することができる。
 (S40~S60:ブラシ角の制御)
 S40において、CPU120は、S200で検出された姿勢(加速度センサの出力)に基づいて現在のブラシ角の値を推定する。ブラシ角とは、歯軸(歯の頭と根に沿った軸)に対するブラシの当たり角のことである。ただし、S40の推定処理では、アクチュエータ40による内筐体1bの回転角が0度であり且つ歯軸が重力方向に一致すると仮定した場合のブラシ角を算出する。なお、ここでは0度から90度の範囲でブラシ角を表すものとする。
 ブラシ角は、たとえば、z方向の加速度成分Azから推定可能である。図13に示すように、ブラシ角が約90度の場合はAzはほとんど0を示し、ブラシ角が小さくなるほどAzの値が大きくなる、というようにブラシ角に応じてAzの値が有意に変化するからである。なお、ブラシ角に応じてx方向の加速度成分Axも変化するため、Azの代わりにAxからブラシ角を推定したり、AxとAzの両方(AxとAzの合成ベクトルの方向)からブラシ角を推定することも好ましい。ブラシ角は連続量で算出してもよいし、0度~10度、10度~20度、・・・のように離散値で算出してもよい。
 図14の上段はブラシ角=0度の状態、中段がブラシ角=45度の状態、下段がブラシ角=90度の状態を示している。噛み合わせ面を磨く場合には、ブラシ角は約0度であることが好ましい。また歯周ポケットや歯間から食物残渣や歯垢を効果的に掻き出すには、ブラシの毛先が歯周ポケットや歯間に入り込むようにブラシを動かすとよく、ブラシ角は約45度であることが好ましい。一方、ブラシ角を90度にすると、歯面に対して最も高い歯垢除去力を発揮できる。
 このように、ブラッシング部位あるいは所望する刷掃効果などに依存して、最適なブラシ角を定めることができる。ここでは、「上顎噛み合わせ面」と「下顎噛み合わせ面」のブラシ角の最適値を0度、「上顎右頬側」、「上顎左舌側」、「上顎左頬側」、「上顎右舌側」、「下顎右頬側」、「下顎左舌側」、「下顎左頬側」、「下顎右舌側」におけるブラシ角の最適値を45度、「上顎前頬側」、「上顎前舌側」、「下顎前頬側」、「下顎前舌側」におけるブラシ角の最適値を90度、のように設定した。これらの設定値は、メモリ121に記憶されている。なお、ここで示したブラシ角の最適値は一例にすぎず、どのように最適値を設定してもよいし、また使用者が所望の値に最適値を変更できることも好ましい。さらには、「歯垢除去モード」と「歯周ポケットモード」のように予め複数の設定値が用意されており、使用者が歯垢除去モードを選択すると噛み合わせ面以外のブラッシング部位では「45度」の最適値が自動的に設定され、歯周ポケットモードを選択すると噛み合わせ面以外のブラッシング部位で「90度」の最適値が自動的に設定されるようにしてもよい。
 S50では、CPU120は、S40で得られた現在のブラシ角の値と、S30で得られたブラッシング部位におけるブラシ角の最適値とを比較し、ブラシ角が適切か否かを判定する。「45度」のように最適値がある1つの値で定義されている場合は、現在値と最適値との差を評価すればよい。もし「40度~50度」のように最適値が値域で定義されている場合は、現在値がその値域内にあるか否かを評価すればよい。
 ここで、ブラシ角が適切でないと判定された場合(S50;NO)、CPU120は、ブラシ角の調整を行う(S60)。具体的には、CPU120は、最適値と現在値の差分を求め、その差分(角度)に相当する制御信号をアクチュエータ40に送出し、ブラシ部材2を回転させる。これにより、ブラシ角が最適値になるようにブラシ20の向きが制御される。
 以上述べた本実施形態の構成によれば、電動歯ブラシの姿勢に応じて自動的にブラシ部材2が回転しブラシ角が最適値になるよう制御されるため、ブラッシング中に適切なブラシ角を容易に実現することができ、良好な刷掃効果を得ることができる。
 <第2実施形態>
 図15は、本発明の第2実施形態の電動歯ブラシの構成を示している。第1実施形態と異なる点は、外筐体1aと内筐体1bの間に、軸受44が設けられている点である。この構成によれば、内筐体1bの位置安定性が向上する。また内筐体1bの位置が安定することから、アクチュエータ40の軸方向の長さを短くすることができ、電動歯ブラシ本体1の小型化にも寄与する。
 <第3実施形態>
 図16は、本発明の第3実施形態の電動歯ブラシの構成を示している。第1及び第2実施形態では、リード線を介してモータ10への電力供給が行われていたのに対し、第3実施形態では、電気的接続部45を介して駆動回路12からモータ10への電力供給が行われている点が異なる。
 第1、第2実施形態のようにモータ10と駆動回路12の間がリード線で接続されている構成では、リード線のねじれや断線を防ぐために、アクチュエータ40の回転範囲を制限する必要がある。一方、本実施形態の電気的接続部45は、アクチュエータ40の回転角によらず、駆動回路側の電力供給ラインとモータ10の電極との電気的接続を確保するための回路構成である。たとえばアクチュエータ40を360度以上回転させる必要がある場合などに、この構成を好適に利用することができる。
 図17は、電気的接続部45の一例として、整流ブラシによる回路構成を模式的に示している。このような回路構成により、整流ブラシの接触位置によらず(内筐体1bと外筐体1aの位置関係によらず)、一定方向の電流Iがモータ10に流れるように、駆動回路12側からモータ10へと電力を供給することができる。
 図18は、電気的接続部45の一例として、コイルによる回路構成を模式的に示している。このような回路構成により、電磁誘導によって駆動回路12側からモータ10へと電極を供給することが可能である。
 <第4実施形態>
 第4実施形態では、ブラシ角が最適値であることを報知する機能を設ける。具体的には、図6のS50でブラシ角が適切であると判定された場合に、CPU120が、外筐体1aに設けられた発光部(LEDなど)を発光させる。使用者は、発光部の点灯状態をみることで、ブラシ角が最適値であることを容易に把握できる。
 ここで、S40で得られたブラシ角の現在値とS30で得られたブラッシング部位の最適値の差分に応じて、報知の仕方(発光色、点滅パターンなど)を変えることも好ましい。これにより、アクチュエータ40によるブラシ角の調整が不要な場合(本体1の姿勢が正しい状態)と、アクチュエータ40によりブラシ角の調整が行われた場合(本体1の姿勢は正しくない状態)との区別がつくため、正しい姿勢を使用者に学習させることができる。
 なお、報知の方法は、光以外にも、音、振動、音声などを用いることができる。音の場合は、差分に応じて音の大きさやパターンを変えることができる。振動の場合は、差分に応じて振動の強さや長さを変えることができる。音声の場合は、たとえば、「あと30度くらい傾けて下さい」「もう少し傾けてください」「最適なブラシ角です」のような内容を報知することができる。
 <第5実施形態>
 第5実施形態では、検出された姿勢に応じて、ブラシ角だけでなく、ブラシの運動方向(具体的にはモータ10の回転方向)、ブラシの運動周波数(具体的にはモータ10の回転数)を変更する。その他の構成については上述した実施形態のものと同様であるため、以下、本実施形態に特有の構成を中心に説明を行う。
 (振動特性)
 この電動歯ブラシでは、上述のように、偏心軸の旋回運動を利用してブラシの振動を発生させており、ブラシ20はモータ10の回転軸に垂直な面内を楕円状の軌道を描いて振動する。本発明者らは、振動数(モータ回転数)を変化させながらブラシの振動を観察し分析することによって、この電動歯ブラシが次のような振動特性を有することを見出した。
 (1)ブラシ部分が少なくとも2つの共振点(共振振動数)を有している。
 (2)各共振点における共振の方向が異なる。具体的には、図19に示すように、振動数が低い側の共振点(第1共振:約12500spm)ではブラシ面に平行なx軸方向の振幅が増大する。振動数が低い側の共振点(第2共振:約38000spm)ではブラシ面に垂直なz軸方向の振幅が増大する。共振外(たとえば約26500spm)では、ブラシはx軸(z軸)に対して斜め(約45度)の軌道を描く。なお、「spm」は一分間あたりのスイング回数を表す単位である。
 方向の異なる複数の共振が出現する理由は、電動歯ブラシの構造やその駆動原理に依るところが大きいと考えられる。本発明者らは、偏心軸やブラシの構成を変更しながら実験を繰り返すことで、第1共振点が主に運動伝達機構に依存する特性であり、第2共振点が主にブラシに依存する特性であるとの知見を得ている。言い換えれば、運動伝達機構の構造や形状(簡単には偏心軸の重りの位置、大きさ、重量など)を変更することで第1共振点の振動数や振幅を調整でき、また、ブラシの構造や形状を変更することで第2共振点の振動数や振幅を調整できることが分かった。
 図20の上段がブラシ角=45度の状態を示し、図20の下段がブラシ角=90度の状態を示している。また図20の左側はモータが正転の状態、右側はモータが反転の状態を示している。そして、それぞれの矢印はブラシの動き(振幅が最も大きい方向)を表している。概略、第1共振ではブラシが横(x軸方向)に動き、第2共振ではブラシが縦(z軸方向)に動き、共振外ではブラシが斜めに動く。
 歯周ポケットや歯間から食物残渣や歯垢を効果的に掻き出すには、ブラシの毛先が歯周ポケットや歯間に入り込むようにブラシを動かすとよい。すなわち、ブラシの動く方向が歯軸に対して斜め(たとえば45度)になることが好ましい。したがって、図20の例では、ブラシ角が45度の場合は、第2共振の動きが最適であることがわかる。一方、ブラシ角が90度の場合、下顎右舌側ではモータ正転の共振外の動きが最適であり、下顎右頬側ではモータ逆転の共振外の動きが最適であることがわかる。なお、同様の考え方に従って、ブラッシング部位とブラシ角の組み合わせのそれぞれに対する最適な動作モード(モータ回転方向とブラシ振動数)を決定することができる。
 図21は本実施形態の動作モード切替処理のフローチャートである。この処理は、たとえば図6のS60の後などに実行される。
 CPU120は、S30で得られたブラッシング部位とS40で得られたブラシ角(又はブラシ角の最適値)を、前回の処理の時のブラッシング部位およびブラシ角と比較することで、ブラッシング部位もしくはブラシ角が変化したか否かをチェックする(S1800)。なお前回の処理の時のブラッシング部位とブラシ角はメモリに記憶されている。
 ブラッシング部位もしくはブラシ角が変化した場合(S1800;YES)、CPU120は、現在のブラッシング部位が「下顎左頬側、下顎右舌側、上顎左舌側、上顎右頬側」の第1グループと、「下顎右頬側、下顎左舌側、上顎右舌側、上顎左頬側」の第2グループのいずれに該当するかを判定する(S1801)。そして第1グループの場合は、CPU120は、モータの回転方向を正転にする(S1802)。第2グループの場合、CPU120は、モータの回転方向を反転にする(S1803)。さらにCPU12は、ブラシ角が45度の場合にブラシの振動数を第2共振(高速)に制御し(S1804、S1805)、ブラシ角が90度の場合にブラシの振動数を共振外(中速)に制御する(S1806)。
 以上述べた本実施形態の制御によれば、ブラッシング部位とブラシ角の情報に基づき、歯間や歯周ポケットのブラッシングに最適なブラシ毛先の動きを実現でき、より一層の歯垢除去力の向上を図ることができる。
 なお、この実施形態では、ブラシの運動方向と運動周波数の両方を制御したが、いずれか一方のみを制御する構成も好ましい。たとえば、歯肉が過敏な部位については、運動周波数を低くしてブラッシング強度を弱めにし、逆に高い刷掃効果が望まれる部位については、運動周波数を高くしてブラッシング強度を強めにすることができる。これにより刷掃効果と施療感の向上を図ることができる。また、歯ブラシの振動機構はyz平面に関して対称であるため、モータの回転方向を逆転すると、ブラシはyz平面に関して対称な軌道を描く。よって、ブラシの毛先が歯周ポケットから歯垢を掻き出す方向に動くように、ブラッシング部位に応じてモータの回転方向を切り替えるとよい。
 <第6実施形態>
 第6実施形態は、1軸の加速度センサによりブラッシング部位およびブラシ角の推定を行う構成を採用する。
 図22上段は、頬側または舌側の歯面をブラッシングしている状態を示している。このとき、ブラシ角(ヨー角γ)は約90度になり、重力加速度のx軸方向成分は約1gもしくは-1gとなり(正負は歯列の左右に対応する)、重力加速度のz軸方向成分はほぼ0となる。一方、図22下段は、噛み合わせ面をブラッシングしている状態を示している。このとき、ブラシ角(ヨー角γ)はほぼ0度になり、重力加速度のx軸方向成分はほぼ0となり、重力加速度のz軸方向成分は約1gもしくは-1gとなる(正負は歯列の上下に対応する)。
 このような特性を利用すれば、x軸の加速度センサまたはz軸の加速度センサのみでも、「頬側または舌側の歯面」か「噛み合わせ面」かの判別や、さらには左右上下の判別も可能である。そして、前述の実施形態と同じく、x軸またはz軸の加速度センサ出力からブラシ角を算出可能である。ブラッシング部位とブラシ角が推定された後の処理は、前述の実施形態と同様である。
 <第7実施形態>
 第7実施形態の電動歯ブラシは、電動歯ブラシの使用後にブラシ部材を初期位置に復帰させる自動復帰機能を有している。その他の構成は上述した実施形態のものと同様である。
 図23のフローチャートに示すように、スイッチ操作により電動歯ブラシの電源がOFFされるか、タイマによって計時されていた継続動作時間が所定時間(たとえば2分間)に達すると、S20~S60のループが終了し(継続?;NO)、ブラシの駆動が停止する(S70)。その後、S230において、CPU120がアクチュエータ40を制御し、ブラシ部材2の角度(ブラシの向き)を初期位置(ホームポジション)に戻す。本実施形態では、ブラシ面が電動歯ブラシ本体のスイッチSと同じ側を向いている状態(図2参照)を初期位置と定めている。
 このような自動復帰機能によれば、ブラシの向きが初期位置からずれた状態で歯磨きを終えた場合でも、次回の歯磨き開始までにブラシの向きが自動的に初期位置に復帰する。よって、次回の歯磨き開始時に、より素早く最適なブラシ角に至らしめることが可能となる。
 なお、電動歯ブラシが充電器100に置かれたことを検知して、ブラシ部材を初期位置に戻すような制御も好ましい。また、電源OFFやタイマによる自動停止の後、すぐに歯磨きが再開される可能性があることを考慮し、電源OFF等を検知してから所定時間(例えば1分)経過後に、ブラシ部材を初期位置に復帰させるようにすることも好ましい。
 また、この実施形態では、電動歯ブラシの使用終了後に自動復帰処理を実行したが、電動歯ブラシの使用開始時(たとえば、電源がONされた時、電動歯ブラシが充電器100から取り外された時など)に自動復帰処理を実行しても、同様の作用効果が得られる。
 <その他>
 上述した実施形態の構成は本発明の一具体例を例示したものにすぎない。本発明の範囲は上記実施形態に限られるものではなく、その技術思想の範囲内で種々の変形が可能である。たとえば、上述した各実施形態の構成を互いに組み合わせることも好ましい。また、上記実施形態では、偏心分銅による振動方式の電動歯ブラシを例示したが、本発明は他の運動方式の電動歯ブラシにも適用可能である。例えば、回転往復運動や直線往復運動やブラシ毛回転運動やそれらを切り替えて組み合わせた電動歯ブラシにおいても適用可能である。また、充電式でなく、乾電池式や電源コードを接続して使用するタイプの電動歯ブラシにも本発明を適用可能である。
 また、ブラシの姿勢検出の精度とブラッシング部位やブラシ角の推定精度をさらに高めるために、加速度センサとジャイロスコープの出力から、基準位置に対するブラシの移動量や相対姿勢を算出することも好ましい。基準位置については、電源ONの時点の姿勢を基準位置に設定してもよいし、あるいは、使用者に基準位置(磨き始めの位置)を入力させるような仕組み(たとえば、歯ブラシ本体を水平に構えブラシを上顎前頬側に当てた状態でスイッチを押させる)を設けてもよい。移動量(移動距離)は、加速度センサ出力から得られるx軸方向、y軸方向、z軸方向それぞれの動加速度成分を二階積分することにより算出することができる。ただし、移動量を算出する際は、歯ブラシの座標系xyzを、重力加速度方向をZ軸とする座標系XYZ(上記基準位置が原点であるとよい)に変換する。たとえば、1クロックごとにX、Y、Zそれぞれの移動距離を算出し累積していくことにより、基準位置(初期位置)に対する相対位置を割り出すことができる。そして、基準位置に対する相対位置がわかれば、上述した実施形態よりもさらに正確かつ詳細にブラッシング部位を同定することが可能である。さらに、磁気センサなどから得られる方位情報を利用してブラシの位置を算出することも好ましい。なお、加速度センサ出力から動加速度成分を抽出するには、ハイパスフィルタなどのバンドパスフィルタを用いることができる。このとき、ブラシの振動によるノイズを除去するために、ブラシの駆動周波数に相当する100Hz~300Hz程度の周波数成分をカットすることも好ましい。またジャイロスコープと組み合わせてより正確な移動量や移動方向を算出することも好ましい。さらに、前歯に関しては、左右どちらの手で歯ブラシ本体を持つかによってブラシの姿勢が180度変わるため、使用者に利き手(歯ブラシを持つほうの手)を登録させ、登録された利き手に応じてブラッシング部位の判定アルゴリズムを変更したり、動作モード(モータ回転方向、ブラシの動き)を変更したりしてもよい。
 また、ブラシ部材2の先端部分設けた小型カメラで口腔内を撮影し、その画像情報をブラシの姿勢検出に活用してもよい。さらに、ブラシ部材2の先端部分に温度センサや光センサを設け、それらの検出結果をブラシの姿勢検出に活用することもできる。

Claims (7)

  1.  把持部を有する電動歯ブラシ本体と、
     ブラシを有するブラシ部材と、
     前記ブラシを運動させる駆動手段と、
     前記ブラシの向きを変更するために前記ブラシ部材を前記電動歯ブラシ本体に対して相対的に回転させる回転手段と、
     前記電動歯ブラシ本体の姿勢を検出する姿勢検出手段と、
     検出された姿勢に基づいて、歯軸に対する前記ブラシの角度であるブラシ角が予め定められた最適値になるように前記回転手段を制御する制御手段と、
    を備えることを特徴とする電動歯ブラシ。
  2.  前記制御手段は、
     検出された姿勢に基づいて、歯列表面を区分することで定義される複数の部位の中からブラッシングされているブラッシング部位を推定する部位推定手段と、
     検出された姿勢に基づいて、歯軸に対する前記ブラシの角度であるブラシ角を推定するブラシ角推定手段と、
    を備え、
     前記ブラッシング部位ごとに予め設定されているブラシ角の最適値と前記推定されたブラシ角とを比較して、ブラシ角が前記最適値になるように前記回転手段を制御することを特徴とする請求の範囲第1項に記載の電動歯ブラシ。
  3.  前記制御手段は、検出された姿勢に応じて、前記ブラシの運動方向又は運動周波数を変更するように前記駆動手段を制御することを特徴とする請求の範囲第1項または第2項に記載の電動歯ブラシ。
  4.  前記姿勢検出手段は、加速度センサの出力に基づいて姿勢を検出するものであることを特徴とする請求の範囲第1項または第2項に記載の電動歯ブラシ。
  5.  前記ブラシ角が前記最適値であることを報知する報知手段をさらに備えることを特徴とする請求の範囲第1項または第2項に記載の電動歯ブラシ。
  6.  前記最適値が変更可能であることを特徴とする請求の範囲第1項または第2項に記載の電動歯ブラシ。
  7.  前記制御手段は、電動歯ブラシの使用後または使用開始時に、前記ブラシ部材が予め設定された初期位置になるように前記回転手段を制御することを特徴とする請求の範囲第1項または第2項に記載の電動歯ブラシ。
PCT/JP2009/059986 2008-06-02 2009-06-01 電動歯ブラシ WO2009148018A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980120238.5A CN102046041B (zh) 2008-06-02 2009-06-01 电动牙刷
RU2010153356/12A RU2493760C2 (ru) 2008-06-02 2009-06-01 Электрическая зубная щетка
US12/990,308 US8341791B2 (en) 2008-06-02 2009-06-01 Electric toothbrush
DE112009001137.3T DE112009001137B4 (de) 2008-06-02 2009-06-01 Elektrische Zahnbürste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-144161 2008-06-02
JP2008144161A JP5251265B2 (ja) 2008-06-02 2008-06-02 電動歯ブラシ

Publications (1)

Publication Number Publication Date
WO2009148018A1 true WO2009148018A1 (ja) 2009-12-10

Family

ID=41398095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059986 WO2009148018A1 (ja) 2008-06-02 2009-06-01 電動歯ブラシ

Country Status (6)

Country Link
US (1) US8341791B2 (ja)
JP (1) JP5251265B2 (ja)
CN (1) CN102046041B (ja)
DE (1) DE112009001137B4 (ja)
RU (1) RU2493760C2 (ja)
WO (1) WO2009148018A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096285A1 (ja) * 2010-02-02 2011-08-11 オムロンヘルスケア株式会社 口腔ケア装置
US8479341B2 (en) 2010-01-08 2013-07-09 Omron Healthcare Co., Ltd. Electric toothbrush
JP2019508183A (ja) * 2016-03-14 2019-03-28 コリブリー コンプライアンスの監視のための、視覚的認識を伴う口腔衛生システム

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070248930A1 (en) 2005-02-17 2007-10-25 Biolux Research Ltd. Light therapy apparatus and methods
US8159352B2 (en) * 2007-09-11 2012-04-17 Colgate-Palmolive Company Personal care implement having a display
ITBS20080081A1 (it) * 2008-04-15 2009-10-16 Flaem Nuova Spa Dispositivo per il lavaggio delle cavita' nasali con pompa incorporata
WO2011074483A1 (ja) 2009-12-16 2011-06-23 本田技研工業株式会社 ハイブリッド車両及びその制御方法
US9154025B2 (en) 2010-07-23 2015-10-06 Braun Gmbh Personal care device
EP2410641A1 (en) 2010-07-23 2012-01-25 Braun GmbH Linear electric motor
FI20105846A0 (fi) * 2010-08-11 2010-08-11 Vti Technologies Oy Hammasharjausmonitorointilaite
EP2420203B1 (en) 2010-08-19 2019-10-23 Braun GmbH Resonant motor unit and electric device with resonant motor unit
US9242118B2 (en) 2010-12-08 2016-01-26 Biolux Research Ltd. Methods useful for remodeling maxillofacial bone using light therapy and a functional appliance
ES2646447T3 (es) 2011-07-25 2017-12-13 Braun Gmbh Dispositivos de cuidado bucal con motores de electro-polímero lineales
EP2550938B1 (en) 2011-07-25 2015-01-14 Braun GmbH Oral hygiene device
ES2451021T3 (es) 2011-07-25 2014-03-26 Braun Gmbh Conexión magnética entre un mango de cepillo dental y una cabeza de cepillo
JP5799646B2 (ja) * 2011-08-08 2015-10-28 オムロンヘルスケア株式会社 電動歯ブラシ
CN103906480B (zh) * 2011-10-24 2016-07-06 皇家飞利浦有限公司 用于确定电动牙刷刷头在嘴中的幅度的系统
US20130280671A1 (en) * 2012-04-19 2013-10-24 Biolux Research Ltd. Intra-oral light therapy apparatuses and methods for their use
EP3626206A1 (en) * 2012-04-19 2020-03-25 Biolux Research Holdings, Inc. Intra-oral light therapy apparatus
CA2905284C (en) * 2013-03-11 2018-01-16 Sunstar Inc. Electric toothbrush
EP2818074A1 (fr) * 2013-06-28 2014-12-31 Babyliss Faco S.P.R.L. Dispositif de coiffure
CN105682603A (zh) 2013-10-22 2016-06-15 碧奥鲁克斯研究有限公司 口腔内光疗法装置以及使用它们的方法
EP2976966A1 (en) 2014-07-22 2016-01-27 Braun GmbH Fastenable device for oral cavity position detection
EP2976965A1 (en) 2014-07-22 2016-01-27 Braun GmbH Fastenable device for oral cavity position detection
EP3420849A1 (en) * 2014-12-22 2019-01-02 Sunstar Inc. Brushing assistance system, brushing assistance device, and brushing assistance program
EP3280352A1 (en) 2015-04-06 2018-02-14 Koninklijke Philips N.V. Personal care appliance with self-adaptive amplitude regulation via actuator non-linearity and active driving adjustment and method thereof
JP6902478B2 (ja) 2015-04-29 2021-07-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 口腔衛生装置を操作するユーザに角度の誘導を提供するためのシステム及び方法
WO2016205055A1 (en) * 2015-06-18 2016-12-22 Colgate-Palmolive Company Electric toothbrush device and method
US10702206B2 (en) 2015-06-29 2020-07-07 Braun Gmbh Toothbrush for oral cavity position detection
KR101660177B1 (ko) * 2015-07-23 2016-09-26 김상우 올바른 양치습관을 유도하는 다기능 led 칫솔
EP3141151B1 (en) 2015-09-08 2023-10-18 Braun GmbH Determination of a currently treated body portion of a user
WO2017109633A1 (en) * 2015-12-22 2017-06-29 Koninklijke Philips N.V. Systems, methods, and devices for providing guidance and feedback based on location and performance
EP3207823A1 (en) 2016-02-16 2017-08-23 Braun GmbH Interactive system setup concept
WO2017166079A1 (zh) * 2016-03-29 2017-10-05 深圳市柔宇科技有限公司 一种电动牙刷及电动牙刷的控制方法
CN110139582A (zh) * 2016-12-01 2019-08-16 皇家飞利浦有限公司 用于在牙齿清洁期间确定用户的头部的朝向的方法
US10420663B2 (en) 2017-05-01 2019-09-24 Verily Life Sciences Llc Handheld articulated user-assistive device with behavior control modes
CN107468362B (zh) * 2017-08-16 2019-10-01 深圳市乐易电器科技有限公司 一种自动控制式电动牙刷
CN107320210A (zh) * 2017-08-24 2017-11-07 深圳市翼行者科技开发有限公司 智能型电动牙刷
WO2019197643A1 (en) 2018-04-13 2019-10-17 Koninklijke Philips N.V. Motor for a personal care device
US10987203B2 (en) * 2018-09-06 2021-04-27 Mouth Watchers, Llc Multiple mode dental device
CN111150514A (zh) * 2020-01-17 2020-05-15 杭州涂鸦信息技术有限公司 一种检测刷牙姿态的电动牙刷以及牙刷姿态监测方法
JP7373799B2 (ja) * 2020-02-07 2023-11-06 パナソニックIpマネジメント株式会社 電動歯ブラシ
JP7417857B2 (ja) * 2020-02-07 2024-01-19 パナソニックIpマネジメント株式会社 電動歯ブラシ
CN112716636A (zh) * 2020-12-04 2021-04-30 上海向方科技有限公司 低噪音声波电动牙刷及其声波电机驱动电路、驱动方法
ES2920649A1 (es) * 2021-02-05 2022-08-08 Cecotec Res And Development S L Sistema de monitorizacion inteligente para aparato secador de cabello y metodo asociado
CN114681086A (zh) * 2022-02-15 2022-07-01 深圳市宝丽洁科技有限公司 电动牙刷的控制方法、电动牙刷以及储存介质
CN117379211A (zh) * 2023-10-16 2024-01-12 广州星际悦动股份有限公司 口腔护理设备的控制方法、装置及口腔护理设备
CN117379212A (zh) * 2023-11-21 2024-01-12 广州星际悦动股份有限公司 口腔护理设备的控制方法、装置及口腔护理设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139937U (ja) * 1982-03-18 1983-09-20 村田 欽吾 歯刷子の角度表示板
JP2000507464A (ja) * 1996-03-26 2000-06-20 パリン バトラー、クラレンス バス刷掃法を実行するための曲げ可能なヘッドを備えた歯ブラシ
JP2003009950A (ja) * 2001-07-03 2003-01-14 Michihiro Yano 歯ブラシ
WO2006137648A1 (en) * 2005-06-20 2006-12-28 Jin-Sang Hwang Tooth brushing pattern analyzing/modifying device, method and system for interactively modifying tooth brushing behavior

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2223983Y (zh) * 1995-05-25 1996-04-10 涂福来 可放大转动角度的电动牙刷
US5749381A (en) 1996-03-26 1998-05-12 Butler; C. P. Toothbrush for implementing the bass brushing technique
DE10159395B4 (de) * 2001-12-04 2010-11-11 Braun Gmbh Vorrichtung zur Zahnreinigung
US6739012B2 (en) * 2001-12-20 2004-05-25 Koninklijke Philips Electronics N.V. Power toothbrush with brushing pressure feedback
JP4543663B2 (ja) 2003-11-25 2010-09-15 サンスター株式会社 電動歯ブラシ
US7310844B1 (en) * 2005-07-13 2007-12-25 Rehco Llc Toothbrush with manual powered movable brush head
GB0612398D0 (en) * 2006-06-22 2006-08-02 Wong S Springs Ind Ltd Electric toothbrush with skewed neck
US20080092955A1 (en) * 2006-10-16 2008-04-24 Sharp Laboratories Of America, Inc. Solar cell structures using porous column TiO2 films deposited by CVD

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139937U (ja) * 1982-03-18 1983-09-20 村田 欽吾 歯刷子の角度表示板
JP2000507464A (ja) * 1996-03-26 2000-06-20 パリン バトラー、クラレンス バス刷掃法を実行するための曲げ可能なヘッドを備えた歯ブラシ
JP2003009950A (ja) * 2001-07-03 2003-01-14 Michihiro Yano 歯ブラシ
WO2006137648A1 (en) * 2005-06-20 2006-12-28 Jin-Sang Hwang Tooth brushing pattern analyzing/modifying device, method and system for interactively modifying tooth brushing behavior

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8479341B2 (en) 2010-01-08 2013-07-09 Omron Healthcare Co., Ltd. Electric toothbrush
WO2011096285A1 (ja) * 2010-02-02 2011-08-11 オムロンヘルスケア株式会社 口腔ケア装置
CN102740732A (zh) * 2010-02-02 2012-10-17 欧姆龙健康医疗事业株式会社 口腔护理装置
US8863343B2 (en) 2010-02-02 2014-10-21 Omron Healthcare Co., Ltd. Oral care apparatus
JP2019508183A (ja) * 2016-03-14 2019-03-28 コリブリー コンプライアンスの監視のための、視覚的認識を伴う口腔衛生システム
US11426264B2 (en) 2016-03-14 2022-08-30 Kolibree Oral hygiene system with visual recognition for compliance monitoring

Also Published As

Publication number Publication date
US8341791B2 (en) 2013-01-01
CN102046041A (zh) 2011-05-04
DE112009001137T5 (de) 2011-04-07
JP2009285416A (ja) 2009-12-10
CN102046041B (zh) 2014-01-08
RU2010153356A (ru) 2012-07-20
US20110041269A1 (en) 2011-02-24
JP5251265B2 (ja) 2013-07-31
RU2493760C2 (ru) 2013-09-27
DE112009001137B4 (de) 2021-10-14

Similar Documents

Publication Publication Date Title
JP5251265B2 (ja) 電動歯ブラシ
JP5293101B2 (ja) 電動歯ブラシ
JP5365277B2 (ja) 電動歯ブラシ
JP5526825B2 (ja) 口腔ケア装置
JP5217611B2 (ja) 電動歯ブラシ
JP5796408B2 (ja) 口腔ケア装置
JP5359210B2 (ja) 電動歯ブラシ
KR101401831B1 (ko) 전동 칫솔 및 그 제어방법
JP2009291316A (ja) 電動歯ブラシ
JP5277580B2 (ja) 電動歯ブラシ
TWI388311B (zh) 具有可調質心的口腔保健用具
JP5482209B2 (ja) 電動歯ブラシ
JP2009219756A (ja) 電動歯ブラシ
KR101438819B1 (ko) 자동진동강도조절모듈 및 이를 활용한 전동칫솔 및 그제어방법
JP6548971B2 (ja) 電動歯ブラシ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980120238.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758285

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12990308

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010153356

Country of ref document: RU

RET De translation (de og part 6b)

Ref document number: 112009001137

Country of ref document: DE

Date of ref document: 20110407

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09758285

Country of ref document: EP

Kind code of ref document: A1